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OUTLINE
Machine learning based data reduction methods are highly efficient

Case 1 : High-throughput on-the-fly data reduction at the edge

Case 2 : Real time feedback: rapid detection of rare events in situ

Case 3 : Closing the loop : autonomous experiment steered at the edge

On-chip data compression to tackle challenges from the increasing data rate
Case 4 : Co-designing ASIC with on-chip compression (“SparkPix-RT”)
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Thibault, P., et al. (2008). Science (New York, N.Y.), 321(5887), 379–382.

PTYCHOGRAPHY

3. Iterative 
Optimizer

1. Spatial overlap

is a high-resolution computational 
imaging technique

Retrieved phase

2. Gather data at 
the end of the scan
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MOTIVATION
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raw data rate of x-ray ptychography doubles 
every year

for x-ray ptychography the raw data speed 
reached 100 MB/s in 2014

this exceeds the throughput of state-of-the-
art iterative engines published in 2021

electron ptychography follows the same trend

1 second of data acquired with the latest 
generation of detector, takes 1 hour to analyze 

A. Babu, T. Zhou et al., Nature Communications 14 (1), 7059, 2023

how to provide real time feedback
during the experiment ?



TEACH AI ABOUT PHASE RETRIEVAL

6 M. J. Cherukara, T. Zhou, et al. Appl. Phys. Lett. 117, 044103 (2020)

result of iterative 
phase retrieval

diffraction images 
of the scan

corresponding real space 
(phase) images 

training of a deep 
learning network



REAL TIME STREAMING PTYCHOGRAPHY

schematic of the workflow video recording CNM-APS HXN beamline

A. Babu, T. Zhou et al., Nature Communications 14 (1), 7059, 2023
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SCALABLE TO HANDLE HIGH DATA RATE 

image size 512 x 512, 16 bit-depth, 2 kHz
raw data rate = 8 Gbps 

Detector

distributor on DCU

multimode-SFP

Yongho Kim, Seongha Park et al., publication in progress

network switch, 1 Gbps port

10 Gbps-SFP
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REMOVING THE OVERLAP CONSTRAINT
a scan with 7x7 points

step size 1 μm

NN prediction (0% overlap) ePIE (71% overlap)

probe FWHM ~ 700 nm 

step size 5× 
reduce beam damage by 25×
increased FoV by 25× 

A. Babu, T. Zhou et al., Nature Communications 14 (1), 7059, 2023
Neural network methods for radiation detectors and imaging, Front. Phys., 22 February 20249
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HIGH ENERGY DIFFRACTION MICROSCOPY/3D-XRD
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12 GBs dataset per loading acquired in 5 min
Efficient data reduction is required in in situ 
experiments to pause the loading for detailed 
measurements
Rapid detection of structural deformation with 
AI/ML method on the flyAPS 1-ID



RARE EVENT INDICATOR (REI)
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Weijian Zheng, Jun-Sang Park, Peter Kenesei, Ahsan Ali, Zhengchun Liu, Ian T Foster, Nicholas Schwarz, 
Rajkumar Kettimuthu, Antonino Miceli, Hemant Sharma, Preprint: https://arxiv.org/abs/2312.03989

50 times faster than conventional methods

1. Self-supervised image 
representation learning 

2. “Bootstrap Your Own Latent” 
(BYOL: Google DeepMind)

3. Unsupervised clustering
(K-means) to calculate uncertainty



13

OUTLINE
Machine learning based data reduction methods are highly efficient

Case 1 : High-throughput on-the-fly data reduction at the edge

Case 2 : Real time feedback: rapid detection of rare events in situ

Case 3 : Closing the loop : autonomous experiment steered at the edge

On-chip data compression to tackle challenges from the increasing data rate
Case 4 : Co-designing ASIC with on-chip compression (“SparkPix-RT”)



SCANNING X-RAY DIFFRACTION MICROSCOPY
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40 x 200 points at 100 nm step
at 1 sec exposure time
takes > 2 hrs

entire area is > 100 times larger
will take > 10 days to measure 

each points of measurement is associated 
with a 2D detector image
each image carries information about 
strain and lattice rotation

What if we only measure the most 
important points (non-flat area) ? flat film flat filmrotated-uprotated-down

WSe2



THE MOST IMPORTANT 25% POINTS
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ground truth

first 25%

random 25%

“smart” 25% estimated results
interpolation

S Kandel, T Zhou, et al., Nature Communications 14 (1), 5501



FAST AUTONOMOUS SCANNING TOOLKIT (FAST)

S Kandel, T Zhou, et al., 
Nature Communications 14 (1), 5501

interpolation

interpolation

interpolation

supervised learning approach for dynamic sampling (SLADS)
IEEE Transactions on Computational Imaging ( Volume: 4, Issue: 1, March 2018)

AI learns the relationship between
available measured points and the choice 
of the next X% points that reduces the 
distortion the most

Training using non-experimental data
1%

2%

8%
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6745852
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8287087


EXPERIMENTAL STEERING

17 S Kandel, T Zhou, et al., Nature Communications 14 (1), 5501



SUMMARY
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25%

20%

ground truth

15%

10%

5%

25%

ideal for sparse data
saves 80%* of the measurement time
* depends on the sparsity of the sample features

exploratory experimental steering
on a synchrotron beamline
transferrable to other instruments
trained on camera man image and not on specific exp data

fast decision making (< 1s per 50 points)
with AI at the edge
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Black = 0, White >=1 Statistics of zero-valued pixels per frame

Lossless
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CO-DESIGNING ASIC w/ ON-CHIP COMPRESSION

S Strempfer, T Zhou, et al., Journal of Instrumentation 17 (10), P10042

User configurable 
lossy compressionslossless compression



Impact of user-selectable lossy compression on ptychographic 
reconstructions (real & simulation data).
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POISSON ENCODING

S Strempfer, T Zhou, et al., Journal of Instrumentation 17 (10), P10042

lossless Lossless + lossy

Taking into account the counting 
statistics of x-ray photon science



Implementation (“RT1”)

pixel matrix (48x48) 
(SLAC)

digital compression
(ANL)

“RT2” (192x168) 
tape-out in June 2024
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SPARKPIX-RT

Estimated compression performance based on 
experimental ptychography data from different 
beamlines and synchrotrons (APS, NSLS-II, MAX IV)
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Case 1: High throughput data reduction at the edge
• (APS) Anakha Babu, Saugat Kandel, Tekin Bicer, Zhengchun Liu, Willian Judge, Daniel J. Ching, Yi Jiang, 

Sinisa Veseli, Steven Henke, Yudong Yao, Antonino Miceli, Mathew J. Cherukara
• (DSL) Ryan Chard, Ian T. Foster
• (CNM) Martin V. Holt
• (NVidia) Ekaterina Sirazitdinova, Geetika Gupta

Case 2: Rapid detection of rare events
• (APS & DSL) Weijian Zheng, Jun-Sang Park, Peter Kenesei, Ahsan Ali, Zhengchun Liu, Ian T. Foster, 

Nicholas Schwarz, Rajkumar Kettimuthu, Antonino Miceli, Hemant Sharma

Case 3: Closing the loop : Experimental steering at the edge
• (APS) Saugat Kandel, Anakha Babu, Antonino Miceli, Mathew J. Cherukara
• (CNM) Xinxin Li, Xuedan Ma, Martin V. Holt
• (MCS) Zichao Di
• (MSD) Charudatta Phatak
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SLAC ASIC/FPGA Design
• Dionisio Doering – system architecture, project leader
• Aseem Gupta – RT cluster logic design, RT/RT2 top-level layout, RT/RT2 readout and full-chip verification, mixed-

signal verification
• Hyunjoon Kim – cocotb, verification 
• Pietro King – RT/RT2 FPGA design, emulation, verification, test setup
• Lorenzo Rota – architecture, cluster logic design, simulations, analog,  etc.

Argonne ASIC/FPGA Design
• Antonino Miceli – project leader ANL
• Mike Hammer – RT/RT2 digital design and verification
• Henry Shi – RT/RT2 physical implementation and PnR, RT verification, RT2 AXI control design and verification
• John Weizeorick – RT AXI control design and verification, RT carrier board design, RT FPGA design and testing
• Kazutomo Yoshii – compression algorithm development, compressor design and verification, formal verification
• Tao Zhou – beamlines scientist, compression algorithms development, compressor design, compression usability

Students
• Senthil Gnanasekaran – cocotb verification/emulation, serial control (SUGOI) driver, control & data path checking
• Sebastian Strempfer – RT/RT2 digital design, analysis of compression techniques and designs, cocotb verification
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SPARKPIX-RT DESIGN TEAM



THANK YOU FOR YOUR ATTENTION !
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