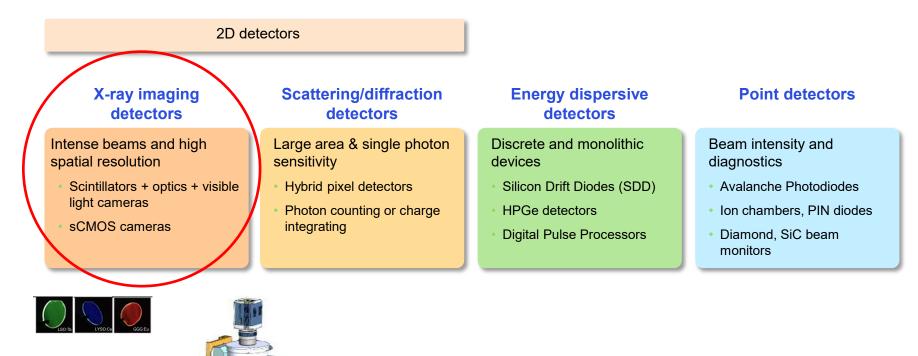


Update on detector development activities

T. Martin on behalf of ISDD/Detector Unit

Monday 18 March, 2024



The European Synchrotron Instrumentation Services and Development Division

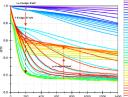
Thanks to:

Beamline Control Unit Mechanical Engineering Network Unit External collaborators Colleagues from Experiments Division

FAMILIES OF X-RAY DETECTOR AT ESRF

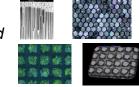
X-RAY IMAGING DETECTORS

Scintillators


- Microstructure scintillator: identify micro-structured (30-50µm resolution) scintillators with improved properties, especially stability under radiation, high DQE, low afterglow
 CeBrl, ZnSe:Te, Lul₃:Ce, co-doped/undoped/low moisture Csl
- High resolution scintillator: development of high spatial resolution scintillators with higher efficiency than current available screens (LuAG:Ce, LSO:Tb. GGG:Eu)
 - High density hafnate scintillators (Lu₂Hf₂O₇)
 - > Tool for simulation of energy deposition and spatial resolution
- Optomechanics developments
 - ✓ Large Field of View Detector, BM05 (20cm), BM18 (40cm)
 - ✓ Compact white beam microscope, BM05
 - ✓ XRI heat load, temperature up to 300°C, ID19
 - ✓ **Detector systems**, high collection efficiency, rad hard., blue eraser, 1x, 2x, 4x mag., BM18
 - ✓ Optical components: thin and perforated mirrors, AI coating, BM18

ID19: XRI heat load

BM05: Microscope Topo



(1) FRELON

(2) Hasselbla

ens housing

(3) Scintillator he

sCMOS FRELON? - INVESTIGATION PHASE - : HORNET PROJECT

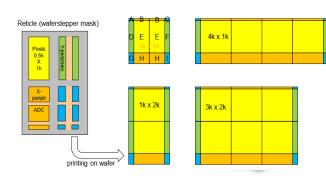
The Frelon camera

- More than 40 cameras produced at ESRF
- Excellent performance (at the time)
- Platform: different CCD sensors and optics

What's next: sCMOS Frelon?

A family of customisable sCMOS cameras for synchrotron X-ray imaging?

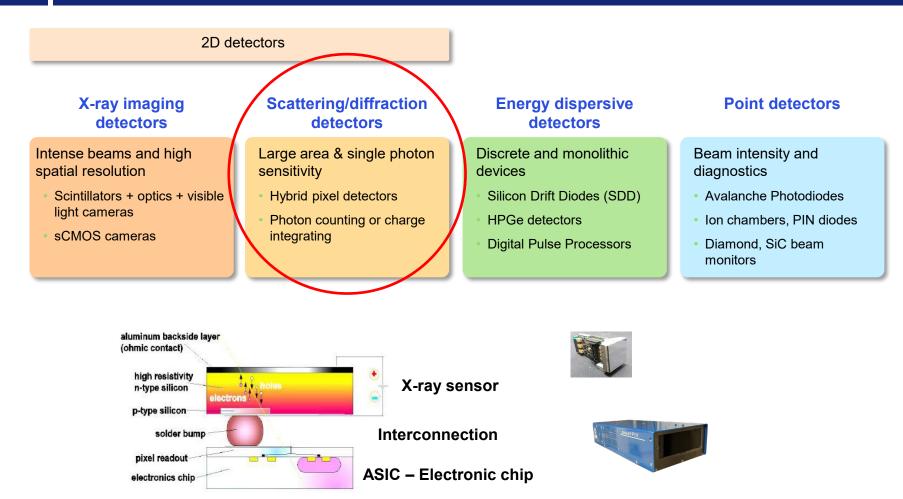
ELFIS2 sensor


- Developed for ESA by Caeleste (Be)
- Interesting detection performance:
 - ✓ Pixel size: 15 µm
 - ✓ Full-well capacity up to 320 ke⁻ (ITR mode)
 - ✓ Readout noise down to 2.5 e⁻ r.m.s. (HG mode)
 - ✓ Frame rate for 4Mpixel: 140 fps

Scintillator

Camera1

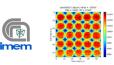
Well suited for taper/FOP coupling

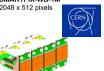


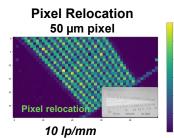
Stitching technology

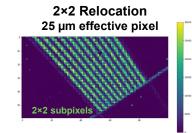
- And some key "uncommon" features:
 - ✓ Global shutter with deadtime-free readout
 - ✓ Backside illumination (QE > 90%)
 - Radiation hardened
 - ✓ Hardware binning
 - ✓ Scalable size up to 8k×8k pixels (64M) by "stitching" of 512×1024 pixel blocks
 - ✓ Family sensor (6.5µm pixel size)

FAMILIES OF X-RAY DETECTOR AT ESRF


SCATTERING/DIFFRACTION DETECTORS


- Characterization of pixelated semiconductors
 ✓ High-flux CdZnTe, CdTe, GaAs
- **SMARTPIX:** In-house development based on the CERN Medipix3-RX chip (2011)
 - ✓ Pixel 55 µm. Compatible with Si, CdTe, CZT, GaAs,... sensors (bipolar)
 - \checkmark Mounting, calibration, commissioning and maintenance in-house
 - ✓ Max 2 kHz frame rate (target 4 kHz in 6-bit mode)
 - ✓ Low latency distributed DAQ: Lima2 & RASHPA
 - ✓ Deployment in 2024-2025 (8 systems)
- JUNGFRAU, Developed by PSI
 - ✓ One Jungfrau 4M commissioned in 2022 at ID29, now in user operation
 - One 1M Jungfrau on-going order for ID09
- CITIUS, Developed for the SPring8-II Upgrade Program
 - Available at the ESRF for evaluation
 - ✓ In-house development of a bonding station to coupling a Fiber Optic Plate (FOP) to imaging sensors
 - Presentation Monday at 11:15 and Wednesday at 10:00
- XIDER, ESRF and University of Heidelberg, moving to XIDyn collaboration
 - \checkmark High dynamic range digital integrating detector, 100 μ m and 200 μ m pixel pitch, CdTe and CZT sensors
 - Presentation Monday at 15:00 by M. Wilson





SCATTERING/DIFFRACTION DETECTORS

SPHIRD

- R&D collaboration with AGH University of Science and Technology (Krakow)
- A high quality high-rate X-ray photon counting detector
- Design and test of two test readout ASICs:
 - Microelectronics technology node: TSMC CMOS 40 nm
 - With a sensor pixel pitch of 50 μm (prototype), target in the 30 40 μm range
- Prototype detectors: CdTe, high-flux CZT, Si
- Maximise the count rate capabilities:
- > 60 Mcps/pixel with full pixels (at 10% pile-up)
- > 15 Mcps/pixel with small pixels
- X-ray hit relocation (arbitration algorithm) prevents count losses at the pixel corners
- Investigate the possibility of achieving higher spatial resolution (subpixel relocation)

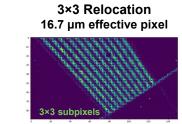
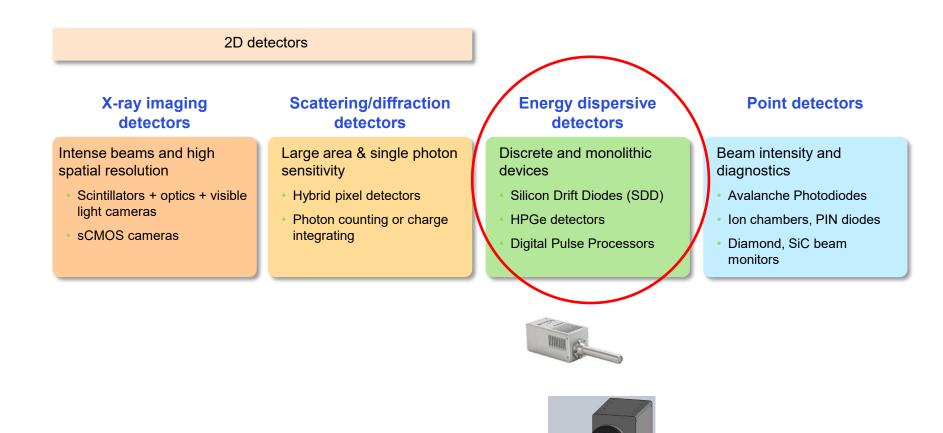
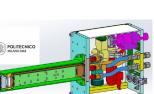


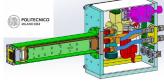
Image of an X-ray resolution test pattern (Si sensor, 16 keV)

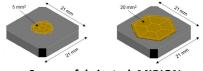


FAMILIES OF X-RAY DETECTOR AT ESRF

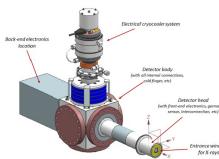

INTEGRATION AND STUDY OF ENERGY DISPERSIVE DETECTORS

- **Development of compact SDD (Silicon Drift Detector) modules**
 - Optimized modular version (hexagonal geometry), vacuum-compatible
 - ✓ Sensor fabricated by Mirion

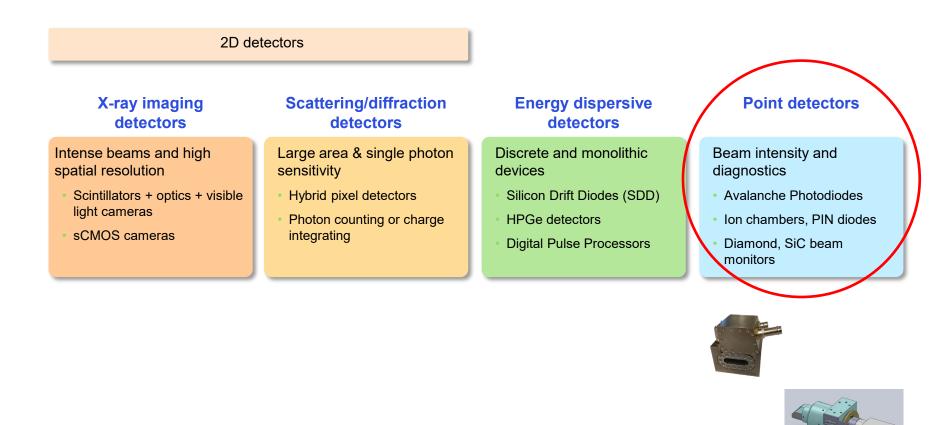

Commercial system

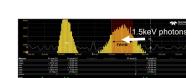


- Monolithic sensors
 - ✓ Development of two ARDESIA 16–channel optimized with ESRF/Politecnico di Milano:
 - *ID16a* : In vacuum version, integration and design of mechanics \geq
 - ID24: Integration of **1mm thick** SDDs sensor, in air \geq

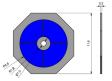


- Design a new generation of Germanium detectors for X-ray spectroscopy applications in the energy range 5 keV to 100 keV
 - Horizon Europe : 10 partners, Synchrotrons and industrial partners \geq
 - Monolithic crystal of 7-element (5mm²/elt and 20mm²/elt variants) \geq
 - Custom readout ASICS with 3 gains to optimize performance in ranges: \geq 5-15 keV / 15-37.5 keV / 37.5-100 keV
 - **DPP: Xpress4** \geq


Sensors fabricated, MIRION


FAMILIES OF X-RAY DETECTORS AT ESRF

BEAM INTENSITY AND DIAGNOSTIC


- "FAST" Ionization Chamber: Development of a high flux version
 - \checkmark 5 kV high voltage compatible
 - ✓ Adaptive absorption, Easy maintenance
- Extend the energy range of APD system to lower energy: New preamplifier design
 - ✓ Based on MAX40213 amplifier (low-noise device for LiDAR 'Light Detection and Ranging')
 - ✓ Noise level decreased, to operate at working energy from 0.5keV (~3keV on the actual version)
- Beam viewers:
 - ✓ CCD \rightarrow CMOS: Evaluation & upgrade with new CMOS Ace Basler (acA1440-73gm)
 - Improvement of spatial resolution with thin film scintillator
- Compact 4-quadrant photodiode
 - ✓ Vacuum compatible
 - ✓ Sensor fabricated by Mirion

60mm² (4 × 15mm²) Ø 1.5mm aperture

ACKNOWLEDGEMENT

DETECTOR UNIT STAFF

Nahel BELGHERZE Analog electronic Frelon

Paul-Antoine DOUISSARD

LPE

HPD-PSI

Eric MATHIEU Mechanics

Diagnostic

Paolo BUSCA Frelon Xider

Pablo FAJARDO Group Head Sphird

Julien MATHIEU LPE, Polishing Scintillators

Elia CHINCHIO Ipool

Christophe JARNIAS

Opto-mechanics

Indirect detection

Cédric COHEN Energy Dispersive Det. LEAPS

Emmanuel COLLET Frelon Smartpix

Menyhert KOCSIS Team Head Ipool

Kristof PAUWEL Indirect detection Citius

Thierry MARTIN Unit Head Diagnostic

Marie RUAT HPD-Dectris SC sensor

THANK YOU FOR YOUR ATTENTION

Leila NIONGUI

Physical measurement

