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Project Purpose

 Problem statement:
• Contingency analyses (CAs) are currently deterministic and only 

address uncertainties by using a limited number of scenarios.
• Transforming grid possesses more stochasticity due to, e.g.,  

higher penetrations of distributed energy resources (DERs), which 
is more difficult for existing deterministic contingency analysis 
(DCA) to handle.

• Probabilistic methods are available; however, utilities are reluctant 
to abandon existing proven techniques due to various barriers 
such as data, tools, and culture.

 The proposed study intends to overcome these 
barriers and make it practical to perform probabilistic 
contingency analysis (PCA). 
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Achievements

 This study facilitates a PCA study by 
developing 
• Methods for data poolability analysis and probabilistic 

modeling and parameterization of renewable generation 
outages, especially for common mode outages (CMOs)

• An outage data repository that better models population 
variability

• An implementation of well-being approach that can 
facilitate decision-making process based on the PCA 
results

• A Python-driven PSS/E based tool with enhanced PCA 
features that can be readily used by utilities
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Technical Approach: Data Poolability
 Formal Statistical Testing for Data Poolability

Issue
• Raw data sources include NERC TADS, GADS (i.e., pc-

GAR software), some Canadian data, and some other 
publicly available data

• Data from different sources (e.g., different NERC regions) 
are usually lumped and averaged (i.e., arithmetic means) 
for PCA input

• This study uses a formal statistical test process to 
determine whether there is a need to model the population 
variability of data
 E.g., environmental impact or maintenance schedule.

• Not all data sources are poolable

4



Outage Data Repository for Non-poolable Transmission 
Components (Lognormal Distributions)
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o fmt: The frequency for single circuit outages per mile
o dmt: The duration of single circuit outages
o ft: The frequency for terminal-caused single circuit 

outages.

o dt: The duration for terminal caused single circuit outage.
o f: the outage frequency 
o d : the duration per outage.

Components Parameter
s

χ2(N-1) μ σ Arithmetic Mean Mean 
Value

Variance 5th

Percentile
95th

Percentile
Error 

Factors
AC Circuit: 200–

299kV
fmt 682.8 -4.63 0.37 0.01 0.01 1.62E-5 0.005 0.018 1.84

dmt 114,420.
4

3.27 0.86 41.51 37.88 1,548.35 6.43 107.32 4.09

ft 810.8 -1.85 0.60 0.20 0.19 0.015 0.059 0.42 2.66

dt 96,440 3.03 1.17 22.82 41.10 4,995.77 3 142.24 6.89

AC Circuit: 300–
399kV

fmt 922.6 -4.74 0.64 0.009 0.01 5.78E-5 0.003 0.025 2.85

dmt 39,390 3.04 1.12 45.90 39.06 3,804.74 3.32 131.56 6.30

ft 839.3 -1.45 0.55 0.34 0.27 0.03 0.095 0.58 2.46

dt 312,978 3.46 1.49 46.97 96.25 76,004.2 2.74 367.93 11.60

AC Circuit: 400–
599kV

fmt 77.1 -5.96 0.59 0.005 0.003 3.89E-6 0.00098 0.0068 2.64

dmt 27,341.6 1.53 1.91 28.09 28.7 30,818.8 0.2 107.21 23.15

ft 207.4 -0.90 0.82 0.31 0.57 0.31 0.11 1.57 3.87

dt 6,336.2 2.65 1.12 22.59 26.54 1,752.6 2.26 89.36 6.29

Transformer: 
300–399kV d

174,195 4.23 2.18 271.87
734.3 6.16E+7 1.9 2,464.02 36.01

Transformer: 
400–599kV

f 81.5 -1.60 0.70 0.09 0.26 0.04 0.065 0.64 3.14

d 10,569.3 3.49 1.45 142.80 94.56 64,916.8 3.01 359.2 10.92

Fossil Fuel 
Generator:
0–399MW

f 8,655.9 1.74 0.21 6.25 5.83 1.46 4.08 8.00 1.40

d 159,300 4.04 0.14 54.82 57.40 62.87 45.35 71.29 1.25

Fossil Fuel 
Generator:
400–799MW

f 4,326.8 2.35 0.18 10.18 10.63 3.77 7.76 14.08 1.35

d 66,860 3.64 0.096 40.69 38.14 13.56 32.40 44.48 1.17

Gas/Jet Turbine: 
0–99MW

f 11,892.9 1.27 0.35 4.14 3.77 1.80 2.01 6.27 1.77

d 1,778,08
4.2

4.53 0.50 78.94 104.48 3053.19 40.81 209.1 2.26

Gas/Jet Turbine: 
100–199MW

f 961.3 1.33 0.37 4.42 4.04 2.35 2.07 6.91 1.83

d 43,616.0 4.03 0.41 46.56 61.23 698.09 28.49 110.95 1.97



Technical Approach: Renewable 
Outage Modes
 Modeling and Parameterization of 

Intermittency Induced Outages (IIOs)
• Major differences between conventional generator and 

renewable outages.
• Generation increase or decrease caused by fast 

ramping events should also be modeled as an outage 
mode
 E.g., wind speed is lower than cut-in or higher than cut-

out speed
• For each outage modes, there can be associated CMOs 

for different generation sites.
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Modeling and Parameterization of IIOs

 Fast ramping 
events were 
extracted from 
utility wind 
generation data 
and modeled as 
IIOs
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 Empirical distribution of frequencies and 
durations of IIOs was fitted

• Also, initial generation level prior to the 
ramping, the deviation of generation 

 Distributions for both up and down 
transients can be considered the same 
and modeled using the same distribution



Modeling and Parameterization of CMOs

 Output of two wind 
sites may be highly 
correlated because 
they are very close to 
each other or located 
along the same wind 
path

 Need to extract 
concurrent ramping 
events of wind 
generation sites, 
especially those highly 
correlated

8

Triple
Rampings

Correlatio
n

Frequency Deviation Duration
(Hours)

Up 0.8 – 0.1 0.0001 0.64 3.04
Down N/A 0.67 0.57
Up 0.6 – 0.8 0.0002 0.75 1.78
Down 0.0001 0.75 0.26

Mean Values of Frequencies, Deviation, and Durations of 
Triple CMOs

Example Double (Left) and Triple CMOs



Technical Approach: Simulation and 
Planning Criteria
 A Scheme for Enhancing PCA Capability of Existing 

Tools
• Developed a generic scheme based on Monte Carlo simulation 

for distributions of different uncertainty parameters.

 Facilitation of Decision-making Process in 
Transmission Planning Using Probabilistic 
Reliability Metrics
• Reviewed probabilistic planning criteria and discussed  how to 

use the probabilistic and deterministic criteria together to 
facilitate making planning decision.

• Investigated and implemented a well-being approach in the 
enhanced PCA tool. 
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Tool Implementation
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Case Study

Case 1: Built-in 
PCA

Case 2: Enhanced 
PCA

System Problem Frequency (per Year) 9.27 17.64
System Problem Duration (Hours) 47.1 34.15

 For a 23-bus example system:
• Differences between system reliability indices calculated using the mean 

input (Case 1) and the Monte Carlo simulation (Case 2) can be significant
• The Monte Carlo simulation is able to calculate the true mean values as 

well as distributions of reliability indices
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 For the WECC system:
Case 3: PSS/E built-in PCA and arithmetic 
mean + base case
Case 4: enhanced PCA + base case
Case 5: enhanced PCA + 10% wind 
generation + IIOs and CMOs
Case 6: enhanced PCA + 10% wind 
generation

Cases
EENS (MW)

Mean Standard 
deviation

3 81.66 N/A
4 22.69 29.44
5 8.8e-4 3.9e-3
6 2.14e-3 8.68e-3



Case Study (cont’d)

Problems Cases
Frequency Duration Probability 

(hours)Mean Standard 
deviation Mean Standard 

deviation
Overvoltage 4 655.3 227.8 4.4 2.6 2,712.9

5 993.1 389.7 2.8 1.8 2,572
6 680.6 273.5 4.7 4.4 2,889.8

Undervoltage 4 72.3 27.0 4.2 4.8 277.4
5 71.0 30.1 2.6 3.4 170.9
6 75.8 33.2 3.5 6.1 227.9

System 4 663.0 230.9 4.4 2.7 2,741.5
5 994.7 392.0 2.8 1.8 2,582.1
6 681.1 274.2 4.7 4.4 2,901.2

 Cases 5 vs. 6 (no IIOs): inclusion of renewable IIOs/CMOs 
will significantly increase the system problem frequencies 
but reduce the system problem durations
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Case Study (cont’d)

Problems Case Penetration
Frequency Duration

ProbabilityMean Standard 
deviation Mean Standard 

deviation

Overvoltage
5 10% 993.1 371.2 2.8 1.8 2,572.0
7 30% 1911.1 629.8 1.3 0.8 2,558.9
8 50% 5,993.6 3,520.4 0.6 0.5 3,368.4

Undervoltage
5 10% 71.7 28.2 2.6 3.3 170.9
7 30% 283.0 93.1 0.8 1.2 230.4
8 50% 1,410.1 1,039.7 0.5 0.8 738.9

System
5 10% 994.7 372.9 2.8 1.8 2,582.1
7 30% 1,937.7 627.2 1.6 1.2 3,195.3
8 50% 6,479.9 3,518.2 0.5 0.4 3,291.8

 Cases 5, 7, and 8 represents three different wind penetration 
levels: 10%, 30%, and 50%, respectively.

 As the wind penetration increases, system/voltage problem 
frequency increases while duration decreases.
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Summary and Conclusions

 A reliability data repository including both raw outage data 
and statistics was developed.

 The potential poolability issue was identified and a solution 
was provided.

 The fast ramping events of renewable generation caused by 
intermittencies were identified and extracted as IIOs and 
CMOs and the probabilistic models were built and 
incorporated in the PCA framework.

 The developed models were integrated into add-on Python 
modules to drive and enhance the PCA capability of PSS/E.

 The well-being method was implemented in the enhanced 
PCA capabilities to facilitate the decision-making process.

 Case studies were performed to confirm the impacts of data 
poolability and IIOs and CMOs associated with renewable 
generation.
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Future Effort
 Solar PV generation is another important source of renewable 

generation and will need to be included.
 A generic algorithm will be developed to extract fast ramping 

events from data of different temporal resolutions to support 
the PCA study.

 A new quantification scheme is needed and will be developed 
to more precisely calculate the probabilistic indices in the PCA. 

• The existing PCA software included in PSS/E calculates 
probabilistic indices of system problems approximately based on 
the rare event approximation. 

 Reach out to more utilities for exercising and refining the 
enhanced PCA tool and demonstrating the capabilities of the 
tool.
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