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Nomenclature 
 

Superscripts, subscripts, and sets 

Ω𝐵𝐵, 𝑖𝑖 Set and index of buses {1,⋯ ,𝑛𝑛𝑏𝑏} 
Ω𝐸𝐸   Set of energy storage system (ESS) index {1,⋯ ,𝑛𝑛𝐸𝐸}   (let 𝑛𝑛𝐸𝐸 = 𝑛𝑛𝑏𝑏) 
Ω𝐺𝐺   Set of conventional generators index {1,⋯ ,𝑛𝑛𝐺𝐺} 
Ω𝐿𝐿 
Ω𝐴𝐴 
Ω𝐺𝐺𝑏𝑏 
Ω𝐸𝐸𝑏𝑏 
Ω𝐻𝐻 
Ω𝐷𝐷 
Ω𝑀𝑀 
Ω𝑄𝑄 
 
Ω𝑂𝑂 
Ω𝑅𝑅  
 
Ω𝑊𝑊𝑏𝑏 

Set of right-of-ways {1,⋯ ,𝑛𝑛𝑙𝑙} 
Set of areas {1,⋯ ,𝑛𝑛𝑎𝑎} 
Set of generators at bus 𝑏𝑏 {1,⋯ ,𝑛𝑛𝑖𝑖} 
Set of ESSs at bus 𝑏𝑏 {1,⋯ ,𝑛𝑛𝐸𝐸} 
Set of branches for the operation problem{1,⋯ ,𝑛𝑛ℎ} 
Set of power generation blocks {1,⋯ ,𝑛𝑛𝑑𝑑} 
Set of global states in the Markov model  {1,⋯ ,𝑛𝑛𝑚𝑚} 
Set of reserve types, i.e., Regulation, 10-min synchronous, 10-min non-synchronous, 30-min 
synchronous, and 30-min non-synchronous  {1,⋯ ,𝑛𝑛𝑞𝑞} 
Set of global states in the ordinal optimization approximation for subproblems {1,⋯ ,𝑛𝑛𝑜𝑜} 
Set of reserve classes, i.e., Regulation, 10-min synchronous, 10-min total, and 30-min total 
{1,⋯ ,𝑛𝑛𝑟𝑟} 
Set of windfarms at bus 𝑏𝑏 {1,⋯ ,𝑛𝑛𝑤𝑤} 

Ω𝑇𝑇, 𝑡𝑡 Set {1,⋯ ,𝑛𝑛𝑡𝑡} and index of time  
Ω𝑊𝑊  Set of renewable (wind farm) index {1,⋯ ,𝑛𝑛𝑊𝑊} 
Ω𝜔𝜔, 
𝜔𝜔 

Set and index of scenarios 

Ω𝜅𝜅, κ Set and index of contingencies  
Ω𝐽𝐽  Set {0,1,⋯ ,𝑛𝑛𝑗𝑗} 

Parameters 

𝑐𝑐𝑖𝑖
𝑔𝑔, 𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆, 𝑐𝑐𝑖𝑖𝑁𝑁𝐿𝐿 Cost coefficients of conventional generators: generation, startup, and no-load cost, 

respectively 
𝑐𝑐𝑖𝑖𝑙𝑙𝑙𝑙/𝑐𝑐𝑖𝑖𝑟𝑟𝑙𝑙  Cost coefficients of load/renewable shedding 
𝑐𝑐𝑖𝑖𝐸𝐸   Cost coefficient of ESS energy cost 
𝑃𝑃𝑃𝑃𝑖𝑖𝜔𝜔  Load demand 
𝑓𝑓𝑑𝑑𝑏𝑏  Governors’ dead band 
𝑓𝑓0  System normal frequency (60 Hz) 
𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁  Pre-specified frequency lower limit 
𝑓𝑓𝑖𝑖𝑗𝑗/𝑓𝑓�̅�𝑖𝑗𝑗  Lower/upper limit of branch capacity 
𝑃𝑃𝑃𝑃𝑖𝑖/𝑃𝑃𝑃𝑃����𝑖𝑖  Lower/upper output limit of generator 𝑖𝑖 
𝑝𝑝𝜔𝜔  Probability of scenario 𝜔𝜔 
  
𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔  Available capacity of renewable output 
𝑡𝑡𝑑𝑑   Dead band time of governor 
𝑡𝑡𝑁𝑁𝐴𝐴𝐷𝐷  Time of system reaching frequency nadir 
𝑣𝑣𝑖𝑖  Maximum governor ramp rate of generator 𝑖𝑖 (MW/second) 
𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷  Total governor ramp rate of a system 
𝑤𝑤𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔, 𝑤𝑤𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 Decreased and increased wind power output, respectively,  
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𝐷𝐷𝐷𝐷𝑖𝑖  Droop constant of a generator for primary frequency regulation (set to 0.05) 
𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅  System inertia (MWs/Hz) after contingency 𝜅𝜅 
𝐻𝐻𝑖𝑖   Generator inertia (s) 
𝐷𝐷𝑡𝑡𝜔𝜔  Required system spinning reserve 
𝐷𝐷𝑈𝑈𝑖𝑖/𝐷𝐷𝐷𝐷𝑖𝑖 Maximum ramp up/down rate 

𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹max Maximum allowable rate of change of frequency 
𝑋𝑋𝑖𝑖𝑗𝑗   Reactance of line i-j 
Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙  The difference between 𝑓𝑓0 and quasi-steady-state frequency 
Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚   Maximum allowable value of Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙𝜔𝜔𝜅𝜅 (set to 0.2 Hz) 
Δ𝑡𝑡  Duration time: one hour 
Δ𝑡𝑡𝑀𝑀𝑅𝑅 , Δ𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅  Inertia response time and primary frequency regulation time, respectively 
𝜂𝜂𝑖𝑖
𝑐𝑐ℎ/𝑑𝑑𝑐𝑐ℎ  Charging/discharging efficiencies 

Variable 

𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔/𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔 Charging/discharging power 
𝑃𝑃𝑏𝑏𝑑𝑑,𝑡𝑡

𝜔𝜔𝜅𝜅/𝑃𝑃𝑏𝑏𝑐𝑐,𝑡𝑡
𝜔𝜔𝜅𝜅  Increased/decreased power output from ESS immediately after the moment of 

contingency 𝜅𝜅 
𝑃𝑃𝑃𝑃𝑖𝑖𝑙𝑙𝜔𝜔, 𝑃𝑃𝑃𝑃𝑖𝑖𝑙𝑙𝜔𝜔 Load and renewable shedding, respectively 
𝑓𝑓𝑖𝑖𝑗𝑗𝜔𝜔  Power flow from node 𝑖𝑖 to node 𝑗𝑗 
𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔, 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅  Output and spinning reserve of conventional generator 𝑖𝑖, respectively (≥ 0) 
𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔  On-off status of a conventional generator (binary) 
𝐵𝐵𝐸𝐸𝑖𝑖  Energy capacity of ESS  
𝑃𝑃𝑏𝑏𝑖𝑖

𝑐𝑐ℎ/𝑑𝑑𝑐𝑐ℎ  Maximum charging/discharging power of ESS 
𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑡𝑡𝜔𝜔  State of charge in terms of energy 
𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡𝜔𝜔/𝑆𝑆𝐷𝐷𝑖𝑖𝑡𝑡𝜔𝜔 Startup/shutdown status (binary) 
𝛼𝛼𝑖𝑖𝑡𝑡/𝛽𝛽𝑖𝑖𝑡𝑡  Charging/discharging status indicator (binary) 
𝜃𝜃𝑖𝑖𝜔𝜔  Phase angle of node 𝑖𝑖 
Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙𝜔𝜔𝜅𝜅  Difference between 𝑓𝑓0 and quasi-steady-state frequency 
Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅  Downward system power imbalance (insufficient generation) caused by outages  
Δ𝑃𝑃𝑡𝑡,o

𝜔𝜔𝜅𝜅  Upward system power imbalance (excess generation) caused by outages  
Δ𝑃𝑃𝜔𝜔𝜅𝜅  System power mismatch immediately after the moment of contingency 𝜅𝜅 
𝜏𝜏𝑖𝑖+/𝜏𝜏𝑖𝑖−  Minimum up/down time 
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Executive Summary 
Background 

The objective of this project is to develop a scalable methodology and a practical tool that can be used by 
utilities to perform unit commitment (UC) based energy storage system (ESS) planning and operation to 
guarantee a reliable and secure operation of large-scale power systems by satisfying various constraints, 
including those related to frequency dynamics, under high uncertainties associated with the continually 
increasing renewables.  

Grid inertia provided by conventional synchronous generators plays a vital role in suppressing 
disturbances that originate both within and outside of the grid.  The rapidly increasing penetration of 
intermittent renewables such as solar and wind displaces the conventional power generation plants, 
causing a rising concern with the performance of grid responses including frequency issues such as inertial 
and primary frequency response, especially under light load conditions. Large power mismatches caused 
by high fluctuations of renewables may further exacerbate grid frequency stability. Loss of inertia is thus 
a grave concern to grid operators.  

A possible means to achieve a healthy frequency response is to use energy storage systems (ESSs). ESSs 
possess response speeds that are superior to conventional generators and can significantly improve grid 
responses. In addition, ESSs are beneficial to operations by providing much needed energy, ramping as 
well as reserve services, especially under high penetration of intermittent renewables.   

While the effectiveness of the ESS response is well-known, both the capital and operational costs of ESSs 
of various technologies is very high and the lifespan of ESSs, especially battery energy storage systems 
(BESSs) is limited by the total number of charging and discharging cycles. Therefore, the major challenges 
that need to be addressed before ESS deployment are (1) what are the required capacities of ESSs, i.e., 
the sizing of ESSs, to achieve desired grid operational performance under different types of credible 
disturbances; and (2) how to efficiently operate the ESSs to ensure efficiency, security, and reliability of 
the power grids. The major purpose of this project is to develop revolutionary methodologies to answer 
these questions for planning and operation of utility-scale systems. 

To answer the questions above, this study consists of two closely connected topics, i.e., sizing of ESSs 
considering constraints such as frequency responses under high penetration of renewables; and 
stochastic operation optimization of ESSs accounting for the state-of-charge (SOC) and intermittence of 
renewable generation and the increasing load uncertainties due to, e.g., behind-the-meter renewables 
(e.g., rooftop PVs). The frequency response-based ESS sizing ensures the frequency stability, while 
stochastic optimization-based operation ensures efficiently and reliably running of ESSs together with 
other units on the grid. The study was enabled by the development and implementation of an innovative 
scalable stochastic optimization method to solve mixed integer linear programming (MILP) problems 
including utility-scale UC problems. 

Probabilistic Sizing of ESSs  

There are many challenges that impact the grid security and reliability. It is neither impossible nor 
necessary (affordable) to plan for the worse case scenarios. Rather, we should consider the consequence 
of the undesired events as well as the probabilities of the occurrences of such events. Therefore, it is 
preferred to adopt a probabilistic approach to sizing ESSs in a system, and uncertainty modeling becomes 
an important part of the study.  
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The uncertainties associated with wind generation that currently accounts for the majority of renewables 
can be more of a practical concern for transmission system operation. The change in wind speed and 
direction may cause significant variability in the generation. Also, a number of utility-scale wind farms are 
often built along a wind corridor taking advantage of the relatively steady wind speed. This may also cause 
concurrent variation in wind generation for the sudden change of wind speed or direction, which has been 
observed from a BNL internal study using wind generation data from ERCOT [Yue 2018]. Such 
disturbances, coupled with the reduced inertia, will have significant impact on frequency response [Wan 
2011] and have to be included in the ESS sizing study. We captured the major uncertainties related to 
renewables by considering the variability and intermittency of wind generation.  

In addition, the net load curves or “duck curves” may change from year to year, mainly due to the 
increasing renewable generation in the grid. After the ESS sizing is done, a recurrent assessment of the 
grid inertial responses would be needed. This has also been performed in this study. A method has been 
developed to tune parameters for solar/wind disturbance models to reflect the changes in overall net load 
curve.  

Stochastic Operation of ESSs  

Once ESSs are deployed, the next important question is to efficiently operate ESSs together with other 
generating units. Uncertainties of particular concern include generation uncertainties in the transmission 
grid (e.g., large solar or wind farms), the increasing load uncertainties because of behind-the-meter 
renewables (e.g., rooftop PVs), the switching between charge and discharge cycles of ESSs, dynamic 
pricing signals from electricity markets, etc. The optimized operation of ESSs was formulated within the 
context of stochastic unit commitment and economic dispatch with constraints on ESS operation 
requirements such as depth-of-discharge and state-of-charge, etc. The problem was converted to an MILP 
problem.  

Overview of Methodology Development 

There are many studies on ESS sizing and operation based on stochastic optimization. However, the 
existing solutions usually are applicable to relatively small systems and cannot be scaled up to utility-scale 
systems, especially when the complexity is drastically increased due to the consideration of frequency 
dynamics constraints.  A probabilistic approach for sizing Battery Energy Storage Systems (BESSs) was 
presented in [Yue 2015]. The major feature of this approach is that it captures uncertainties of major 
credible disturbances and explicitly evaluates the grid inertial responses to such disturbances. Although 
such an approach is extensible to account for disturbances associated with wind generation, the study 
focused only on the technical performance with and without ESSs, not the associated costs.   

ESS planning and operation parts of the study share similar methodologies. Both are formulated as 
stochastic optimization problems based on a mathematical model of the power system and stochastic 
models of for renewable generation mainly wind power at the transmission level. Specifically, the 
stochastic models are incorporated into a unit commitment model similar to those used in industry on a 
daily basis. More importantly, to ensure that there is adequate grid inertia such that the system frequency 
is maintained at safe levels, three frequency dynamics constraints, i.e., Frequency nadir (FN), Rate-of-
change-of-frequency (RoCoF), and Quasi-steady-state (QSS) are considered in the optimization models. 
The problems were converted to Mixed-Integer Linear Programming (MILP) problems. 
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Unit commitment problems are generally difficult to solve because of the existence of discrete decision 
variables. To address its complexity, and in particular, the complexity brought by the ESSs and the three 
frequency dynamic constraints, a deterministic model was first considered for the operation problems. A 
novel decomposition and coordination method based on the Surrogate Absolute-Value Lagrangian 
Relaxation (SAVLR) [Bragin 2019, Luh 2020], a state-of-the-art dual method, is developed. In the method, 
a proper direction to update multipliers is obtained without optimally solving all subproblems, resulting 
in much reduced computational requirements and much less zigzagging of multipliers. Also, convergence 
to the multiplier optimum does not require the knowledge of the optimal dual value or their estimates.  
The method has also been synergistically integrated with branch-and-cut, allowing exploitation of both 
separability and linearity.  To improve performance, constraints are also tightened in a systematic way 
[Yan 2020]. For the deterministic ESS model with the three frequency dynamics constraints, excellent 
testing results have been obtained for the large Polish system [MATPOWER]. 

In this study, the major uncertainty source considered is from the utility-scale wind farm generation. In 
the ESS planning problem formulation, uncertainties are modeled by using a random field theory (RFT) 
based approach. The goal is to appropriately size ESSs such that the frequency dynamics requirements 
(FN, RoCoF, and QSS) are satisfied under various scenarios. To consider uncertainties in the ESS operation 
problems, the uncertain wind generation is modeled as a discrete Markov process considering spatial-
temporal correlation of wind speeds among multiple windfarms. Here, the goal is to minimize the total 
operation costs with given ESS capacities, while considering the Markovian wind generation model and 
frequency dynamics constraints. The possible wind generation states at windfarms and their probabilities 
of occurrence are efficiently calculated in the preprocessing stage. To reduce computational requirements 
caused by the Markov process, the ordinal-optimization concept is introduced where subproblems are 
approximately solved by using much simplified Markov models subject to the “Surrogate Optimality 
Condition” with much reduced complexity. 

Battery energy storage systems (BESSs) are considered in this study due to their popularity. However, the 
developed methodology and the tools can be used for ESSs of any technologies.  

Contributions 

The major contributions of this study include: 

i. Development of the Markovian approach-based model and RFT-based approach for a more 
realistic representation of wind generation related uncertainties that are suitable for ESS 
operation and planning studies by considering both spatial and temporal evolutions of wind 
speed information 

ii. Performance of a systematic constraint tightening approach that may significantly reduce the 
computational requirements to solve MILP problems  

iii. Refinement of a scalable Surrogate Absolute-Value Lagrangian Relaxation method that can be 
easily scaled up for large systems via a decomposition and coordination approach 

iv. Development of a rolling horizon-based concept that can be used together with the SAVLR to 
create the “SAVLRseq” approach that enables practical solutions to long-term planning 
problems without requiring high performance computing (HPC) facilities. 

v. Introduction of an ordinal-optimization (OO) concept to approximately solve a Markovian 
subproblem in ESS operation via simplified models with much reduced complexity while 
maintaining the quality of the overall solution 
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vi. Implementation of the SAVLR and SAVLRseq in an open-source, modular, and flexible tool 
that is readily used for solving utility-scale UC problems. 

vii. An initiation of the development of an innovative integrated mathematical optimization and 
machine learning (ML) method, i.e., a ML-assisted SAVLR or ML-SAVLR, to address the 
complexity of the optimal planning and operation.   

Conclusions and Insights: 

The methodology and the tools developed in this project have been successfully applied to perform 
frequency dynamics constrained ESS sizing and operation using two example systems, i.e., the IEEE 118-
bus system and the 2,283-bus Polish system. ESSs are demonstrated to provide valuable grid inertia 
support, and, to a lesser extent, peak shaving and reserve services to improve the economic efficiency of 
grid operation.  

A number of conclusions and insights has been achieved in the study: 

i. Responsive ESSs play a critical role in improving the stability and reliability by providing 
frequency support in low inertia conditions, especially under intermittent wind generation. 

ii. Without deployment of ESSs, load shedding may be unavoidable due to intermittency when 
the penetration level of the wind generation is high, even without generator outages. This is 
mainly because of the insufficient fast generation for provisioning the frequency support. 

iii. Realistic uncertainty modeling must be performed by not only considering the spatial and 
temporal correlations of environmental conditions such as wind speed, precipitation, solar 
irradiance, temperature, but also the trend of the variations in these conditions. The RFT-
based and the Markovian approaches are capable of capturing the correlations and trend of 
the weather conditions and the renewable generation profiles.  

iv. When considering the frequency constraints including frequency nadir, rate of change of 
frequency, and quasi-steady-state frequency responses, the complexity of the UC-based ESS 
planning and operation problems increases tremendously. 

v. Solving the frequency dynamics constrained UC problems for ESS planning and operation is 
beyond the capability of the existing stochastic optimization methods except the SAVLR and 
SAVLRseq developed in this study. 

Future Work 

Additional studies are identified and presented here. 

i. Popular battery technology-based energy storage systems are considered in this study. The 
methodology and the tools developed can be further extended to evaluate ESSs of different 
technologies such as flywheel, pump hydro, supercapacitor.  

ii. The frequency constraints related to frequency nadir, RoCoF, and QSS were derived based 
aggregated system wind equations and are actually conservative, which leads to 
conservativeness in the investment and installation of ESS capacities. This can be further 
investigated and improved in the future studies.  

iii. The ESS planning and operation studies can be investigated by further considering the solar 
generation as well as the possible correlation between wind and solar resources.  

iv. The SAVLR and SAVLRseq tools can be further tested by applying to the planning and 
operation of ISO-scale systems. 
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v. The ML-assisted SAVLR method will be continually developed and further enhanced by 
developing a distributed and asynchronous version and extending the theoretical results from 
centralized coordination to distributed coordination while aiming at large-scale 
implementation. 

It should also be noted that the methodology and tool developed are not limited to ESS planning and 
operation problems. They can also be tailored and used for solving generic stochastic optimization 
problems. The study in this project is an important step for economically and reliably accommodating 
more renewable generation via the assistance of ESSs while maintaining stability of the grid dynamics 
under various disturbances and uncertainties. 
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1. Introduction 
Grid inertia provided by conventional generators plays a vital role in maintaining the system dynamic 
responses and suppressing disturbances that originate both within and outside of the grid.  The rapidly 
increasing penetration of intermittent renewables such as solar and wind causes a rising concern with the 
performance of grid frequency response, especially under light load conditions. Large power mismatches 
caused by high fluctuations of renewables may further exacerbate grid inertial responses. Loss of inertia 
is thus a grave concern to grid operators. A possible means to achieve a healthy dynamic response is to 
make use of the responsive energy storage systems (ESSs). ESSs possess response speeds that are superior 
to conventional generators and can significantly improve grid inertia responses. In addition, ESSs are 
beneficial to operations by providing much needed energy, ramping as well as reserve services, especially 
under high penetration of intermittent renewables.   

While the effectiveness of the ESS response is well-known, the major challenges that need to be addressed 
before ESS deployment are (1) what are the required capacities of ESSs, i.e., the sizing of ESSs, to achieve 
desired inertial responses to different types of disturbances; and (2) how to efficiently operate the grid 
with ESSs to ensure efficiency, security, and reliability, upon their deployment. The major purpose of this 
proposal is to develop revolutionary methodologies to answer these questions.  

To answer the questions above, the study consists of two closely connected topics, i.e., probabilistic sizing 
of ESSs based on grid-inertia responses under high penetration of renewables; and stochastic operation 
optimization of ESSs accounting for the intermittence of renewable generation and the increasing load 
uncertainties because of behind-the-meter renewables (e.g., rooftop PVs). The grid dynamic response-
based ESS sizing ensures the frequency stability, while stochastic operation optimization ensures 
efficiently and reliably running of ESSs together with other units on the grid, under credible disturbances 
and increasing uncertainties with renewables.  

Probabilistic Sizing of ESSs Considering Variability of Renewables 

There are many challenges that impact the grid security and reliability. It is neither impossible nor 
necessary (affordable) to plan for the worse case scenarios. Rather, we should consider the consequence 
of the undesired events as well as the probabilities of the occurrences of such events. Therefore, it is 
preferred to adopt a probabilistic approach to sizing ESSs in a system, and uncertainty modeling becomes 
an important part of the study.  

The uncertainties associated with wind generation that currently accounts for the majority of renewables 
can be more of a practical concern for transmission system operation. The change in wind speed and 
direction may cause significant variability in the generation. Also, a number of utility-scale wind farms are 
often built along a wind corridor taking advantage of the relatively steady wind speed. This may also cause 
concurrent variation in wind generation for the sudden change of wind speed or direction, which has been 
observed from a BNL internal study using wind generation data from ERCOT [Yue 2018]. Such 
disturbances, coupled with the reduced inertia, will have significant impact on frequency response [Wan 
2011] and have to be included in the ESS sizing study. We captured the major uncertainties related to 
renewables by considering the variability and intermittency of wind generation.  

In addition, the net load curves or “duck curves” may change from year to year, mainly due to the 
increasing renewable generation in the grid. After the ESS sizing is done, a recurrent assessment of the 
grid inertial responses would be needed. This has also been performed in this study. A method has been 
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developed to tune parameters for solar/wind disturbance models to reflect the changes in overall net load 
curve.  

Stochastic Operation of ESSs Considering Intermittent Renewable Generation and Increasing Load 
Forecasting Uncertainties 

Once ESSs are deployed, the next important question is to efficiently operate ESSs together with other 
generating units. Uncertainties of particular concern include generation uncertainties in the transmission 
grid (e.g., large solar or wind farms), the increasing load uncertainties because of behind-the-meter 
renewables (e.g., rooftop PVs), the switching between charge and discharge cycles of ESSs, dynamic 
pricing signals from electricity markets, etc. The optimized operation of ESSs was formulated within the 
context of stochastic unit commitment and economic dispatch with constraints on ESS operation 
requirements such as depth-of-discharge and state-of-charge, etc. The problem was converted to an MILP 
problem.  

Overview of Methodology Development 

There are many studies on ESS sizing and operation based on stochastic optimization. However, the 
existing solutions usually are applicable to relatively small systems and cannot be scaled up to utility-scale 
systems, especially when the complexity is drastically increased due to consideration of frequency 
dynamics constraints.  A probabilistic approach for sizing Battery Energy Storage Systems (BESSs) was 
presented in [Yue 2015]. The major feature of this approach is that it captures uncertainties of major 
credible disturbances and explicitly evaluates the grid inertial responses to such disturbances. Although 
such an approach is extensible to account for disturbances associated with wind generation, the study 
focused only on the technical performance with and without ESSs, not the associated costs.   

ESS planning and operation parts of the study share similar methodologies. Both are formulated as 
stochastic optimization problems based on a mathematical model of the power system and stochastic 
models of for renewable generation mainly wind power at transmission level. Specifically, the stochastic 
models are incorporated into a unit commitment model similar to those used in industry on a daily basis. 
More importantly, to ensure that there is adequate grid inertia such that the system frequency is 
maintained at safe levels, three frequency dynamics constraints, i.e., Frequency nadir (FN), Rate-of-
change-of-frequency (RoCoF), and Quasi-steady-state (QSS) are considered in the optimization model. 
The problem was converted to an MILP problem. 

Unit commitment problems are generally difficult to solve because of the existence of discrete decision 
variables. To address its complexity, and in particular, the complexity brought by the ESSs and the three 
frequency dynamic constraints, a deterministic model was first considered for the operation problems. A 
novel decomposition and coordination method based on the Surrogate Absolute-Value Lagrangian 
Relaxation (SAVLR) [Bragin 2019, Luh 2020], a state-of-the-art dual method, is developed. In the method, 
a proper direction to update multipliers is obtained without optimally solving all subproblems, resulting 
in much reduced computational requirements and much less zigzagging of multipliers. Also, convergence 
to the multiplier optimum does not require the knowledge of the optimal dual value or its estimates.  The 
method has also been synergistically integrated with branch-and-cut, allowing exploitation of both 
separability and linearity.  To improve performance, constraints are also tightened in a systematic way. 
For the deterministic ESS model with the three frequency dynamics constraints, excellent testing results 
have been obtained for the large Polish system. 
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In this study, the major uncertainty source considered is from the utility-scale wind farm generation. In 
the ESS planning problem formulation, uncertainties are modeled by using a random field theory (RFT) 
based approach. The goal is to appropriately size ESSs such that the frequency dynamics requirements 
(FN, RoCoF, and QSS) are satisfied under various scenarios. To consider uncertainties in the ESS operation 
problems, the uncertain wind generation is modeled as a discrete Markov process considering spatial-
temporal correlation of wind speeds among multiple windfarms. Here, the goal is to minimize the total 
operation costs with given ESS capacities, while considering the Markovian wind generation model and 
frequency dynamics constraints. The possible wind generation states at windfarms and their probabilities 
of occurrence are efficiently calculated in the preprocessing stage. To reduce computational requirements 
caused by the Markov process, the ordinal-optimization concept is introduced where subproblems are 
approximately solved by using much simplified Markov models subject to the “Surrogate Optimality 
Condition” with much reduced complexity. 

Battery energy storage systems (BESSs) are considered in this study due to their popularity. However, the 
methodology and the tools developed can be used for ESSs of any technologies.  

After the introduction section, Section 2 provides an overview of the overall methodology adopted in the 
project. ESS planning and operation problems are formulated, and the solution strategies are discussed in 
Sections 3 and 4, respectively, with detailed presentation of RFT-based and Markov model-based 
uncertainty modeling. The structure of the SAVLR and SAVLRseq tools is delineated in Section 5. Case 
studies for ESS planning and operation are performed and discussed in detail by using the SAVLR and 
SAVLRseq tools for an IEEE 118-bus system and a 2,383-bus Polish System.  The conclusions and findings 
are presented in Section 7 of this report. 
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2. Overview of Methodology Development 

2.1 Uncertainty Modeling 

The uncertainties and intermittency associated with the renewable generation are the major driver calling 
for deployment and assistance of energy storage systems. And the uncertainty modeling of the 
renewables is the major challenge in stochastic optimization-based UC for long-term and operational 
planning.  Renewable generation relies on the environmental conditions such as irradiance, wind speed, 
temperature etc., which are part of the dynamic climate models and are thus both spatially and temporally 
correlated.  

While the generation of renewables constantly fluctuates all the time, i.e., it evolves temporally, the 
generation from collocated renewable plants or the plants that are physically close may tend to change 
in the same manner due to the similar changes in environmental conditions. Figure 1 shows an illustrative 
example of simultaneous wind generation (normalized) reduction within a very short time period (less 
than 30 minutes) for two highly correlated wind farms. In Table 1, the percentage of simultaneous 
generation changes is given for different values of Pearson’s correlation coefficient between two wind 
farms. The correlations appear to be closed related to the distances between different wind generation 
sites. Table 1 shows that highly correlated renewable plants are more likely to experience similar 
generation change concurrently. Therefore, both temporal and spatial correlation of renewable 
generation have to be fully considered in the planning and operation problems. All of these results were 
obtained from 5-minute interval historical data from ERCOT. 

 
Figure 1: An Example of Concurrent Reduction in Generation of Two Highly Correlated Wind Farms 

Table 1: Wind Farm Correlation vs. Percentage of Concurrent Changes in Generation of Two Wind Farms 

Pearson’s Correlation 
between wind farms (i, j) 

Percentage of simultaneous under- or over-
generation between i and j 

0.8 – 1.0 22.6% 

0.6 – 0.8 11.2% 

0.4 – 0.6 9.6% 

0.2 – 0.4 8.7% 

0.0 – 0.2 6.1% 



5 
 

The complexity of the climate models prevents the deterministic modeling of such environmental 
conditions in physics based governing equations. In this study, two modeling approaches are adopted to 
model the uncertainties and variabilities of the renewable generation, particularly the wind generation, 
in ESS planning and operation studies. The first approach is based on an analytical model assuming the 
wind speed field changes follow a Markov process while the second approach is based on a data-driven 
random field theory. The two approaches are used to model the wind farm generation variations for ESS 
operation and sizing and siting, respectively, as discussed below. 

2.1.1 A Markovian Approach for ESS Operation Studies 

Markov processes are widely used to model systems whose states evolve over time with uncertainties. 
They have the Markov property, i.e., “the future is independent of the past if the present is known.” Thus, 
these processes are useful for modeling stochastic processes for which the probabilities of states at the 
subsequent time step can be accurately modelled based on states at the present without the need to 
consider past states, thus significantly reducing the memory requirements. Markov processes have been 
shown to effectively model natural phenomenon such as wind speed.   

In this study, the wind speeds at wind farms at multiple locations are modeled as a Markov chain (a 
discrete-time and discrete-state Markov process) with consideration of spatio-temporal correlations 
between the multiple sites. Once wind speed states are obtained, they are mapped to wind generation 
states based on the non-linear wind speed to power curve of the windfarms. 

2.1.2 Random Field Approach for ESS Planning Studies 

While the Markovian approach can be used to model the wind generation evolution efficiently, the 
number of states will increase exponentially as the number of transitions increases. For the long-term 
planning problems, the size of the Markov model becomes quickly intractable and an alternative way of 
uncertainty modeling for the wind generation needs to be developed.  

A random field (RF) is a generalization of a stochastic process while the underlying parameter does not 
have to be real or integer valued "time" but can instead take values that are multidimensional vectors or 
points on some manifolds [Vanmar 2010]. The word “field” implies that the geometric structure of the 
parameter space is emphasized. Random field theory (RFT) provides a very appropriate way of modeling 
the processes that evolve in both time and space such as wind speed and solar irradiance across a large 
area/various locations. 

Gaussian and Gaussian-related random field refers to a random field 𝑓𝑓 on a parameter set  𝑇𝑇 for which 
the distributions vector valued random variables (𝑓𝑓𝑡𝑡1 ,𝑓𝑓𝑡𝑡2 , … , 𝑓𝑓𝑡𝑡𝑛𝑛)  are multivariate Gaussian. For such 
random fields, the first order and second order properties (i.e., mean, variance, and covariance) of the 
random variables (RVs) are insufficient to describe them. In reality, there are barely any processes that fit 
a Gaussian distribution. To consider non-Gaussian option, a non-Gaussian process may (1) be decomposed 
into and approximated by a mixture of Gaussian models and (2) follow specific processes, such as 𝜒𝜒2 or 
𝑡𝑡-Student, Gamma, or skew normal distributions. These approaches, however, are not flexible enough to 
model complex processes when these processes are intermittent, and the continuous part of their 
marginal distribution is characterized by large variability in shape [Papale 2019]. Distributions such as the 
Gamma and the Exponential distributions have thin tails and cannot model adequately extremes of heavy-
tailed variables such as wind speed.  
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In this study, we adopted a framework suitable for simulating random field representation of climate 
variables, which are non-Gaussian, intermittent, dependent, and periodic, of a desired marginal 
probability distribution (including mixed-type and discrete marginals) and spatiotemporal correlation 
structure. This framework is closely related to a so-called Nataf’s joint distribution model or NDM. Based 
on the NDM and the inverse cumulative distribution functions (ICDFs), an auxiliary multivariate standard 
Gaussian distribution can be mapped to obtain the joint distribution of random variables with any target 
arbitrary marginal distributions. The link between correlation coefficients in the Gaussian and the target 
domain RVs is used to also reproduce the target correlations.  

Figure 2 shows a case for bivariate random field, i.e., the joint distribution of two RVs is developed using 
the target marginal distribution(s) and correlations to first generate the joint distribution for the auxiliary 
correlated Gaussian RVs (in the right side of Figure 2) and then convert the joint distribution for Gaussian 
RVs using the ICDF. The target marginal distribution(s) and correlation(s) can be obtained based on 
historical measurements.  Note that, the auxiliary Gaussian process with zero mean and unit variance is 
simulated via linear stochastic models such as an autoregressive moving average (ARMA) models) to 
capture the temporal correlation of each random variable.   

Such a concept is adopted in an open-source simulation software anySim [Tsouka 2020], which is used 
in this study to simulate the wind speed, based on the historical information. The simulated wind speed 
data is later converted to time-series wind generation data. 

 
Figure 2: The NDM for bivariate random field. 

2.2 Constraint Tightening 

A systematic approach was recently developed to tighten unit commitment in MILP formulations (actually 
Mixed-Binary Linear Programming formulations) [Yan 2020]. For an MILP problem, if the constraints 
directly delineate its convex hull, i.e., the formulation is “tight,” then the problem can be directly solved 
by using linear programming methods without combinatorial difficulties. In our approach, tightened 
constraints are established based on a novel integration of “constraint-and-vertex conversion,” “vertex 
elimination” and “parameterization.” For a unit with given set of parameters, the integrality requirements 
are relaxed, and vertices of constraints are generated. The vertices with fractional values for binary 
variables are eliminated. The remaining vertices are proved to be the vertices of the convex hull to the 
original MILP problem. These vertices are converted back to constraints, which are tight and are then 
parameterized in terms of original unit parameters for general use. For practical applications, “near-tight” 
formulations are obtained by analyzing short-time horizon problems, e.g., three hours, with tremendous 

Target is to generate correlated RVs 
(X1, X2)
• with predefined target marginal 

distributions

• Target correlation -- Pearson’s 
correlation coefficient

Auxiliary correlated RVs (Z1, Z2)
• both have the standard Gaussian 

marginal distribution
• the joint distribution is the bivariate 

Gaussian with zero mean, unit 
variance

• correlation coefficient:standard Gaussian 
cumulative 
distribution function 
(CDF)
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reduction of online computational requirements.  In this project, the near-tight formulation of [Yan 2020] 
is used as the basis of the deterministic UC model. 

2.3 SAVLR with Soft Constraints 

As reviewed in Section 1, the SAVLR is a recently developed, state-of-the-art dual method. It is applicable 
to non-separable problems, because subproblems can still be formed and solved within its framework as 
long as their solutions satisfy the “Surrogate optimality condition.” This allows for the innovative 
exploitation of “soft” constraints – constraints that do not need to be strictly satisfied but their violations 
are penalized by predetermined coefficients. In this project, by not relaxing the majority of coupling 
constraints but treating them as soft, the number of multipliers is significantly reduced while coordination 
with respect to the unrelaxed constraints is facilitated by exploiting their “softness,” leading to faster 
convergence and improved solution quality. See Figure 3 for a flowchart of the SAVLR.  

 
Figure 3: Flowchart of SAVLR 

All of the techniques have been combined and implemented to solve the ESS planning and operation 
studies, as discussed in the next two sections. 
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3. ESS Planning Study 

3.1 Problem Formulation 

The ESS planning is modeled as a stochastic programming problem with uncertainties represented by 
different scenarios. The investment for deploying ESSs of an appropriate capacity, is a here-and-now 
variable while the conventional generators’ output and ESS charging/discharging power are the wait-and-
see variables. In the problem formulation, we use a random field theory (RTF) approach to model the 
correlated wind power generation from different wind farms in the power grid. For each scenario 
representing a snapshot of the system operating condition, the unit commitment is then performed to 
determine the on/off status of generators. The details of the ESS planning problem are given below. 

3.1.1. Objective Function 

The objective function given in (1) consists of investment cost of ESS and the operation cost including the 
expenses for operating conventional generation, load shedding, and renewable shedding. The 𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐ℎ and 
𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ are set to be equal to 𝐵𝐵𝐸𝐸𝑖𝑖.  

min∑ 𝑐𝑐𝑖𝑖𝐸𝐸𝐵𝐵𝐸𝐸𝑖𝑖𝑖𝑖∈Ω𝐸𝐸 + ∑ 𝑝𝑝𝜔𝜔𝜔𝜔 ∑ �∑ �𝑐𝑐𝑖𝑖
𝑔𝑔𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑐𝑐𝑖𝑖𝑁𝑁𝐿𝐿𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔�𝑖𝑖∈Ω𝐺𝐺 + ∑ 𝑐𝑐𝑖𝑖𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔𝑖𝑖∈Ω𝐵𝐵 + ∑ 𝑐𝑐𝑖𝑖𝑟𝑟𝑙𝑙𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔𝑖𝑖∈Ω𝑊𝑊 �𝑡𝑡   (1) 

3.1.2. System Constraints 

The objective function is optimized while satisfying the DC power flow constraints, which include the nodal 
power balance (2) and branch power balance (3) [Zhan 2019]. The nodal power balance (2) considers the 
conventional generation, ESS, renewable generation/curtailment, the load demand/shedding, and branch 
power flow. Eq. (4) indicates branch capacity lower and upper limits. Eq. (5) is the generation limit based 
on its on/off status. In the equations, hereafter, ∀𝜔𝜔 ∈ Ω𝜔𝜔 and ∀𝑡𝑡 ∈ Ω𝑇𝑇 hold unless otherwise stated.  

∑ 𝑃𝑃𝑃𝑃𝑦𝑦𝑡𝑡𝜔𝜔𝑦𝑦∈𝑖𝑖 − 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 + 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 = ∑𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡𝜔𝜔 , ∀𝑖𝑖 (2) 

𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡𝜔𝜔 = �𝜃𝜃𝑖𝑖𝑡𝑡𝜔𝜔 − 𝜃𝜃𝑗𝑗𝑡𝑡𝜔𝜔�/𝑋𝑋𝑖𝑖𝑗𝑗 ,     ∀𝑖𝑖𝑗𝑗            (3) 

𝑓𝑓𝑖𝑖𝑗𝑗 ≤ 𝑓𝑓𝑖𝑖𝑗𝑗𝑡𝑡𝜔𝜔 ≤ 𝑓𝑓�̅�𝑖𝑗𝑗 ,     ∀𝑖𝑖𝑗𝑗            (4) 

𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑃𝑃𝑃𝑃𝑖𝑖 ≤ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 ≤ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑃𝑃�̅�𝑃𝑖𝑖 ,       ∀𝑖𝑖 ∈ Ω𝐺𝐺     (5) 

Eq. (6) represents the change of battery state of charge (SoC) between two consecutive hours. Eq. (7) 
denotes the allowable lower and upper bounds of SoC. Eq. (8) requires that the SoC in the beginning and 
ending moments of a time horizon is the same such that different scenarios are independent. Note that 
SoC represents energy to avoid bilinear terms in the model. 

𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖,𝑡𝑡𝜔𝜔 = 𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖,𝑡𝑡−1𝜔𝜔 + 𝜂𝜂𝑖𝑖𝑐𝑐ℎ𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔Δ𝑡𝑡 − 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔Δ𝑡𝑡/𝜂𝜂𝑖𝑖𝑑𝑑𝑐𝑐ℎ,∀𝑖𝑖 ∈ Ω𝐸𝐸    (6) 

0.3 ∗ 𝐵𝐵𝐸𝐸𝑖𝑖 ≤ 𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑡𝑡𝜔𝜔 ≤ 𝐵𝐵𝐸𝐸𝑖𝑖 ,     ∀𝑖𝑖 ∈ Ω𝐸𝐸      (7) 

𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖,𝑛𝑛𝑡𝑡
𝜔𝜔 = 𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖,0𝜔𝜔 = 0.5𝐵𝐵𝐸𝐸𝑖𝑖 ,     ∀𝑖𝑖 ∈ Ω𝐸𝐸 ,      (8) 

Eqs. (9) represents the spinning reserve. Due to its fast response, ESS can quickly switch from charging or 
partly discharging mode to the fully discharging mode, which is utilized as a spinning reserve in (9). The 
value 𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖,𝑡𝑡𝜔𝜔/Δ𝑡𝑡  represents the available discharging power for the whole duration Δ𝑡𝑡 . The system 
reserve can be set to the capacity of the largest unit in the system or a fixed percentage of the system 
load. Eq. (10)/(11) represents the lower and upper bounds of ESS charging/discharging power. Eq. (12) 
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assures that charging and discharging do not occur simultaneously. Eqs. (13) and (14) guarantee the 
minimum up- and down-time of conventional generators, respectively. Eq. (15) models the startup or 
shutdown logic. Eqs. (16) and (17) maintain the limits of ramp-rate up and down, respectively. 

∑ (𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑃𝑃𝑃𝑃����𝑖𝑖)𝑖𝑖∈Ω𝐺𝐺 + ∑ �𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 + 𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖,𝑡𝑡𝜔𝜔/Δ𝑡𝑡 − 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔�𝑖𝑖∈Ω𝐸𝐸        

+∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔)𝑖𝑖∈Ω𝑊𝑊 + ∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔)𝑖𝑖∈Ω𝐵𝐵 ≥ 𝐷𝐷𝑡𝑡𝜔𝜔     (9) 

0 ≤ 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 ≤ 𝛼𝛼𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐ℎ ,     ∀𝑖𝑖 ∈ Ω𝐸𝐸      (9) 

0 ≤ 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔 ≤ 𝛽𝛽𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ ,      ∀𝑖𝑖 ∈ Ω𝐸𝐸     (10) 

𝛼𝛼𝑖𝑖𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑡𝑡 ≤ 1,     ∀𝑖𝑖 ∈ Ω𝐸𝐸     (11) 

∑ 𝑆𝑆𝑈𝑈𝑖𝑖𝑦𝑦𝜔𝜔
𝑡𝑡
𝑦𝑦=𝑡𝑡−𝜏𝜏𝑖𝑖

+ ≤ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔,     ∀𝑖𝑖 ∈ Ω𝐺𝐺     (12) 

∑ 𝑆𝑆𝐷𝐷𝑖𝑖𝑦𝑦𝜔𝜔𝑡𝑡
𝑦𝑦=𝑡𝑡−𝜏𝜏𝑖𝑖

− ≤ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔,     ∀𝑖𝑖 ∈ Ω𝐺𝐺     (13) 

𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑤𝑤𝑖𝑖(𝑡𝑡−1)
𝜔𝜔 =  𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑆𝑆𝐷𝐷𝑖𝑖𝑡𝑡𝜔𝜔,     ∀𝑖𝑖 ∈ Ω𝐺𝐺     (14) 

𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡−1𝜔𝜔 ≤ 𝐷𝐷𝑈𝑈𝑖𝑖 ,     𝑡𝑡 = 2,3,⋯ ,𝑛𝑛𝑡𝑡 ,∀𝑖𝑖 ∈ Ω𝐺𝐺   (15) 

𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡−1𝜔𝜔 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 ≤ 𝐷𝐷𝐷𝐷𝑖𝑖 ,     𝑡𝑡 = 2,3,⋯ ,𝑛𝑛𝑡𝑡 ,∀𝑖𝑖 ∈ Ω𝐺𝐺   (16) 

3.1.3. Frequency Dynamics Security Under Contingencies 

3.1.3.1 Rate of Change of Frequency (RoCoF) 

Eq. (18) represents the system inertia in contingency 𝜅𝜅, which includes the inertia from online generators 
and the emulated inertia from wind turbines. Note that ∀𝜅𝜅 ∈ Ω𝜅𝜅 holds for (18)-(31), (39), and (42) but not 
specifically written out. 

𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅 = �∑ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑃𝑃𝑃𝑃����𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖∈Ω𝐺𝐺\Ω𝜅𝜅 + ∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔)𝐻𝐻𝑖𝑖𝑖𝑖∈Ω𝑊𝑊\Ω𝜅𝜅 �/𝑓𝑓0,       (17) 

Eqs. (19) and (20) guarantee the system inertia after contingency 𝜅𝜅 is large enough such that the RoCoF is 
not violated. Eq. (19) is related to insufficient generation (Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅) while (20) is related to excess generation 
(Δ𝑃𝑃𝑡𝑡,o

𝜔𝜔𝜅𝜅) caused by upward wind power fluctuation. 

𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅2𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹max ≥ Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 ,             (19) 

𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅2𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹max ≥ Δ𝑃𝑃𝑡𝑡,o
𝜔𝜔𝜅𝜅 ,             (20) 

After contingency 𝜅𝜅, the insufficient generation (Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅) in the system is defined in (21), where the four 

terms on the right-hand side are the total power output of lost generators, decreased wind power output 
due to its fluctuation, and the increased power output from ESSs, respectively. The excess generation 
(Δ𝑃𝑃𝑡𝑡,o

𝜔𝜔𝜅𝜅 ) in the system is defined in (22) and can be similarly explained. The wind power fluctuations 
(represented by) 𝑤𝑤𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 and 𝑤𝑤𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 are used to represent the decrease and increase fluctuation, respectively. 

Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 = ∑ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔𝑖𝑖∈Ω𝜅𝜅 + ∑ (𝑤𝑤𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑤𝑤𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔)𝑖𝑖∈Ω𝜅𝜅 − 𝑃𝑃𝑏𝑏𝑑𝑑,𝑡𝑡

𝜔𝜔𝜅𝜅 ,    Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 ≥ 0,          (18) 

Δ𝑃𝑃𝑡𝑡,o
𝜔𝜔𝜅𝜅 = −∑ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔𝑖𝑖∈Ω𝜅𝜅 + ∑ (−𝑤𝑤𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑤𝑤𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔)𝑖𝑖∈Ω𝜅𝜅 − 𝑃𝑃𝑏𝑏𝑐𝑐,𝑡𝑡

𝜔𝜔𝜅𝜅 ,    Δ𝑃𝑃𝑡𝑡,o
𝜔𝜔𝜅𝜅 ≥ 0,          (19) 

The increased power output comes from the battery, and the maximum output can be increased, as given 
on the right-hand side of (23). If the battery is operating in the charging mode, 𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔 = 0, it contributes 
𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡

𝑐𝑐,𝜔𝜔 + 𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ to the increased power. If the battery is operating in the discharging mode, 𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 = 0, it 
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contributes 𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ − 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔 to the increased power, i.e., the battery increases its discharging power to its 

maximum value. The decreased power output from the battery is modeled in (24) and can be similarly 
explained. 

𝑃𝑃𝑏𝑏𝑑𝑑,𝑡𝑡
𝜔𝜔𝜅𝜅 ≤ ∑ �𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡

𝑐𝑐,𝜔𝜔 + 𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ − 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔�,   𝑖𝑖∈Ω𝐸𝐸      (20) 

𝑃𝑃𝑏𝑏𝑐𝑐,𝑡𝑡
𝜔𝜔𝜅𝜅 ≤ ∑ �𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐ℎ − 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡

𝑐𝑐,𝜔𝜔 + 𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔�,   𝑖𝑖∈Ω𝐸𝐸      (21) 

3.1.3.2 Frequency Nadir Constraints 

After a contingency, if the total system spinning reserve is smaller than the system power mismatch Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅, 

the mechanical power is always less than the electrical load and, therefore, the system frequency keeps 
on decreasing according to the frequency dynamics swing equation; and eventually drops below the pre-
specified frequency nadir 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁. Therefore, to maintain the system frequency above nadir, the total system 
spinning reserve should be larger than the system power mismatch Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅 , i.e., ∑ 𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 ≥
Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅. 

After a contingency, there is a power mismatch between the generation and load, which leads to the 
instantaneous change of the frequency. This frequency deviation is fed back to generator control, and the 
rest of the generators try to make up for the lost generation. However, due to the limited ramping 
capabilities of the conventional generators, the power mismatch remains almost the same during the first 
second or so (the time frame of inertia response) after the generator outage and the frequency continue 
to drop until it reaches the nadir. The nadir is almost completely determined by the remaining inertia in 
the system for the nearly constant power mismatch. Since we cannot change the system inertia, the 
frequency nadir would be higher if we can reduce the power mismatch. The major role of the ESSs that 
are very responsive is to decrease the power mismatch in the inertia response process before the rest of 
the generators pick up the load and restores the frequency dynamics. 

The relationship between system ramp up capacity 𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷 and frequency nadir 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁 can be expressed as 
follows [Chavez 2014]: 

𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷 = �Δ𝑔𝑔𝑡𝑡,u
𝜔𝜔𝜅𝜅�2

2𝐻𝐻𝑡𝑡
𝜔𝜔𝜅𝜅(𝑓𝑓0−𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀−𝑓𝑓𝑑𝑑𝑑𝑑)           (25) 

The time to reach the frequency nadir 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁 is the sum of the dead band time and ramp-up time: 

𝑡𝑡𝑁𝑁𝐴𝐴𝐷𝐷 = 𝑡𝑡𝑑𝑑 + Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅/𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷             (26) 

td tNAD
Pm-Pe

-∆g 

fMIN

f0

t

td tNAD t

a b

co d

vNAD=∆g/(tNAD-td) 

frequency

 
Figure 4.  Illustration power mismatch and frequency dynamics. 
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If the system ramp-up rate is higher (lower) than 𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷, the frequency decelerate area is less (more) than 
the trapezium area 𝑎𝑎𝑏𝑏𝑐𝑐𝑅𝑅 in Figure 4; consequently, the value of system frequency nadir is higher (lower) 
than 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁. Therefore, in order to avoid system frequency dropping below 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁, the system ramp-up rate 
∑ 𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅  should be larger than or equal to 𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷, i.e.,  

∑ 𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 ≥ �Δ𝑔𝑔𝑡𝑡,u
𝜔𝜔𝜅𝜅�2

2𝐻𝐻𝑡𝑡
𝜔𝜔𝜅𝜅(𝑓𝑓0−𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀−𝑓𝑓𝑑𝑑𝑑𝑑)          (27) 

which can be reformed to Eq. (28), ensuring enough system inertia and ramp-up capability to maintain 
frequency nadir above the pre-specified value 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁. 

2𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅(𝑓𝑓0 − 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁 − 𝑓𝑓𝑑𝑑𝑏𝑏)∑ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 ≥ �𝑃𝑃𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅�2  (22) 

Eq. (29) ensures the total spinning reserve is properly allocated to each generator according to its ramp 
rate capacity 

0 ≤ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅 ≤
𝑢𝑢𝑖𝑖𝑡𝑡
𝜔𝜔𝑣𝑣𝑖𝑖

∑ 𝑢𝑢𝑖𝑖𝑡𝑡
𝜔𝜔𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅

Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 ,∀𝜅𝜅,∀𝑖𝑖 ∈ {Ω𝐺𝐺 , Ω𝑊𝑊}\Ω𝜅𝜅  (29) 

According to (25)-(27), ∑ 𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 ≥ 𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷, Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅/𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷 = 𝑡𝑡𝑁𝑁𝐴𝐴𝐷𝐷 − 𝑡𝑡𝑑𝑑. Therefore, we have  

𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅 ≤
𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖

∑ 𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅
Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅 ≤
𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖
𝑣𝑣𝑁𝑁𝐴𝐴𝐷𝐷

Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 = 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖(𝑡𝑡𝑁𝑁𝐴𝐴𝐷𝐷 − 𝑡𝑡𝑑𝑑) 

That is, 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅 ≤ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖(𝑡𝑡𝑁𝑁𝐴𝐴𝐷𝐷 − 𝑡𝑡𝑑𝑑), which means that generator 𝑖𝑖’s ramp up rate is high enough such that 
it can increase its output by at least 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅  within (𝑡𝑡𝑁𝑁𝐴𝐴𝐷𝐷 − 𝑡𝑡𝑑𝑑).  

In addition, Eq. (30) ensures that the total system spinning reserve, from both conventional generation 
and wind power, can fully compensate for the power mismatch due to the contingency. Eq. (31) 
represents that the sum of generation and spinning reserve of a conventional generator should not exceed 
its online capacity. The available wind power output is not controllable. However, a wind farm can provide 
reserve if it operates at a de-rated mode, i.e., a part of the available wind power is shed. When a 
contingency occurs, and more power is needed, the wind farm can increase its output by up to the shed 
wind power. This reserve from the wind power should not exceed the shed wind power, as modeled in 
(32). 

∑ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 ≥ Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 ,          (30) 

0 ≤ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅 ≤ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔�̅�𝑃𝑖𝑖 ,   ∀𝑖𝑖 ∈ Ω𝐺𝐺\Ω𝜅𝜅        (31) 

𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅 ≤ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔,   ∀𝑖𝑖 ∈ Ω𝑊𝑊\Ω𝜅𝜅       (23) 

Note that 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 for wind farms (i.e., 𝑖𝑖 ∈ Ω𝑊𝑊) is always set to 1, i.e., wind farms are always at the ‘on’ status. 
Considering wind power shedding is used, the wind power connected to the power grid can also be zero 
equivalent to the ‘off’ status. This is why 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 (𝑖𝑖 ∈ Ω𝑊𝑊) needs not being set to 0. Note that the frequency 
nadir is associated with the insufficient generation (Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅). When the frequency is higher than the normal 
value due to excess generation (Δ𝑃𝑃𝑡𝑡,o

𝜔𝜔𝜅𝜅) is not considered in this model as it can be easily handled by 
reducing the generation output. 

3.1.3.3 Quasi-steady-state Frequency Constraints 

Eqs. (33) and (34) maintain the quasi-steady-state frequency within a pre-specified range in all 
contingencies, which is known as primary frequency regulation. The droop constant 𝐷𝐷𝐷𝐷𝑖𝑖 is set to 5%. For 



12 
 

every 1% change in the turbine speed reference, the power output of the turbine changes by 20% of rate 
for a unit with a 5% droop setting.  

Δ𝑔𝑔𝑡𝑡,u
𝜔𝜔𝜅𝜅

Δ𝑓𝑓𝑞𝑞𝑞𝑞𝑞𝑞𝜔𝜔𝜅𝜅
= ∑ 𝑢𝑢𝑖𝑖𝑡𝑡

𝜔𝜔𝑃𝑃𝑔𝑔����𝑖𝑖
𝐷𝐷𝑅𝑅𝑖𝑖𝑓𝑓0𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 ,            (24) 

Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙𝜔𝜔𝜅𝜅 ≤ Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚 ,            (25) 

The ESS energy used for IR and PFR should be less than the remaining ESS energy as modeled in (35). 

𝑃𝑃𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔(Δ𝑡𝑡𝑀𝑀𝑅𝑅 + Δ𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅) ≤ 𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖𝑡𝑡𝜔𝜔              (35) 

3.1.4. Model Linearization 

Let 𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ = 𝛼𝛼𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐ℎ and 𝑆𝑆𝑖𝑖𝑡𝑡𝑑𝑑𝑐𝑐ℎ = 𝛽𝛽𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ and then we have 

0 ≤ 𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 ≤ 𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ                   (36) 

0 ≤ 𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔 ≤ 𝑆𝑆𝑖𝑖𝑡𝑡𝑑𝑑𝑐𝑐ℎ                 (37) 

0 ≤ 𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ ≤ 𝛼𝛼𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖
𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑚𝑚                 (38) 

𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐ℎ − (1 − 𝛼𝛼𝑖𝑖𝑡𝑡)𝐵𝐵𝑃𝑃𝑖𝑖
𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑚𝑚 ≤ 𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ ≤ 𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐ℎ                 (39) 

0 ≤ 𝑆𝑆𝑡𝑡𝑖𝑖𝑑𝑑𝑐𝑐ℎ ≤ 𝛽𝛽𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖
𝑑𝑑𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑚𝑚                (40) 

𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ − (1 − 𝛽𝛽𝑖𝑖𝑡𝑡)𝐵𝐵𝑃𝑃𝑖𝑖
𝑑𝑑𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑚𝑚 ≤ 𝑆𝑆𝑖𝑖𝑡𝑡𝑑𝑑𝑐𝑐ℎ ≤ 𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ        (41) 

where 𝐵𝐵𝑃𝑃𝑖𝑖
𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑚𝑚 and 𝐵𝐵𝑃𝑃𝑖𝑖

𝑑𝑑𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑚𝑚  are the upper bounds of 𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐ℎ and 𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐ℎ, respectively. The right-hand 
side of (28) has a bilinear term, and (28) can be linearized as: 

2𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅(𝑓𝑓0 − 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁 − 𝑓𝑓𝑑𝑑𝑏𝑏)∑ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 ≥ �𝑥𝑥𝑡𝑡,𝑗𝑗+1
𝜔𝜔𝜅𝜅 + 𝑥𝑥𝑡𝑡,𝑗𝑗

𝜔𝜔𝜅𝜅�Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 − 𝑥𝑥𝑡𝑡,𝑗𝑗

𝜔𝜔𝜅𝜅𝑥𝑥𝑡𝑡,𝑗𝑗+1
𝜔𝜔𝜅𝜅 ,   ∀𝑗𝑗 ∈ Ω𝐽𝐽, ∀𝑖𝑖 ∈ Ω𝐺𝐺        

                   (26) 

where 𝑥𝑥𝑡𝑡,𝑗𝑗
𝜔𝜔𝜅𝜅 ,∀𝑗𝑗 ∈ Ω𝐽𝐽 = {0,1,2,⋯ ,𝑛𝑛𝑗𝑗} is between the lower and upper bounds of Δ𝑃𝑃𝑡𝑡𝜔𝜔𝜅𝜅 and 𝑥𝑥𝑡𝑡,𝑗𝑗+1

𝜔𝜔𝜅𝜅 > 𝑥𝑥𝑡𝑡,𝑗𝑗
𝜔𝜔𝜅𝜅. 

Note that 𝑥𝑥𝑡𝑡,𝑗𝑗
𝜔𝜔𝜅𝜅 is a parameter instead of a variable and is simply set to distribute between the lower and 

upper bounds of Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅.  

The idea of linearization from Eqs (28) to (42) is explained below. The left-hand side of (28) or (42) has 
only one variable, i.e., 𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅. Let 𝑥𝑥 represent Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅. Then, (28) and (42) can be written in a compact form, 
i.e., 𝑦𝑦 ≥ 𝑥𝑥2  and 𝑦𝑦 ≥ �𝑥𝑥𝑗𝑗+1 + 𝑥𝑥𝑗𝑗�𝑥𝑥 − 𝑥𝑥𝑗𝑗+1𝑥𝑥𝑗𝑗 ,∀𝑗𝑗 ∈ Ω𝐽𝐽 , where 𝑥𝑥𝑗𝑗  are parameters between the lower and 
upper bounds of Δ𝑃𝑃𝑡𝑡,u

𝜔𝜔𝜅𝜅. In Figure 5, 𝑦𝑦 ≥ 𝑥𝑥2 represents the space on and above the solid line (referred to 
as space 1), approximated by the space on and above the line segments ABCDEF (referred to as space 2), 
where the horizontal axis is evenly divided into space five segments by points A-F. Increasing the number 
of segments can reduce the approximation error of this linearization method.  
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Figure 5. Illustration of linearization of 𝒚𝒚 ≥ 𝒙𝒙𝟐𝟐. 

Let 𝑦𝑦 ≥ 𝑓𝑓𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙(𝑥𝑥)  denote the half-space on and above a straight line. For example, 𝑦𝑦 ≥ 𝑓𝑓𝐿𝐿𝑖𝑖𝑛𝑛𝑙𝑙𝐴𝐴𝐵𝐵(𝑥𝑥) 

represents the half space on and above a straight 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐴𝐴𝐵𝐵 and can be expressed as 𝑦𝑦 ≥ 𝑚𝑚𝐵𝐵
2−𝑚𝑚𝐴𝐴

2

𝑚𝑚𝐵𝐵−𝑚𝑚𝐴𝐴
𝑥𝑥 + 𝑥𝑥𝐴𝐴2 −

𝑚𝑚𝐵𝐵
2−𝑚𝑚𝐴𝐴

2

𝑚𝑚𝐵𝐵−𝑚𝑚𝐴𝐴
𝑥𝑥𝐴𝐴, which can be reformed as 𝑦𝑦 ≥ (𝑥𝑥𝐵𝐵 + 𝑥𝑥𝐴𝐴)𝑥𝑥 − 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 , where 𝑥𝑥𝐴𝐴 (𝑥𝑥𝐴𝐴2) and 𝑥𝑥𝐵𝐵  (𝑥𝑥𝐵𝐵2) represent the 

horizontal (vertical) axis value of points A and B, respectively.  

As the slope of line segment, BC is deeper than AB, the left-hand side of point B of 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐵𝐵𝐵𝐵  is below 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐴𝐴𝐵𝐵 
and the right-hand side of point B of 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐴𝐴𝐵𝐵 is below 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐵𝐵𝐵𝐵. After the analogous analysis for each two 
adjacent line segments of BC, CD, DE, and EF, it can be known that space 2 is exactly the intersection of 
the five half space on and above 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐴𝐴𝐵𝐵 , 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐵𝐵𝐵𝐵 , 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐵𝐵𝐷𝐷, 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐷𝐷𝐸𝐸 , and 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐸𝐸𝑃𝑃  in Figure 5, respectively, 
i.e., space 2 is exactly represented by 𝑦𝑦 ≥ 𝑓𝑓𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙(𝑥𝑥),∀𝑙𝑙𝑖𝑖𝑛𝑛𝑒𝑒 ∈ {𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐴𝐴𝐵𝐵 , 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐵𝐵𝐵𝐵 , 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐵𝐵𝐷𝐷, 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐷𝐷𝐸𝐸 , 𝐿𝐿𝑖𝑖𝑛𝑛𝑒𝑒𝐸𝐸𝑃𝑃}. 
Therefore, 𝑦𝑦 ≥ 𝑥𝑥2  can be approximated by 𝑦𝑦 ≥ �𝑥𝑥𝑗𝑗+1 + 𝑥𝑥𝑗𝑗�𝑥𝑥 − 𝑥𝑥𝑗𝑗+1𝑥𝑥𝑗𝑗 ,∀𝑗𝑗 ∈ {0,1,⋯ ,4}  where 𝑥𝑥𝑗𝑗 , 𝑗𝑗 =
0,1,⋯ ,5, represents 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵, 𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐷𝐷, 𝑥𝑥𝐸𝐸 , and 𝑥𝑥𝑃𝑃, respectively. That is, (28) can be approximated by (42). 

The left-hand side of (42) includes a bilinear term, i.e.,  

𝐻𝐻𝑡𝑡𝜔𝜔𝜅𝜅 ∑ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 = 1
𝑓𝑓0
∑ ∑ 𝑃𝑃𝑃𝑃����𝑖𝑖𝐻𝐻𝑖𝑖(𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑤𝑤𝑙𝑙𝑡𝑡𝜔𝜔)𝑣𝑣𝑙𝑙𝑙𝑙∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅𝑖𝑖∈Ω𝐺𝐺\Ω𝜅𝜅 +

1
𝑓𝑓0
∑ ∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔𝐻𝐻𝑖𝑖𝑤𝑤𝑙𝑙𝑡𝑡𝜔𝜔𝑣𝑣𝑙𝑙 − 𝐻𝐻𝑖𝑖𝑣𝑣𝑙𝑙𝑤𝑤𝑙𝑙𝑡𝑡𝜔𝜔𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔)𝑙𝑙∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅𝑖𝑖∈Ω𝑊𝑊\Ω𝜅𝜅   

where 𝑤𝑤𝑙𝑙𝑡𝑡𝜔𝜔𝑃𝑃𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 is the product of binary and continuous variables which can be linearized similar to (36)-
(41) and 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑤𝑤𝑙𝑙𝑡𝑡𝜔𝜔 is a product of two binary variables can be replaced by a new variable 𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝜔𝜔  subject to the 
following two constraints: 

0 ≤ 𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝜔𝜔 ≤ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔,   ∀𝑖𝑖 ∈ {Ω𝐺𝐺 , Ω𝑊𝑊},∀𝑙𝑙 ∈ {Ω𝐺𝐺 , Ω𝑊𝑊}          (43) 

𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑤𝑤𝑙𝑙𝑡𝑡𝜔𝜔 − 1 ≤ 𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖𝑙𝑙𝑡𝑡𝜔𝜔 ≤ 𝑤𝑤𝑙𝑙𝑡𝑡𝜔𝜔,   ∀𝑖𝑖 ∈ {Ω𝐺𝐺 , Ω𝑊𝑊},∀𝑙𝑙 ∈ {Ω𝐺𝐺 , Ω𝑊𝑊}                  (44) 

The 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 in the right-hand side of (29) can be dropped and (29) can be replaced by (45). The reason is that 
if 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 = 1, it is obvious that (29) is equivalent to (45). If 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔 = 0, (31) guarantees that 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅  is equal to 0 
and both (29) and (45) are relaxed. 

0 ≤ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅 ≤
𝑣𝑣𝑖𝑖

∑ 𝑢𝑢𝑖𝑖𝑡𝑡
𝜔𝜔𝑣𝑣𝑖𝑖𝑖𝑖∉Ω𝜅𝜅

Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅 , ∀𝑖𝑖 ∈ Ω𝐺𝐺         (45) 

Eq. (45) can be rewritten as 𝑃𝑃𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜅𝜅 ∑ 𝑤𝑤𝑖𝑖𝑡𝑡𝜔𝜔𝑣𝑣𝑖𝑖𝑖𝑖∉Ω𝜅𝜅 ≤ 𝑣𝑣𝑖𝑖Δ𝑃𝑃𝑡𝑡,u
𝜔𝜔𝜅𝜅, the left-hand side of which has a bilinear term, 

i.e., the product of binary and continuous variables, which can also be linearized similar to (36)-(41). 
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3.2 Scenario Development 

The scenario development here mainly involves in the generation of simulated wind speed data at the 
wind farm locations that can be used to obtain the future wind generation profile based on the historical 
wind speed data. One and a half years’ 5-minute interval wind speed data at three wind generation sites 
were obtained from ERCOT. Here, the wind speed at each wind farm is represented by a random variable. 
A statistic analysis of the wind speed was performed after sanitizing the data. The histograms of oringnal 
wind speed data for the three wind generation sites are shown in Figure 6. It appears that a normal 
distribution can be used to fit the histograms well. Based on the assumption of normal disrtibution, the 
mean and standard deviation for each distribution were calculated from the original data, as shown in 
Table 2, where Vw1, …, Vw3 indicate the wind speed at generation sites 1, …, 3. The correlations between 
these three wind generation sites were calculated and are shown in Table 3. Table 3 shows that generation 
sites 1 and 2 are strongly correlated while their correlations with generation site 3 are relatively weak (see 
the off-diagonal elements in Table 3). 

 
Figure 6: Histogram for wind speed at three wind sites. 

Table 2: Mean and standard deviation of historical wind speed data. 

Wind sites Mean standard deviation 
Vw1 17.88443 8.957843 
Vw2 17.08378 9.01563 
Vw3 16.84704 6.90535 

Table 3: The estimated cross-correlation coefficients of the original data. 

Wind Sites Vw1 Vw2 Vw3 
Vw1 1.0000 0.82653 0.41758 
Vw2 0.82653 1.0000 0.35998 
Vw3 0.41758 0.35998 1.00000 

As discussed in Section 2.1.2, the target marginal distribution for each of the wind speed is the normal 
distribution, which is used together with the correlation coefficients as input to anySim tool for deriving 
the joint distribution of the auxiliary Gaussian RVs. The joint Gaussian distributions are then used to 
generate the joint distribution for the wind speed via ICDF. Using anySim, we generated one-year wind 
speed data at the three sites for the future. The simulated wind speed data at three sites are plotted in 
Figure 7.  
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Figure 7: The time series data of the simulation. 

To validate that the statistics for the simulated data match those for the original historical data, the 
histograms (including the mean and deviation of the corresponding normal distribution) and the 
correlations between them are shown in Figure 8 and Table 4, respectively. It can be seen that both match 
the properties of the original wind speed data. 

 
Figure 8: Histograms of simulated data and assumed distribution. 

Table 4: The difference between the estimated cross-correlation coefficients of the simulated data and original data 
(Corr_orginal – Corr_simul). 

Wind Sites Vw1 Vw2 Vw3 
Vw1 0.0000 9.416e-04 -3.652e-03 
Vw2 9.416e-04 0.0000 -1.973e-03 
Vw3 -3.652e-03 -1.973e-03 0.0000 

It should be noted that the RFT-based approach takes advantage of ARMA model and therefore, is able to 
capture not only the spatial and temporal correlations among various RVs but also the trend of the 
variations in these RVs. The RFT provides an ideal approach to modeling the variability and correlation of 
weather related variables such as wind speed, precipitation, solar irradiance, temperature and thus the 
renewable generation profiles. 

3.3 Solutions 

The original problem is decoupled into sub-problems following a decomposition and coordination method 
in the SAVLR introduced in Section 2. To maintain a limited number of multipliers and make the problem 
complexity applicable, for planning problems, only system demand and frequency nadir constraints are 
relaxed following the SAVLR framework. Other coupling constraints are converted to soft constraints.  
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3.3.1. Incorporating Rolling Horizon to SAVLR 

The SAVLR method presented above can solve the large-scale operation problems effectively. However, 
the number of decision variables and constraints would increase significantly with the longer planning 
horizon, which is always the case in long-term planning, e.g., yearly planning. Although the SAVLR 
theoretically could still be applied to handle this kind of problems, the real-world limit in computer 
memory may hinder its application. This is mainly because of the need of the SAVLR to store the initial 
values for the decision variables and the transmission capacity constraints for all planning scenarios.  

Taking the 2,383-bus Polish system as an example, the SAVLR was able to solve the 10-day planning 
problem that could not be handled by most of the existing solutions. However, as the planning horizon 
increases, the required computer memory is significantly increased, e.g., for the 1-month planning 
problem, storing the transmission capacity constraints alone in the SAVLR framework would require 
28.52GB memory, which is beyond the memory size of most of the personal computers. To address this 
issue, the SAVLR method is further improved by taking advantage of a concept called rolling horizon 
approach. The step-by-step implementation is given in Figure 9.  

 
Figure 9: The flowchart of SAVLR+rolling horizon (SAVLRseq). 

The rationale behind the rolling horizon approach is that, if the long-time horizon (usually more than one 
year) is divided into multiple shorter time slots, then it is possible that we solve the sub-problems within 
different time slots sequentially on a rolling basis. Instead of initializing and storing all the transmission 
capacity constraints and decision variables in the computer memory for the entire planning time period, 
the results from the previous time slot can be used as the initial conditions for the constraints and decision 
variables in the next time slot. In other words, the SAVLR parameters at each of the subsequent time slots 
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are re-initialized and the corresponding parameter values are related to the penalty multipliers of 
different sub-problems, resulting in a sequential version of SAVLR solution method. The problem solving 
for each time slot is independent of the ones in other time slots. By doing so, the implementation of the 
SAVLR is able to significantly save the memory requirement while maintaining a similar performance. This 
combination of SAVLR and the rolling horizon approach is simply named SAVLRseq (i.e., a sequential 
version of the SAVLR). The effectiveness of the SAVLRseq has been verified in our case studies in Section 
6.  

It should be noted that, in addition to these parameters in SAVLR, the SAVLRseq approach needs to 
carefully select the number of time slots reflecting the number of sub-problems. One could select many 
time slots to obtain a fast solution in each time interval. However, the large number of time slots resulting 
in a smaller sub-problem size may degrade the performance since the optimization solution has less future 
information, e.g., less forecast of load demand and wind generation to make the decisions. A tradeoff 
needs to be considered, as will be further discussed in Section 6. 
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4 ESS Operation Study 
This section presents the formulation, uncertainty modeling, and the solution methodologies of the ESS 
operation problem developed in our ongoing papers [Raghun 2021a] and [Raghun 2021b]. More details 
will be presented in the papers.  

The ESS operation problem can be formulated as deterministic and stochastic frequency dynamics-
constrained UC problems. For the stochastic case, the uncertain wind generation is modeled as a discrete 
Markov process considering spatial-temporal correlation of wind speeds between multiple geographically 
separated windfarms. The possible wind generation states at windfarms and their probabilities of 
occurrence are efficiently calculated in the preprocessing stage. The formulation details are given below.  

4.1 Problem Formulation 

4.1.1 ESS operation with Frequency Dynamics Constraints in a Deterministic Setting 
In this subsection, to examine the impacts of considering frequency dynamics on ESS operation, a 
deterministic wind generation scenario is considered for the frequency-dynamics constrained UC, with 
the RoCoF constrains (19), the linearized frequency nadir constraints (42) - (44), and QSS (33) - (34) 
constraints.  

For this problem, a typical wind generation scenario is considered. The failure of the largest generator is 
considered as the contingency. The formulation details are given below.  

4.1.1.1 Objective Function 

The objective is to minimize unit commitment costs, i.e., on/off status and startup, as well as dispatch and 
penalty costs which include conventional generation, reserve, curtailment, and soft transmission capacity 
and reserve penalties. The objective function is formulated as: 

∑ �∑ �𝑐𝑐𝑖𝑖𝑆𝑆𝑈𝑈𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡 + 𝑐𝑐𝑖𝑖𝑁𝑁𝐿𝐿𝑤𝑤𝑖𝑖𝑡𝑡 + ∑ 𝑐𝑐𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡

𝑃𝑃
𝑃𝑃∈Ω𝐷𝐷 + ∑ 𝑐𝑐𝑖𝑖

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡
𝑟𝑟

𝑟𝑟∈Ω𝑄𝑄 �𝑖𝑖∈Ω𝐺𝐺 + ∑ (𝑐𝑐𝑒𝑒𝐸𝐸𝑆𝑆𝑆𝑆,𝑐𝑐ℎ𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡𝑐𝑐ℎ + 𝑐𝑐𝑒𝑒𝐸𝐸𝑆𝑆𝑆𝑆,𝑃𝑃𝑐𝑐ℎ𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡𝑃𝑃𝑐𝑐ℎ)𝑒𝑒∈Ω𝐸𝐸 +𝑡𝑡∈Ω𝑇𝑇

∑ 𝑐𝑐𝑤𝑤𝑅𝑅𝑈𝑈𝐷𝐷𝑃𝑃𝑤𝑤𝑡𝑡𝑅𝑅𝑈𝑈𝐷𝐷𝑤𝑤∈Ω𝑊𝑊 + ∑ 𝑐𝑐ℎ
𝑃𝑃,𝑇𝑇𝑅𝑅(𝜐𝜐ℎ𝑡𝑡𝑇𝑇𝑅𝑅+ + 𝜐𝜐ℎ𝑡𝑡𝑇𝑇𝑅𝑅−)ℎ∈Ω𝐻𝐻 + ∑ ∑ 𝜐𝜐𝑎𝑎𝑃𝑃𝑡𝑡𝐷𝐷

𝑃𝑃∈Ω𝐷𝐷𝑎𝑎∈Ω𝐴𝐴 �.   (46) 

4.1.1.2 System Constraints 
In the system demand constraints, the sum of total generation, net ESS discharge power, and net wind 
generation must equal the total demand, and is formulated as: 

 ∑ �∑ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡
𝑃𝑃

𝑃𝑃∈Ω𝐷𝐷 � +𝑖𝑖∈Ω𝐺𝐺 ∑ (𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡𝑃𝑃𝑐𝑐ℎ − 𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡𝑐𝑐ℎ) + ∑ �𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡𝑅𝑅𝑈𝑈𝐷𝐷�𝑤𝑤∈Ω𝑊𝑊 = ∑ 𝑃𝑃𝑃𝑃𝑏𝑏𝑡𝑡𝑏𝑏∈Ω𝑏𝑏𝑒𝑒∈Ω𝐸𝐸 .  (47) 

The soft transmission capacity constraints are formulated as: 

𝑓𝑓
ℎ
− 𝜐𝜐ℎ𝑡𝑡𝑇𝑇𝑅𝑅− ≤� 𝛼𝛼𝑏𝑏ℎ �� � 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡

𝑃𝑃

𝑃𝑃∈Ω𝐷𝐷
+

𝑖𝑖∈Ω𝐺𝐺𝑏𝑏

� (𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡𝑃𝑃𝑐𝑐ℎ − 𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡𝑐𝑐ℎ)
𝑒𝑒∈Ω𝐸𝐸𝑏𝑏

− 𝑃𝑃𝑃𝑃𝑏𝑏𝑡𝑡 −� �𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡𝑅𝑅𝑈𝑈𝐷𝐷�
𝑤𝑤∈Ω𝑊𝑊𝑏𝑏

� ≤
𝑏𝑏∈Ω𝑏𝑏

 

𝑓𝑓ℎ + 𝜐𝜐ℎ𝑡𝑡
𝑇𝑇𝑅𝑅+,  (48) 

where 𝛼𝛼𝑏𝑏ℎ are generation shift factors and 𝜐𝜐ℎ𝑡𝑡
𝑇𝑇𝐵𝐵+/− are soft constraint penalty variables to account for 

exceeding the constraint requirements. Other constraints not listed here for brevity include the standard 
unit-level, soft reserve, ESS related, and frequency dynamics, which are similar to those for the planning 
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problem given in subsection 3.1.2. For complete formulations of deterministic UC, see [Raghun 2021a and 
2021b]. 

4.1.2 ESS Operation with Frequency Dynamics Constraints in a Stochastic Setting 
In this subsection, the impacts of considering the Markovian wind generation model on solutions of FDUC 
including ESS operation are examined. For the stochastic frequency dynamics-constrained UC, the 
uncertain wind generation is modeled as a discrete Markov process considering spatial-temporal 
correlation of wind speeds between multiple geographically separated windfarms. The possible wind 
generation states at windfarms and their probabilities of occurrence are efficiently calculated in the 
preprocessing stage. The formulation details are given below.  

4.1.2.1 Objective Function 

The objective is to minimize one set of unit commitment costs, i.e., on/off status and startup, and a set of 
expected dispatch and penalty costs, i.e., conventional generation, curtailment, and soft transmission 
capacity penalties for each global state in the Markov model. The objective function is formulated as: 

∑ �∑ 𝑝𝑝𝑚𝑚𝑡𝑡𝑚𝑚∈Ω𝑀𝑀 �∑ ∑ 𝑐𝑐𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡

𝑚𝑚𝑃𝑃
𝑃𝑃∈Ω𝐷𝐷𝑖𝑖∈Ω𝐺𝐺 + ∑ �𝑐𝑐𝑒𝑒𝐸𝐸𝑆𝑆𝑆𝑆,𝑐𝑐ℎ𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡

𝑐𝑐ℎ,𝑚𝑚 + 𝑐𝑐𝑒𝑒𝐸𝐸𝑆𝑆𝑆𝑆,𝑃𝑃𝑐𝑐ℎ𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡
𝑃𝑃𝑐𝑐ℎ,𝑚𝑚�𝑒𝑒∈Ω𝐸𝐸 + ∑ 𝑐𝑐𝑤𝑤𝑅𝑅𝑈𝑈𝐷𝐷𝑃𝑃𝑤𝑤𝑡𝑡

𝑅𝑅𝑈𝑈𝐷𝐷,𝑚𝑚
𝑤𝑤∈Ω𝑊𝑊 +𝑡𝑡∈Ω𝑇𝑇

∑ 𝑐𝑐ℎ
𝑃𝑃,𝑇𝑇𝑅𝑅�𝜐𝜐ℎ𝑡𝑡

𝑇𝑇𝑅𝑅+,𝑚𝑚 + 𝜐𝜐ℎ𝑡𝑡
𝑇𝑇𝑅𝑅−,𝑚𝑚�ℎ∈Ω𝐻𝐻 �� + ∑ �𝑐𝑐𝑖𝑖𝑆𝑆𝑈𝑈𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡 + 𝑐𝑐𝑖𝑖𝑁𝑁𝐿𝐿𝑤𝑤𝑖𝑖𝑡𝑡 �𝑖𝑖∈Ω𝐺𝐺 ,  (49) 

where 𝑚𝑚 is the index for global states and 𝑝𝑝𝑚𝑚𝑡𝑡 is the probability of state 𝑚𝑚 at time 𝑡𝑡. 

4.1.2.2 System Constraints 

Most constraints are formulated similarly to those of the deterministic problem in subsection 4.1.1. 
However, the constraints for the Markovian problem have increased dimensionality. To be specific, there 
are a set of constraints for each global state in the Markov model. For example, the system demand 
constraints are formulated as: 

 ∑ �∑ 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡
𝑚𝑚𝑃𝑃

𝑃𝑃∈Ω𝐷𝐷 � +𝑖𝑖∈Ω𝐺𝐺 ∑ �𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡
𝑃𝑃𝑐𝑐ℎ,𝑚𝑚 − 𝐵𝐵𝑃𝑃𝑒𝑒𝑡𝑡

𝑐𝑐ℎ,𝑚𝑚� + ∑ �𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡𝑚𝑚 − 𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡
𝑅𝑅𝑈𝑈𝐷𝐷,𝑚𝑚�𝑤𝑤∈Ω𝑊𝑊 = ∑ 𝑃𝑃𝑃𝑃𝑏𝑏𝑡𝑡𝑏𝑏∈Ω𝑏𝑏𝑒𝑒∈Ω𝐸𝐸 .  (50) 

Furthermore, ramp-rate constraints must consider all possible transitions between states at subsequent 
time intervals for solutions to be robust to highly varying wind speeds. For example, the Ramp-up 
constraints are formulated as: 

∑ �𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡
𝑚𝑚𝑃𝑃 − 𝑃𝑃𝑃𝑃𝑖𝑖𝑡𝑡−1

𝑚𝑚′𝑃𝑃 � ≤ 𝐷𝐷𝑈𝑈𝑖𝑖 ∙ 𝑤𝑤𝑖𝑖𝑡𝑡−1 + �𝑃𝑃𝑃𝑃
𝑖𝑖

+ 𝐷𝐷𝑈𝑈𝑖𝑖
2
� �𝑤𝑤𝑖𝑖𝑡𝑡 − 𝑤𝑤𝑖𝑖𝑡𝑡−1�𝑃𝑃∈Ω𝐷𝐷 .  (51) 

where the index 𝑚𝑚 is for states at time 𝑡𝑡 and 𝑚𝑚′is for states at time 𝑡𝑡 − 1. The Ramp down constraints are 
similarly formulated. For complete formulations of the constraints, see [Raghun 2021a and Raghun 
2021b]. 

4.2 Scenario Development: Markov Model for Wind Generation 

The wind speeds at windfarms at multiple locations are modeled as a Markov chain (a discrete-state 
Markov process) with consideration of spatio-temporal correlations between multiple sites. The state 
equation for wind speeds at the different windfarms is formulated as: 

𝒘𝒘[𝑡𝑡 + 1] = 𝑨𝑨𝒘𝒘[𝑡𝑡] + 𝒅𝒅[𝑡𝑡],  (52) 

where 𝒘𝒘 is a truncated multivariate normally distributed random vector, 𝑨𝑨 is the state transition matrix 
where the correlation structure between windfarms is defined, and 𝒅𝒅 is white noise. The probabilities of 
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states for each time and transitions between subsequent times are calculated in MATLAB. Once wind 
speed states are obtained, they are mapped to wind generation states based on the non-linear wind speed 
to power curve of the windfarms. See Figure 10 for an example of a small Markov chain.  

 

Figure 10: Example Markov chain for wind generation states for 2 hours, where t = 0 represents the initial distribution. This 
model has 9 global states (can also be considered as generation levels). 

4.3 Solution 

4.3.1 Solution to Deterministic ESS Operation with FDUC 
To handle the high complexity due to the linearized frequency nadir constraints, SAVLR with soft 
constraints is used. In the subproblem formulation, only the demand and frequency nadir constraints are 
relaxed but not other system-wise coupling constraints to significantly reduce the number of multipliers. 
All other coupling constraints are converted to “soft” to facilitate coordination of subproblem solutions. 
For example, the RoCoF constraint is formulated as: 

Δ𝑓𝑓𝑡𝑡
𝑄𝑄𝑆𝑆𝑆𝑆 − 𝜐𝜐𝑡𝑡

𝑄𝑄𝑆𝑆𝑆𝑆 ≤ Δ𝑓𝑓𝑡𝑡
𝑄𝑄𝑆𝑆𝑆𝑆,𝑚𝑚𝑎𝑎𝑚𝑚 ,            (53) 

where the penalty variable 𝜐𝜐𝑡𝑡
𝑄𝑄𝑆𝑆𝑆𝑆  accounts for violation of the constraint. The penalty variable has an 

associated predetermined penalty cost in the objective function. To avoid incurring excessive penalties in 
the solution process, the penalty coefficients are set an order of magnitude higher than the expected 
upper bound of multipliers. See [Raghun 2021a and Raghun 2021b] for detailed formulations. 

4.3.2 Solution to Stochastic ESS operation with FDUC 

To handle the high complexity of the Markovian frequency dynamics-constrained UC, a decomposition 
and coordination method is developed based on the SAVLR. To reduce the number of multipliers in the 
relaxed problem, only system demand and frequency nadir constraints are relaxed; and other coupling 
constraints are converted to soft constraints. To reduce computational requirements caused by the 
Markov process, an ordinal-optimization (OO) concept is introduced, where approximated subproblems 
are solved subject to the “Surrogate Optimality Condition” with much reduced complexity. Subproblems 
are approximated by only considering a subset of states and a subset of transitions in the original Markov 
model. The pseudo-code for generating states for the OO approximation is given below: 

For 𝑡𝑡 = 0:𝑇𝑇 
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– Keep only up to 𝑥𝑥 % (e.g., 15 %) of the upper limit of the # of global states (Keep the most likely 
states) 

– Normalize probabilities 
– For each non-zero global state: 

• If 𝑡𝑡 < 𝑇𝑇, remove outgoing transitions from the filtered out states 
• If 𝑡𝑡 > 0, remove transitions incoming to the filtered out states from the previous time 

step  
• Normalize transition probabilities for the previous time step 
• Keep 𝑦𝑦 % (15 %) of most likely and extreme outgoing transitions  
• Normalize transition probabilities for the current time step 
• Based on the transition probabilities, calculate the state probabilities for the next time 

step 

In Figures 11 and 12, the filtering method is illustrated using the example model in Figure 10. 

 
Figure 11: Active states and transitions after the first iteration of the OO filtering algorithm 

 
Figure 12: Active states and transitions after 3 iterations of the OO filtering algorithm 

With much reduced number of states and transitions, subproblems are solved quickly until the surrogate 
optimality condition for the OO approximation is satisfied. At the end, feasibility is satisfied for the original 
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Markovian problem. To evaluate the suitability of the approximation, the surrogate optimality condition 
based on the original Markov model is also checked. The flow chart for the SAVLR with OO is given in 
Figure 13.  

 

Figure 13: SAVLR flowchart with OO approximation for subproblems 
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5 Tool Implementation 

5.1 Overall Architecture of SAVLR and SAVLRseq 

The SAVLR and SAVLRseq methods developed are packaged as planning and operation tools for power 
systems built upon Matlab and CPLEX. The Matlab-based tools read the data files, perform the 
preprocessing of the data, define the optimization and constraints, implement the SAVLR via subproblem 
decomposition and the coordination of solving subproblems by using the state-of-practice MILP tool 
CPLEX. For the long-term planning problems, a so-called rolling horizon approach was developed and 
combined with the SAVLR to create the “SAVLRseq” tool that provides a practical solution to utility-scale 
long-term planning problems. 

The tool implementation of SAVLR and SAVLRseq uses a fine-grained, modular, bottom-up approach to 
define power system models, allowing the ESS planning and operation problem to be easily formulated 
and customized. This architecture, as shown in Figure 14, reflects the modularity of actual power systems, 
where individual components operate independently but together contribute to the system’s power 
balance, frequency support, and total costs. In Figure 14, the MILP Modeling is the core module that 
defines balancing constraints for energy and reserves, frequency security, and an overall system 
operational cost. Other modules mainly includes Time Scale Module for planning and operation problems; 
Component Module for representing components such as generators, ESSs, wind farms, or transmission 
links; Objectives Module for defining the goal; Optimization Policies Module with different solution 
strategies, and the Analysis Module.  

These modules are used together to build the overall optimization model by adding terms to the shared 
energy and reserve balances, frequency security, and the overall cost expression. These modules can also 
define additional decision variables and constraints, allowing technologies to be packaged in a plug-and-
play manner that participate as fully integrated components of the overall model. Each module can be 
modified easily and are implemented by using user-supplied information to create a Matlab function file 
that is called at each stage of generating and solving a model, defining and parsing algorithm parameters, 
defining model components, defining costs or constraints, loading data from an input directory, and 
performing post-solve functions.  

Following the diagram in Figure 14, users take the load and wind data as input and configure the model 
by a list of objective costs, constraints, and system components to be used. The tool first loads the input 
data (i.e., load, wind generation, and other system components); then defines the optimization model 
and constraints; and finally runs through compilation, solution, analysis, and export stages at runtime. 
This system is highly flexible, making it easy to add or subtract from the components, typically without 
modifying the built-in algorithm modules. By changing the choice of modules, users can also switch easily 
between solution functionalities, such as branch-and-cut, SAVLR, and SAVLR+rolling-horizon (i.e., 
SAVLRseq).  

Table 5 describes the functionalities of each module. Complete mathematical formulations of the 
optimization model and solution algorithms can be found in the previous sections.  
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Figure 14: Structure of the open-source ESS Sizing Tool. 

Table 5: The Functionality of Modules 

Modules Functionalities 
Timescales This module defines the timescales for decision making:  periods of one or more years where 

investment decisions are made, time points within each period when operational decisions are 
made. Time points within each time series have a fixed duration specified in hours or minutes.  

Components This module provides the models of all possible components in a power system, including 
conventional generators, load demand, renewables, and ESSs. User-defined functions are allowed 
to specify their parameters easily.  

Objectives 
 

This module specifies the objective function and financial parameters for either the operation or 
planning optimization model, including investment and/or operational costs. The objective is to 
minimize the associated costs defined in the objective function.  

MILP 
Modelling  

This is the core module that implements the construction and operation constraints and decisions 
for the ESS planning and operation problems. The MILP model is developed following the 
convention of the unit commitment formulation. There are multiple submodules in MILP 
Modeling module, including power balancing, power flow, energy reserve, component capacities, 
demand response, and frequency security constraints. Users can flexibly decide which constraints 
to be included.  

Optimization 
Policies 
 

This module provides different solution algorithms for solving the user-specified problem. 
Currently, it includes branch-and-cut as the benchmark, SAVLR for operation, and SAVLR + rolling-
horizon for long-time planning. The application of these solution algorithms is not limited to the 
mentioned examples. Users can flexibly select the solution algorithm.  

Analysis 
 

This module includes an analysis tool for evaluating the solution performance and the 
optimization results.  

Both SAVLR and SAVLRseq are implemented in MATLAB to take advantage of vectorization and the parallel 
toolbox for speeding up model construction as well as implementing a parallel version of the algorithm 
(see [Raghun 2021a] on “Exploiting soft constraints”). CPLEX is called within MATLAB for using the B&C 
algorithm for solving the subproblems defined by SAVLR or SAVLRseq.  

The code is lightweight and portable, and includes analytical tools for solutions. Since the code is 
developed in a modular style, user-defined modules can be easily added, modified, bypassed, and 
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debugged. Debugging features are built in to facilitate further development and customization for general 
MILP problems. This particular version of the code is tailored for the Markovian Frequency Dynamics- and 
simulated wind profile-Constrained Unit Commitment, and includes related functions.  

5.2  Software Requirements 

• CPLEX v12.8 or later version 

• MATLAB R2018a or later version 

– CPLEX connector 

– Parallelization toolbox if parallel computation is needed 

5.3  Quick Start Guide 

The description of the folders and files needed for the SAVLR and SAVLRseq tools are given in Figure 15. 

 
Figure 15: Contents of the SAVLR code for MFDUC 
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Figure 16: Define algorithm settings in SAVLR_RUN.m 

The characteristics of the power system are stored in the “ORIGINAL DATA” folder, and problem specific 
modifications to the original power system data are stored in “Problem data.” Power system 
characteristics and load information are in “Generate_instance.m.” Frequency dynamics and ESS 
characteristics are defined in “Create_FD_Data.m.” Algorithm settings are defined in the run file 
“SAVLR_RUN.m.” Some of the parameter settings can be seen in Figure 16. Results and solution analysis 
tools are stored in the main folder. (In later versions of the code, they are located in a separate folder for 
ease of management.) 

5.4  Improving Performance of MATALB Code 

Parallelization and vectorization are used to speed up processing. Sparse matrices and appropriate data 
structures are used to minimize memory consumption. See Figure 17 for examples of parallelization and 
vectorization. 

 
Figure 17: a) parallel for loop is used for constructing subproblem models in the preprocessing stage. b) The RoCoF 

constraints are built using vectorization and stored in a sparse matrix. 
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6. Case Study 

6.1 Example Systems 

Two example systems were used in the case study, i.e., the IEEE 118-bus system1 and the 2,383-bus Polish 
system [MATPOWER]. The two systems were modified and used to illustrate the effectiveness of the ESS 
planning and operation models and the SAVLR-based solution methodology.  

The IEEE 118-bus system, as shown in Figure 18, represents a simple approximation of the system of the 
American Electric Power system and has often been used in various studies. The system contains 19 
generators, 35 synchronous condensers, 177 lines, 9 transformers, and 91 loads.  

 
Figure 18: Diagram for the 118-bus system. 

The Polish system [MATPOWER] represents the Polish 400, 220 and 110 kV networks during winter 1999-
2000 peak conditions. It is part of the 7,500+ bus European UCTE system. The system contains 327 
generators and 2896 transmission lines.  

6.2 ESS Operation Case Study 

6.2.1. ESS Operation in a Deterministic Wind Generation Setting 
In this case study of the deterministic ESS operation problem of the 2,383-bus Polish system, it is 
assumed that three wind farms are connected to buses 9, 21, and 62 and the ESSs are installed at buses 
180, 1016, and 681. 

A 24-hour frequency dynamics-constrained UC with ESSs is solved to demonstrate the role of ESSs in 
providing grid inertia support as well as peak shaving and reserve services. The details of this study is being 

 
1 Details of the system and data are available at http://labs.ece.uw.edu/pstca/pf118/pg_tca118bus.htm. 
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documented in a journal paper [Raghun 2021a]. The SAVLR obtains a solution with cost $31,340,000 with 
a gap of 2.67%. By considering frequency dynamics in UC, more conventional units are online at an 
additional cost of $840,000 to help provide grid inertia and maintain the system frequency at safe levels 
during contingencies. Figure 19 compares the behavior of ESSs with and without frequency constraints.  

 

Figure 19: Aggregated state-of-charge of ESSs for the deterministic FDUC 

In Figure 19 a), without frequency dynamics constraints, the ESSs charge during the early morning hours, 
and then discharges during peak hours to reduce the load for conventional generators, i.e., the major role 
of the ESSs is peak-shaving. In Figure 19 b), with frequency dynamics considered, much of the ESS power 
is conserved to provide inertia support for contingencies while the system demand is mainly supplied by 
conventional generators and wind farms.  

6.2.2. ESS Operation for the Markovian wind generation model 
The IEEE 118-bus system is used in this study. The wind farms are assumed to be connected to buses 9, 
21, 62, and the ESSs are installed at buses 117, 21, 82. 

A 24-hour Markovian frequency dynamics-constrained UC with ESSs is solved to demonstrate the role of 
ESSs in providing grid inertia support. SAVLR with the ordinal optimization concept embedded subproblem 
solving is used, where 10% of the number of possible states and 10% of the number of possible transitions 
are kept (referred to as SAVLR+OO-10/10).  

Two cases are examined: a low wind case with the initial wind speed distributed around 2m/s at all 
windfarms, and a high wind case with the initial wind speed distributed around 10 m/s at all windfarms. 
These cases are compared with the two extreme deterministic cases with no wind and maximum wind 
generation. The feasible costs and algorithm performance metrics are given in Table 6.  

Table 6: Results from SAVLR+OO for the Markovian FDUC 

Method Feasible cost ($) Solution time ~ SP solve time # maj. iter. 

Deterministic extreme cases (Solved by B&C) 

BC – det., no wind 985,315 22 s - - 

BC – det., max wind 906,911 40 s - - 
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Markovian - Case 1 (Low wind) 

SAVLR+OO-10/10 981,780 ~12 m 8.5 s 5 

Markovian - Case 2 (High wind) 

SAVLR+OO-10/10 937,033 ~16 m 29 s 3 

For the Markovian cases, SAVLR+OO-10/10 finds solutions within 20 minutes. For the Markovian low wind 
case, SAVLR+OO finds a solution that is only $3,535 cheaper than the deterministic case with no wind. 
This is because when low wind speed is expected, conventional generation still provides the majority of 
power, thus savings are small. With higher expected wind speed, the load on conventional generators 
decreases and leads to savings of $48,282. Unlike solutions for deterministic cases, the solutions for 
Markovian cases are guaranteed to be feasible even when there are extreme transitions between global 
states. In-depth analysis of the results is being performed to analyze the impacts Markovian wind 
generation on the behavior of ESSs and will be documented in [Raghun 2021b].  Further applications of 
the ordinal optimization concept by separating uncertainties within a particular windfarm from 
uncertainties from all other windfarms is being considered to push for additional scalability. 

6.3 ESS Planning Case Study 

6.3.1. Test Systems and Data  

It is assumed that there are three wind farms as well as three ESSs installed in each of the example systems. 
For case studies, it is assumed that three wind farms are installed at buses 4, 5 and 6 in the 118-bus system 
and at buses 9, 21 and 62 in the Polish system, respectively.  

The uncertainties of load and wind power profiles were developed to represent different scenarios over 
one year horizon. The load data adapted from [ERCOT, 2020] are appropriately scaled. The wind speed 
data is generated by the Random Field method described in Section 3.2 and converted to wind generation, 
as shown  in Figure 20, by using Eq. (54).  

𝑃𝑃𝑃𝑃 = 1
2
𝜌𝜌𝐴𝐴𝑤𝑤𝑣𝑣3𝑅𝑅𝑝𝑝      (54) 

where 𝜌𝜌, the density (kg/m3) is 1.23; 𝐴𝐴𝑤𝑤, the swept area (m2) is 8,495; 𝑅𝑅𝑝𝑝, the power coefficient is 0.59 by 
assuming wind turbines operate at maximum power point tracking (MPPT). In the case studies, we used 
these wind generation profiles as the scenarios.  
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Figure 20: Wind generation obtained by Random Filed. 

The rolling horizon approach provides an effective means to avoid the memory issue. However, its time 
interval affects the performance and needs to be carefully selected. To avoid the complication of solving 
the UC problem, the rolling horizon approach is only adopted for long-time planning (e.g., one year), 
where we expect the issue of insufficient the PC memory.  

6.3.2. Tuning Parameters  

There are parameters (i.e., 𝑀𝑀, 𝛾𝛾, and step size)that need to be tuned in the SAVLR solution method to 
achieve the best performance before implementing the solution. Specifically, we first fix 𝛾𝛾 at a value 
based on our experience, and we tune the 𝑀𝑀 and step size each in a given range. The parameters with the 
best performance were used for all the test cases. The results given in Table 7 were obtained by applying 
the SAVLR to a short-time planning problem (e.g., 3 hours) for the IEEE 118-bus system.   

Table 7: Comparison of different parameters for the 3-hrs planning problem (𝜸𝜸 = 𝟎𝟎.𝟏𝟏). 

 Step size = 𝟏𝟏 × 𝟏𝟏𝟎𝟎−𝟑𝟑 Step size = 𝟓𝟓 × 𝟏𝟏𝟎𝟎−𝟑𝟑 Step size = 𝟏𝟏 × 𝟏𝟏𝟎𝟎−𝟐𝟐 
𝑀𝑀 = 1.0 57874 (19s) 57874 (29s) 59096.9 (5.4s) 
𝑀𝑀 = 10 57874 (17s) 56481 (20s) 59235.4 (3.7s) 
𝑀𝑀 = 20 57874 (17s) 58739.9 (12s) 59235.4 (2.1s) 

The SAVLR performance is measured by using the feasible cost solved within a specified time limit (e.g., 
30s). If it cannot return a feasible cost within this time limit, we consider it as NaN. The best parameters 
for each system are highlighted, i.e., 𝑀𝑀 = 10, 𝛾𝛾 = 0. .10, and stepsize= 5 × 10 − 3.   

6.3.3. Results 

All the planning problems were solved using a Dell laptop computer with an 8-core intel i9 CPU and 32GM 
RAM memory.  

6.3.3.1. IEEE 118-bus System: 24-hour Planning Problem 

We first applied the original SAVLR to solve a 24-hour planning problem. The optimization result for the 
IEEE 118-bus system is described below. The total costs are $5.6301 × 105. The upper bound of the BESS 
maximum charging/discharging power is set to be 170 MW at each bus. The result is that we should invest 
to build ESSs of capacity 166.66 MW at bus 4, 168.63 MW at bus 2, and 170 MW at bus 3, respectively. 
The 24-hour profile of generation output from conventional generators, wind power, BESS discharging, 
and load shedding is shown in Figure 21. Figure 21 indicates that the power generation is mainly from the 
conventional generators and wind power. The power generation from BESS discharging is insignificant, 
and there is no need for load shedding in this situation. 

It is interesting that the total BESS installation capacity is 505.29 MW while the total discharging power  
in each hour is very small. The reason is as follows. Since the BESSs are responsive, they are scheduled to 
decrease the charging power and/or increase the discharging power, and this can avoid the frequent 
charging and discharging and increase the lifespan of the BESSs. Therefore, the BESSs are scheduled to 
operate in a standby mode to be ready for providing frequency support in case a contingency occurs.  
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Figure 21: Results for 24hrs planning with ESS support. 

We also tested the impacts of removing the BESSs from the system. As in Figure 22, more load has to shed 
when the BESSs are removed from the system. Without deployment of ESSs, there is insufficient fast 
generation for provisioning frequency support, and the system would have to shed additional loads to 
satisfy the frequency constraints. 

 
Figure 22: Results for 24hrs planning without ESS for frequency support. 

6.3.3.2. IEEE 118-bus System: One-year Planning Problem 

Before solving the one-year planning problem, we first tested the performance of the rolling-horizon 
approach by comparing the results of the combination of the SAVLR and rolling horizon, i.e., SAVLRseq 
method, to the SAVLR alone and branch-and-cut (B&C) methods for solving the one-month (i.e., 720hrs) 
planning problem. In Table 8, all the algorithms can find feasible solutions. Compared to the SAVLR and 
B&C methods, a combination of the SVALR and rolling-horizon can have a similar performance while 
significantly reducing the solution time as well as the memory (not shown in Table 8). This feature provides 
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us with a practical alternative to address the memory issue that is unavoidable when solving the long-
term UC based planning problems.  

Table 8: Comparison of different solutions for the one-month planning problem. 

Method Feasible cost Solution time 
Branch-and-cut 1.9655 × 107 1h30m 
SAVLR 1.9749 × 107 13m50s 
SAVLR + Rolling-horizon  1.9787 × 107 6m30s 

When applying the SAVLRseq, an additional parameter, the number of time slots across the entire 
planning horizon, needs to be selected, as indicated in Section 3. This is illustrated by one case study using 
the IEEE 118-bus system for a 240-hour planning as an example, and the results are shown in Table 9, 
where the gaps are calculated based on the lower bound obtained by branch-and-cut. It is shown that 
although increasing the number of time slots decreases the solution time, the quality of the results would 
be affected. Therefore, there is a trade-off between the quality and computational time when applying 
SAVLRseq, and we only apply it to the problem when both branch-and-cut and original SAVLR cannot find 
feasible results, e.g., the long-time planning problem of a large-scale system.  The recommendation is that 
the number of time slots can be chosen such that the available memory is fully employed.  

Table 9: Comparative results of SAVRLseq with different time slots. 

Method Lower bound Feasible cost Gap Solution time 
Branch-and-cut 5.8453 × 106 5.8954 × 106 0.85% 8m30s 

SAVLRseq (10 time slots) \ 6.0437 × 106 3.28% 2m20s 
SAVLRseq (4 time slots) \ 6.0194 × 106 2.89% 4m08s 

We then applied the SAVLRseq to solving the one-year planning problem for sizing the ESSs. The B&C 
method cannot find any lower bound and feasible solution in this case for the original problem. To obtain 
a lower bound, we have to simplify the problem by removing transmission capacity constraints. The 
comparative results are summarized in Table 10, where the lower bound is obtained by solving the 
simplified problem via the branch-and-cut method.  Note that the results for both SAVLR and SAVLRseq 
are obtained by solving the original problem. 

Table 10: Comparison of different solutions for the one-year planning problem in 118-bus system. 

Method Lower bound Feasible cost Lower bound 
finding time 

Solution time 

Branch-and-cut 2.286 × 108 \ 15m40s \ 
SAVLR \ 2.3579 × 108 \ 50m30s 

SAVLR + Rolling-horizon \ 2.3617 × 108 \ 37m28s 

Table 10 shows that the SAVLRseq is able to find the solution much faster than using SAVLR alone with 
comparable quality.  The profile of generation output from conventional generators, wind power, BESS 
discharging, and load shedding are shown in Figure 23. Figure 23 shows that the power generation is 
again mainly from conventional generators and wind power, and contribution to the total generation 
from the BESSs is very small and, therefore, can hardly be seen in the figure. There is no load shedding 
needed in this situation. The results also indicate that the combined SAVLR and rolling horizon approach 
has a great potential to be applied to large-scale systems.  
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Figure 23: Figure 4. Results for one-year planning with ESS for frequency support 

6.3.3.3. Scalability Study in the 2,383-bus Polish System: 24-hrs Planning Problem  

Similar to the study using the IEEE 118-bus system, we first applied the original SAVLR to solve a 24-hrs 
planning problem for the Polish system. The optimization result for the Polish system was successfully 
obtained by using the SAVLR and is described below.  

The total costs are $5.1747 × 107. The upper bound of each BESS’ maximum charging/discharging power 
is set to 1,050 MW.  The investment results are the deployment of 1,000.50 MW at bus 180, 960.70 MW 
at bus 1016, and 1,050 MW at bus 681, respectively. The 24-hour profile of generation output from the 
conventional generators, wind power, BESS discharging, and load shedding is shown in Figure 24. Figure 
24 again shows that the power generation is mainly from conventional generators and wind power, the 
contribution of BESSs is insignificant, and load shedding is zero. The results are consistent with the findings 
in the case study of the IEEE 118-bus system. The discharging power from the BESSs is not much due to 
need to be ready for providing the frequency support.  
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Figure 24: Results for 24-hrs planning with ESS for frequency support. 

6.3.3.4. Scalability study in the 2,383-bus Polish system: One-year planning problem  

As proved by the test in the IEEE 118-bus system, directly solving the long-term planning problem for a 
large-scale system would be time-consuming and often impossible. For example, for the one-month 
planning problem, it needs 28.52GB of memory to store the transmission capacity constraints only. 
Therefore, it is impossible to solve the one-year planning problem on a PC.  Even the original SAVLR cannot 
find the solution given a long-term planning problem of a relatively large system due to the limited 
memory. By combining the SAVLR and the rolling-horizon approach, the solution can be obtained within 
51 hours using a 48-hour interval, as summarized in Table 11.  

Table 11: Comparison of different solutions for the one-year planning problem in Polish system. 

Method Lower bound Feasible cost Lower bound 
finding time 

Solution time 

Branch-and-cut \ \ \ \ 
SAVLR \ \ \ \ 

SAVLR + Rolling-horizon \  1.7896 × 1010 \ 50h43m02s 

The results in Table 11 verify that only the SAVLRseq approach can solve this one-year planning problem 
for the Polish system.  

Due to the unavailability of utility system planning model, the combined SAVLR and rolling horizon 
approach has not been tested to large systems. However, based on the studies we performed so far, we 
are confident that the model and the solution developed in this project can be applied to long-term 
planning for utility-scale systems.  
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7. Conclusions and Future Work  
In this project, we developed a scalable methodology and a practical tool that can be used by utilities to 
perform UC-based ESS planning and operation to guarantee a reliable and secure operation of large-scale 
power systems by satisfying various constraints, including those related to frequency dynamics, under 
high uncertainties associated with the continually increasing renewables.  

Two closely connected topics were studied in this project, i.e., sizing of ESSs considering constraints such 
as frequency responses under high penetration of renewables and stochastic operation optimization of 
ESSs accounting for SOC and intermittence of renewable generation and the increasing load uncertainties 
due to, e.g., behind-the-meter renewables (e.g., rooftop PVs). The frequency response-based ESS sizing 
and stochastic optimization-based operation ensure the frequency stability and reliability of the system 
via the efficient operation of ESSs together with other units in the grid. The study was enabled by the 
development and implementation of an innovative scalable stochastic optimization method, which 
consists of more realistic uncertainty modeling, constraint tightening, a decomposition and coordination 
based SAVLR that can be combined with an ordinal optimization and a rolling horizon approach, to solve 
MILP problems including utility-scale UC problems. 

The study shows the critical role that ESSs play in improving system reliability and stability by providing 
inertia support in low inertia conditions, especially under intermittent wind generation. ESSs also provide, 
to a lesser extent, peak shaving and reserve services to improve the economic efficiency of grid operation. 
This study is an important step to economic accommodation of more renewable generation via the 
assistance of ESSs while maintaining stability of the grid dynamics under various disturbances and 
uncertainties. 

The major contributions of this study include: 

i. Development of the Markovian approach-based model and RFT-based approach for a more 
realistic representation of wind generation related uncertainties that are suitable for ESS 
operation and planning studies by considering both spatial and temporal evolutions of wind speed 
information 

ii. Performance of a systematic constraint tightening approach that may significantly simplify the 
computational requirements to solve MILP problems  

iii. Refinement of a scalable Surrogate Absolute-Value Lagrangian Relaxation method that can be 
easily scaled up for large systems via a decomposition and coordination approach 

iv. Development of rolling horizon-based concept that can be used together with the SAVLR to create 
the SAVLRseq approach that enables practical solutions to long-term planning problems without 
requiring high performance computing (HPC) facilities 

v. Introduction of an ordinal-optimization (OO) concept to approximately solve a Markovian 
subproblem in ESS operation via simplified models with much reduced complexity while 
maintaining the quality of the overall solution 

vi. Implementation of the SAVLR and SAVLRseq in an open-source, modular, and flexible tool that is 
readily used for solving utility-scale UC problems.  

vii. An initiation of the development of an innovative integrated mathematical optimization and 
machine learning (ML) method, i.e., a ML-assisted SAVLR or ML-SAVLR, to address the complexity 
of the optimal planning and operation.   
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The methodology and the tools developed have been successfully applied in this study to perform 
frequency dynamics constrained ESS sizing and operation using two example systems, i.e., the IEEE 118-
bus system and the 2,283-bus Polish system. ESSs are demonstrated to provide valuable grid inertia 
support, and, to a lesser extent, peak shaving and reserve services to improve the economic efficiency of 
grid operation.  

A number of conclusions and insights has been achieved in the study: 

i. Responsive ESSs play a critical role in improving the stability and reliability by providing frequency 
support in low inertia conditions, especially under intermittent wind generation. 

ii. Without deployment of ESSs, load shedding may be unavoidable due to intermittency when the 
penetration level of the wind generation is high, even without generator outages. This is mainly 
because of the insufficient fast generation for provisioning the frequency support. 

iii. Realistic uncertainty modeling must be performed by not only considering the spatial and 
temporal correlations of environmental conditions such as wind speed, precipitation, solar 
irradiance, temperature, but also the trend of the variations in these conditions. The RFT-based 
and the Markovian approaches are capable of capturing the correlations and trend of the weather 
conditions and the renewable generation profiles. 

iv. When considering the frequency constraints including frequency nadir, rate of change of 
frequency, and quasi-steady-state frequency responses, the complexity of the UC based ESS 
planning and operation problems increases tremendously. 

v. Solving the frequency dynamics constrained UC problems for ESS planning and operation is 
beyond the capability of the existing stochastic optimization methods except the SAVLR and 
SAVLRseq developed in this study. 

Additional studies are identified and presented here. 

i. Popular battery technology-based energy storage systems are considered in this study. The 
methodology and the tools developed can be further extended to evaluate ESSs of different 
technologies such as flywheel, pump hydro, supercapacitor.  

ii. The frequency constraints related to frequency nadir, RoCoF, and QSS were derived based 
aggregated system wind equations and are actually conservative, which will lead to 
conservativeness in the investment and installation of ESS capacities. This can be further 
investigated and improved in the future studies.  

iii. The ESS planning and operation studies can be investigated by further considering the solar 
generation as well as the possible correlation between wind and solar resources.  

iv. The SAVLR and SAVLRseq tools can be further tested by applying to the planning and operation of 
ISO-scale systems. 

v. The ML-assisted SAVLR method will be continually developed and further enhanced by developing 
a distributed and asynchronous version and extending the theoretical results from centralized 
coordination to distributed coordination while aiming at large-scale implementation. 

It should also be noted that the methodology and tool developed are not limited to ESS planning and 
operation problems. They can also be tailored and used for solving generic stochastic optimization 
problems. The study in this project is an important step for economically and reliably accommodating 
more renewable generation via the assistance of ESSs while maintaining stability of the grid dynamics 
under various disturbances and uncertainties.  
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