

An Investigation and Implementation of Quantification

Methods for Probabilistic Contingency Analysis

Prepared for the U.S. DOE Office of Electricity

Advanced Grid Modeling (AGM) Program

Program Manager: Dr. Alireza Ghassemian

by

Meng Yue1, Guilherme Larangeira2, Feng Dong3, and Robert Lofaro1

1Interdisciplinary Science Department, Brookhaven National Laboratory
2Department of Society and Technologies, Stony Brook University

3Siemens PTI

September 30, 2020

i

Table of Contents

Acronyms ... iv

Executive Summary .. v

1. Introduction .. 1

2. Survey of Quantification Methods for Contingencies ... 4

2.1 Rare Event Approximation ... 4

2.2 Minimal Cut set Upper Bound ... 5

2.3 Cut set Probability Truncation ... 5

2.4 Binary Decision Diagram .. 6

2.4.1 Shannon Decomposition and ITE Connectives .. 6

2.4.2 Graphic Representation of BDDs ... 6

2.4.3 Qualitative and Quantitative BDD Analyses.. 9

3. System Reliability Indexes Calculation in PCA .. 12

3.1 Calculation of System Problem Probability in PCA ... 12

3.2 Calculation of Problem Frequencies and Durations in PCA .. 12

3.2.1 Single Grid Component Outages .. 12

3.2.2 Higher Order Component Outages .. 14

3.3 Exact Quantification of System Problem Indexes ... 16

3.3.1 System Problem Indexes Based on a Full Markov Model ... 16

3.3.2 System Problem Indexes Based on Contingency List .. 18

4. Implementation of PCA Quantification Methods ... 22

4.1 Existing Open-source BDD Software Packages .. 22

4.2 A Recursive Algorithm for BDD Quantification ... 23

4.3 Scalable Implementation of Recursive BDD Quantification ... 24

4.4 Input Files ... 25

4.5 Comparing Exact and Approximate Methods ... 25

5. Summary ... 29

References .. 30

Appendix A: Example Input Files for Quantification Demonstration ... 32

ii

Table of Figures:

Figure 1: The BDD structure of 𝑓𝑓 = 𝑥𝑥. ... 7
Figure 2: A possible BDD structure of an AND gate. ... 7
Figure 3: A possible BDD structure of an OR gate. .. 7
Figure 4: A possible BDD structure of 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎(𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑𝑑𝑑). .. 8
Figure 5: A BDD structure of 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥3. ... 11
Figure 6: A Two-state Markov Model for Component A Outage. ... 13
Figure 7: A Markov Model for Component A and B Outages. .. 14
Figure 8: A Markov Model for Component A, B, and C Outages. ... 15
Figure 9: A full Markov model for a system consisting of 𝑴𝑴 components (repairs not modeled). 17
Figure 10: Transitions of an example state. .. 20
Figure 11: Pseudo-code for the recursive quantification algorithm. ... 24
Figure 12: Reproduced BDD for 𝑻𝑻𝑻𝑻𝑻𝑻 = 𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐 + 𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏𝒙𝒙𝟑𝟑 .. 25
Figure 13: The cut sets file snippet on the left and its Boolean equivalent on the right. 25
Figure 14: A BDD diagram for 50 contingencies .. 27

iii

Table of Tables:

Table 1: Selection criteria for BDD software tool ... 22
Table 2: Comparison of system problem index calculation .. 28

iv

Acronyms

BDD Binary Decision Diagram

CMO Common Mode Outage

IIO Intermittency Induced Outages

ITE If-Then-Else

MCUB Minimum Cut set Upper Bound

MCS Minimum Cut set

NPP Nuclear Power Plant

PCA Probabilistic Contingency Analysis

PRA Probabilistic Risk Assessment

SDP Sum of Disjoint Products

v

Executive Summary
This report summarizes the follow-up study for the project “Develop Risk-Informed Decision-Making
Capability using Electric Power Industry Standard Planning Tools as Platform.” In this extended study, BNL
investigated and implemented a list of methods that can be used for better quantifying the reliability
indexes in a probabilistic contingency analysis (PCA). These methods will be used with planning tools such
as the Power System Simulator for Engineering (PSS/E) software tool used by power system planning
engineers to simulate electrical power transmission networks. The implementation creates a standalone
application that takes a list of contingencies that cause system problems and the outage rates and
durations of the single outages generated by PSS/E and quantifies the system problem indexes using both
approximation and exact methods.

This report first discusses the probability quantification methods, which are mainly borrowed from the
practices in probabilistic risk assessments (PRA) that have been mandated and exercised for nuclear
power plants (NPPs) for decades. In nuclear PRA, a fault tree/event tree approach [Vesely 1981, Russell
1993] is almost exclusively used. After processing event trees and fault trees, a set (usually a large set) of
minimal cut sets are obtained and quantified to acquire the top event probability, as well as the associated
uncertainties based on the distributions of the parameters for the basic events.

Assuming knowledge of the probabilities of individual outage events, quantification of the minimum cut
sets is essentially the same as quantification of contingencies of different orders in a PCA. The BNL study
focuses on existing quantification methods being used in nuclear PRA. It shows that while the rare event
approximation has been frequently used in PCA, another method, called min cut upper bound (MCUB),
enhances the quantification accuracy and is a better approximation. In addition, a binary decision diagram
(BDD) approach [Bryant 1986] that can calculate the exact probabilities of the minimal cut sets has
received much attention in recent years. The BDD diagram is briefly reviewed to understand its basics and
is considered another potential candidate for PCA quantification.

Second, the report investigates the calculation of the probabilities, frequencies, and durations of
component outage events in PCA studies. For the high order contingencies (double or triple
contingencies), the discussion focuses on how to calculate the frequencies and duration times using the
Markov model and the cut sets. An exact quantification scheme for the system problem reliability indexes
based on the full Markov model is discussed. Alternatively, quantification of system problem reliability
indexes based on the cut sets using either approximation methods, such as the rare event or MCUB
approximation, or an exact method, i.e., BDD, is discussed. The major challenge is the need to include
common mode failures or outages (CMOs). This challenge and how to address the challenge are also
discussed in detail.

Finally, a Python implementation of the investigated PCA quantification methods was performed and a
comparison study of PCA system problem probabilities calculated using different methods was conducted
to show that the developed quantification module can be a standalone application and part of the
enhanced PCA tool developed in [Yue 2019]. The Python quantification module takes a list of
contingencies generated by PSS/E that cause system problems and the outage rates and durations of
single outages, and quantifies the probability, frequency, and duration of the system problems.

In a summary, the major contributions of this study are:

vi

(1) Identification of the quantification issues with the existing methods being used in PCA software
tools;

(2) Introduction of the MCUB for improved approximation and Markov model and BDD method for
exact calculation of system problem probabilities;

(3) Extension and development of the Markov model and BDD methods for quantifying the system
problem frequencies and duration;

(4) Investigation of the Markov model approach for the PCA quantification;
(5) Implementation of the proposed MCUB and BDD methods in a Python package, which can be a

standalone package or incorporated in the ePCA tool that was developed and delivered in the
original project.

A comparison study was performed, which shows that:

(1) Both rare event and MCUB produce conservative results in terms of total probability and duration
time while the BDD method can provide exact solutions;

(2) The results using MCUB, although still conservative, appear much less conservative than the
results from the rare event approximation;

(3) The BDD method is more time consuming than the rare event and MCUB approximation but
appear manageable and can be a feasible approach for the PCA quantification.

The Python-based PCA quantification package interfaces with the contingency analysis tool by taking the
list of contingencies contributing to the system problems and outage statistics to quantify the system
problem indexes and will significantly increase the capabilities of the existing PCA tools.

The enhanced PCA or ePCA tool has been developed with state-of-the-art capabilities by developing and
incorporating a new modeling method for renewable generation, which enables inclusion of solar
generation in the PCA by considering its correlation with wind. Future work may include the development
of a user-friendly interface and post-processor to create load duration points from each case studied, then
interpolate and/or extrapolate among these points to have an approximated load duration curve that can
be overlaid by the calculated unserved energy using the same approach. In addition, a case study can be
performed using the latest ePCA tool together with NERC guidelines and renewable generation data by
considering both solar and wind generation in a real utility system.

1

1. Introduction
In July 2019, BNL completed the original scope of work for the DOE/AGM project titled “Develop Risk-
Informed Decision-Making Capability using Electric Power Industry Standard Planning Tools as Platform.”
In this study, a probabilistic contingency analysis (PCA) framework was developed for addressing
intermittency induced outages (IIOs) and common mode IIOs associated with wind generation. The
probabilistic contingency analysis framework developed is a Python-driven program that can be used with
the Power System Simulator for Engineering (PSS/E) software tool used by power system engineers to
simulate electrical power transmission networks. A number of case studies were performed and the final
deliverables were completed [Yue 2019].

The original study provided a number of important insights related to probabilistic contingency analyses,
including the following:

• The study showed that data poolability is indeed an issue that needs to be resolved first before
performing a PCA. As shown in this study, outage data for many different types of grid
components cannot be pooled and their statistics need to be described by distributions.

• The results also showed that a majority of outage data from conventional generators can be
pooled. For the rest of conventional generators, the distributions of their outage statistics are
relatively narrow compared to other grid components. These results also are an indicator that
environmental conditions have significant impacts on grid component outages.

• Based on the analyses of actual renewable generation data, the results showed that generation
of a single wind farm can ramp up and down within a very short time period (i.e., tens of minutes).
In addition, this type of ramping event can happen concurrently for multiple wind farms and can
cause more significant impacts on grid operation. The impacts can be similar to conventional
generator outages, and such fast ramps should be considered as outages.

• Case studies performed in this project showed that Monte Carlo simulations implemented in the
enhanced PCA are capable of computing the true mean values and providing statistics of system
problem indices. This will provide valuable information for developing mitigation actions in the
planning process.

• Increasing penetration levels of wind generation would definitely have increasingly larger, but
different impacts on grid reliability. Due to the nature of outages related to intermittency of
renewable generation, the system problem frequencies would increase and the durations will
decrease.

As a follow-up to the original project scope, an additional study was performed to further refine the
enhanced PCA tool. The PCA built into existing software, including PSS/E, calculates probabilistic indices
of system problems approximately based on a rare event approximation. When the probabilities of
contingencies are relatively large, the rare event approximation can no longer be used, and calculated
probabilities may deviate significantly from the real values, or even be larger than 1.0, which was observed
in the studies performed in [Yue 2019]. This is especially true for higher order contingencies since they
are not mutually exclusive. Theoretically, the total probability can only be calculated exactly using the
inclusion-exclusion principle, which may be difficult because large computational efforts are required
when the number of contingencies is large. A new quantification scheme is needed and was developed to
more precisely calculate the probabilistic indices in the PCA.

2

This report summarizes the results of the follow-up study for the project “Develop Risk-Informed Decision-
Making Capability using Electric Power Industry Standard Planning Tools as Platform.” In this extended
study, BNL investigated and implemented a list of methods that can be used for better quantifying the
reliability indexes in the PCA. The implementation creates a standalone application that takes a list of
contingencies that cause system problems and the outage rates and durations of the single outages
generated by PSS/E and quantifies the system problem indexes using both approximation and exact
methods.

This report first discusses the probability quantification methods, which are mainly borrowed from the
practices in probabilistic risk assessment (PRA) that have been mandated and exercised for nuclear power
plants (NPPs) for decades. In nuclear PRA, a fault tree/event tree approach [Vesely 1981, Russell 1993] is
almost exclusively used. After processing event trees and fault trees, a set (usually a large set) of minimal
cut sets1 are obtained and quantified to acquire the top event2 probability, as well as the associated
uncertainties based on the distributions of the parameters for the basic events.

Assuming knowledge of the probabilities of individual outage events, quantification of the minimum cut
sets is essentially the same as quantification of contingencies of different orders in PCA. The BNL study
focuses on existing quantification methods being used in nuclear PRA. It shows that while the rare event
approximation has been frequently used in PCA, another method, called min cut upper bound (MCUB),
enhances the quantification accuracy and is a better approximation. In addition, a binary decision diagram
(BDD) approach [Bryant 1986] that can calculate the exact probabilities of the minimal cut sets has
received much attention in recent years. The BDD diagram is briefly reviewed to understand its basics and
is considered another potential candidate for PCA quantification.

Second, the report investigates the calculation of the probabilities, frequencies, and durations of
component outage events in PCA studies. For high order contingencies (double or triple contingencies),
the discussion focuses on how to calculate the frequencies and duration times using the Markov model
and the cut sets. An exact quantification scheme of the system problem reliability indexes based on the
full Markov model is discussed. Alternatively, the quantification of system problem reliability indexes can
also be performed based on the cut sets using either approximation methods such as rare event or MCUB
approximation or exact method, i.e., BDD, is discussed presented. The major challenge is the need to
include common mode failures or outages (CMOs). This challenge and how to address the challenge are
also discussed in detail.

Finally, a Python implementation of the investigated PCA quantification methods was performed and a
comparison study of PCA system problem probabilities calculated using different methods was conducted
to show that the developed quantification module can be a standalone application and part of the
enhanced PCA tool developed in [Yue 2019]. The Python quantification module takes a list of
contingencies that causes system problems, which are generated by PSS/E, and the outage rates and

1 A minimal cut set is the smallest combination (sufficient) of component failures or basic events which, if they all
occur, will cause the top event to occur.
2 In nuclear PRA, a top event indicates an undesirable event such as reactor core damage. In contingency analysis for
power grid, the counterpart of a top event can be the loss of load or a voltage violation issue, and the cut sets are
the contingencies that cause such a loss of load or voltage issue. Therefore, in this report, top event and system
problem and cut sets and contingencies will be used interchangeably.

3

duration of single outages, and quantifies the probability, frequency, and duration of the system
problems.

4

2. Survey of Quantification Methods for Contingencies

2.1 Rare Event Approximation

The Sylvester-Poincare development [Russell 1993] (or inclusion-exclusion principle) computes the exact
probability of a union of basic events {𝐸𝐸𝑖𝑖 , 𝑖𝑖 = 1,2,⋯ ,𝐾𝐾}:

𝑃𝑃(𝐸𝐸1 ∪ 𝐸𝐸2 ∪ ⋯∪ 𝐸𝐸𝐾𝐾) = ∑ 𝑃𝑃(𝐸𝐸𝑖𝑖)1≤𝑖𝑖≤𝐾𝐾 − ∑ 𝑃𝑃�𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸𝑗𝑗�1≤𝑖𝑖<𝑗𝑗≤𝐾𝐾 + ∑ 𝑃𝑃�𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸𝑗𝑗 ∩ 𝐸𝐸𝑘𝑘�1≤𝑖𝑖<𝑗𝑗<𝑘𝑘≤𝐾𝐾 −
 ⋯+(−1)𝐾𝐾𝑃𝑃(𝐸𝐸𝑖𝑖 ∩ ⋯∩ 𝐸𝐸𝐾𝐾) (1)

This is well-known but can be intractable for a large number of events. One commonly used method to
deal with this issue is to use the rare event approximation that ignores the simultaneous occurrences of
two or more rare events. The rare event approximation is actually the first term of Equation (1), i.e.,

 𝑃𝑃(𝐸𝐸1 ∪ 𝐸𝐸2 ∪ ⋯∪ 𝐸𝐸𝐾𝐾) = ∑ 𝑃𝑃(𝐸𝐸𝑖𝑖)1≤𝑖𝑖≤𝐾𝐾 (2)

It is noted that the rare event approximation in Equation (2) is the upper bound of the probability while
the lower bound is given by the first two terms, i.e.,

𝑃𝑃(𝐸𝐸1 ∪ 𝐸𝐸2 ∪ ⋯∪ 𝐸𝐸𝐾𝐾) = � 𝑃𝑃(𝐸𝐸𝑖𝑖)
1≤𝑖𝑖≤𝐾𝐾

− � 𝑃𝑃�𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸𝑗𝑗�
1≤𝑖𝑖<𝑗𝑗≤𝐾𝐾

which is also called the Boole-Bonferroni bound [Russell 1993]. Such a rare event approximation can be
very conservative, especially when the probabilities of the basic events are relatively large (e.g., > 10−1)
and/or the number of basic events is very large. Sometimes, the total probability calculated using the rare
event approximation can be larger than 1.0 [Epstein 2005].

The Sylvester-Poincare development can also be applied to the probability of a union of cut sets by
replacing the basic events with cut sets. In nuclear PRA, the quantification of minimal cut sets also relies
on a rare event approximation due to the huge number of cut sets [Russell 1993]. Assume that a Boolean
formula for a top event 𝑇𝑇𝑇𝑇𝑇𝑇 is represented by the sum of a set of minimal cut sets, i.e.,

𝑇𝑇𝑇𝑇𝑇𝑇 = � 𝜋𝜋
𝜋𝜋∈𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇]

The probability of the top event 𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) is:

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = ∑ 𝑃𝑃(𝜋𝜋𝜋𝜋∈𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇]) (3)

where 𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇] indicates the cut sets of the top event 𝑇𝑇𝑇𝑇𝑇𝑇. Each of the minimal cut sets may consist of
a combination of component failures, e.g., a generator outage and a transmission line outage. Replacing
basic events 𝐸𝐸𝑖𝑖 in Equations (2) and (3) will also lead to the upper bound and lower bound of the top
event. Again, the rare event approximation can generate very conservative results here.

In PCA, the probability quantification of a system reliability index can be represented by Equation (3) in
the same way. The top event is actually one of the system problems, such as loss of load, voltage violation,
or overloading, while a cut set 𝜋𝜋 is a single order or high order contingency, such as a combination of
Generator A trip and Line C outage. The set 𝑀𝑀𝑀𝑀𝑆𝑆[𝑇𝑇𝑇𝑇𝑇𝑇] indicates the collection of such contingencies that
caused the specific system problem. Each of the single order outages is characterized by its outage rate
and duration time, i.e., the time to repair. Therefore, solving for the probabilities of system problems in

5

PCA is essentially the same as for the top events. Actually, the rare event approximation method is the
most commonly, if not exclusively, used in PCA of the existing software tool. Other top event
quantification methods will be investigated below to address the conservativeness of the rare event
approach.

2.2 Minimal Cut set Upper Bound

Calculating the minimal cut set upper bound (MCUB) [Esary 1970] is another approximation that is better
than the rare event approximation in Equation (2). MCUB, also a first order approximation, has been often
used in practice and the total probability will never exceed 1.0 [Russell 1993], unlike the rare event
approximation. Since the top event is the sum (Boolean) of the minimal cut sets,

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃(𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

 = 1 − 𝑃𝑃(𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

It is also true that

 𝑃𝑃(𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ≥ ∏ 𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝐾𝐾
𝑖𝑖=1 (4)

where 𝐾𝐾 is the total number of cut sets for the top event. Equality in Equation (4) holds only when
Equation (1) events are independent and no event occurs in more than one cut set. Therefore, for
𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = ∑ 𝑃𝑃(𝜋𝜋𝜋𝜋∈𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇]) = ∑ 𝑃𝑃(𝜋𝜋𝑖𝑖)𝐾𝐾

𝑖𝑖=1 , the MCUB is given by

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 1 −∏ (1 − 𝑃𝑃(𝜋𝜋𝑖𝑖))𝐾𝐾
𝑖𝑖=1 (5)

If the equality in Equation (4) holds, then Equation (5) gives the exact top event probability without any
approximation, which is usually not the case in practice. In a nuclear PRA, the MCUB works well for
quantification of fault trees of coherent systems, i.e., with only AND and OR gates and without
complemented events or NOT gates. Generally,

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

is true. The simplicity and less conservativeness of MCUB approximation makes it an attractive candidate
for the PCA quantification.

2.3 Cut set Probability Truncation

This is almost always used in nuclear PRA and, indeed, is very straightforward, i.e., the cut set of a
probability lower than a pre-defined threshold will be excluded from the top event probability
quantification [Vesely 1981, Russell 1993]. The rationale behind this is that the probabilities of some cut
sets are too small to have a significant impact on the final result. However, one has to be aware that the
number of the omitted cut sets can be huge, and the total contribution of these omitted cut sets can be
fairly large. The selection of the threshold is a trade-off between the tolerance and the computational
resources.

6

2.4 Binary Decision Diagram

2.4.1 Shannon Decomposition and ITE Connectives

While the above approximation methods make it practical for quantifying the complicated event tree and
fault tree in PRA, they also overestimate the results in many cases [Epstein 2005]. An alternative cut set
quantification method is the so-called binary decision diagram or BDD [Bryant 1986]. The BDD of a
Boolean formula is a compact encoding of the truth table of the formula and, therefore, can provide the
exact values of the probabilistic measures without any approximation. The BDD development is based on
the Shannon Decomposition [Bryant 1986, Rauzy 1997]

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) = 𝑥𝑥1 ∩ 𝑓𝑓(1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) ∪ 𝑥̅𝑥1 ∩ 𝑓𝑓(0, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) (6)

Or simply as

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) = 𝑥𝑥1𝑓𝑓(1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) + 𝑥̅𝑥1𝑓𝑓(0, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) (7)

where 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛, is a Boolean variable and 𝑓𝑓 is a Boolean function. 𝑥̅𝑥 means “NOT 𝑥𝑥”. Note that
the two terms in the right side of either Equation (6) or Equation (7) are mutually exclusive.

Any Boolean operators or connectives (e.g., AND, OR, XOR) can be represented by a so-called ITE
connective or if-then-else connective [Rauzy 1993], which is by definition:

𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓,𝑔𝑔, ℎ) = 𝑓𝑓 ∩ 𝑔𝑔 ∪ 𝑓𝑓̅ ∩ ℎ

 = 𝑓𝑓𝑓𝑓 + 𝑓𝑓ℎ̅

The ITE connective means that, if the first argument holds, then return the second argument; otherwise,
the third argument.

The Shannon decomposition in Equation (6) can be represented by the ITE connectives as:

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 𝑓𝑓(1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛), 𝑓𝑓(0, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛))

It can be easily seen that a top event 𝑓𝑓 = 𝑥𝑥 can be represented by 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 1,0)= 𝑥𝑥 ∙ 1 + 𝑥̅𝑥 ∙ 0, which means
that if 𝑥𝑥 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑥𝑥 = 1), then 𝑓𝑓 = 1. Otherwise, 𝑓𝑓 = 0. I.e.,

𝑓𝑓 = 𝑥𝑥 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 1,0) (8)

Any basic events can be represented by the ITE connective, as shown in Equation (8). The Shannon
decomposition lays the foundation for the BDD.

2.4.2 Graphic Representation of BDDs

Figure 1 shows the structure of a graphical representation of the BDD for simple function 𝑓𝑓 = 𝑥𝑥 in
Equation (8). 𝑥𝑥 is the only variable and also the top (root) node or the vertex. Nodes “1” and “0” are leaf
nodes. The leg to the then branch (or 1-branch) in Figure 1 is called the AND-leg while the one to the else
branch (or 0-branch) is called the OR-leg [Way 2000], as suggested by the ITE structure.

7

Figure 1: The BDD structure of 𝑓𝑓 = 𝑥𝑥.

For an event 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑥𝑥1𝑥𝑥2, a possible ITE connective representation can be 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 1,0), 0)
by taking the order 𝑥𝑥1 < 𝑥𝑥2, where 𝑥𝑥1 < 𝑥𝑥2 means that node 𝑥𝑥1 is closer to the root node than 𝑥𝑥2. A BDD
structure for the ITE connective representation of this top event is shown in Figure 2.

Figure 2: A possible BDD structure of an AND gate.

And for an event 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑥𝑥1 + 𝑥𝑥2, a possible ITE connective representation can be 𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 1,0)) and the corresponding BDD structure can be seen in Figure 3.

Figure 3: A possible BDD structure of an OR gate.

The examples in Figures 2 and 3 provide an intuitive understanding of why the legs to the left and right in
a BDD are called AND-leg and OR-leg, as shown in Figure 1.

𝑥𝑥2 0

1 0

𝑥𝑥

1 0

𝑥𝑥2 1

1 0

𝑥𝑥1

AND-leg OR-leg

𝑥𝑥1

8

By using the notation of AND leg and OR leg in Figure 1, [Way 2000] proposed a method for developing
BDDs. If the logical connective between variables 𝑥𝑥1 and 𝑥𝑥2 is AND, then 𝑥𝑥2 can be simply connected to
the left leg (AND-leg or 1-branch) of 𝑥𝑥1. Otherwise, 𝑥𝑥2 is connected to the right leg (OR-leg or 0-branch)
of 𝑥𝑥1. This can be easily verified by inspecting Figures 2 and 3. In Figure 2, only when 𝑥𝑥1 and 𝑥𝑥2 are both
1 (true), then the top event is 1. In Figure 3, if 𝑥𝑥1 or 𝑥𝑥2 is 1, then the top event is 1. This can be extended
to another more complicated example. For example, a top event 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎(𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑𝑑𝑑) can be easily
translated into the BDD structure [Way 2000] shown in Figure 4:

Such a BDD construction method is more applicable for logical operations with only a single descendent
[Way 2000]. In practice, the construction of a BDD is usually done by applying the Shannon Decomposition
principle in Equation (8) recursively based on operation of ITE connectives [Rauzy 1993, Sinnamon 1996],
i.e.,

Figure 4: A possible BDD structure of 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎(𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑𝑑𝑑).

For 𝑥𝑥 ≠ 𝑦𝑦, let 𝐽𝐽 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝐺𝐺1,𝐻𝐻1) and 𝐾𝐾 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑦𝑦,𝐺𝐺2,𝐻𝐻2), then:

𝐽𝐽 < 𝑜𝑜𝑜𝑜 > 𝐾𝐾 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝐺𝐺1 < 𝑜𝑜𝑜𝑜 > 𝐾𝐾,𝐻𝐻1 < 𝑜𝑜𝑜𝑜 > 𝐾𝐾) (9)

For 𝑥𝑥 = 𝑦𝑦, let 𝐽𝐽 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝐺𝐺1,𝐻𝐻1) and 𝐾𝐾 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝐺𝐺2,𝐻𝐻2), then:

𝐽𝐽 < 𝑜𝑜𝑜𝑜 > 𝐾𝐾 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1,𝐺𝐺1 < 𝑜𝑜𝑜𝑜 > 𝐺𝐺2,𝐻𝐻1 < 𝑜𝑜𝑜𝑜 > 𝐻𝐻2) (10)

where < 𝑜𝑜𝑜𝑜 > represents any Boolean operations of the logic connectives such as AND and OR.

By doing so, one can rewrite any Boolean function as an equivalent one that is built only with variables,
connectives ITE, and Boolean constants 0 and 1.

1

0

1

0 𝑏𝑏

𝑐𝑐

𝑑𝑑

1

𝑎𝑎

𝑒𝑒

0

𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎

9

Note that there can be multiple ITE connective representations for a single formula, e.g., if the order of
variables is changed, then different ITE representations can be obtained.

2.4.3 Qualitative and Quantitative BDD Analyses

In terms of qualitative and quantitative analyses of the top event, i.e., identification and quantification of
the cut sets, it is also very straightforward after acquiring the BDD representation of a top event. Since
each path from the top or vertex of the BDD defines a solution to the Boolean representation, the cut set
of the fault tree can be obtained by tracing from the top node to a leaf node “1”. The paths include only
the basic events that lie on the “1” branch on the way to a leaf node “1”, i.e., 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 in Figure 4.

For the top event 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎(𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑𝑑𝑑), it is easy to tell that the cut sets are 𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎. If we trace to
the leaf nodes “1” of the top event BDD representation in Figure 4, we will see that the corresponding
paths are: 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎, and 𝑎𝑎𝑎𝑎𝑎𝑎, as indicated in the figure. Note that the path means that all the associated
events need to occur for the top event to occur, i.e., a path is a cut set. For example, the path 𝑎𝑎𝑎𝑎𝑎𝑎 means
that 𝑎𝑎, 𝑑𝑑, and 𝑒𝑒 all need to occur to lead to the top event. However, the paths in the BDD are disjoint and
the sum of probabilities of the paths is the exact probability of the top event.

In the calculation of the cut set probability, the basic events that lie on the 0 branch or OR-leg need to be
included to count the probabilities that these event do not happen, i.e., 𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃�𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑏𝑏�𝑐𝑐 +
𝑎𝑎𝑏𝑏�𝑐𝑐̅𝑑𝑑𝑑𝑑� = 𝑃𝑃(𝑎𝑎𝑎𝑎) + 𝑃𝑃�𝑎𝑎𝑏𝑏�𝑐𝑐� + 𝑃𝑃�𝑎𝑎𝑏𝑏�𝑐𝑐̅𝑑𝑑𝑑𝑑�, i.e.,

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃(𝑎𝑎)𝑃𝑃(𝑏𝑏) + 𝑃𝑃(𝑎𝑎)�1 − 𝑃𝑃(𝑏𝑏)�𝑃𝑃(𝑐𝑐) + 𝑃𝑃(𝑎𝑎)�1 − 𝑃𝑃(𝑏𝑏)��1 − 𝑃𝑃(𝑐𝑐)�𝑃𝑃(𝑑𝑑)𝑃𝑃(𝑒𝑒)

This is the exact probability of the top event and can be confirmed easily using the Sylvester-Poincare
development in Equation (1).

A BDD is generally difficult to be applied to a large-scale fault tree/event tree quantification because the
size of the BDD increases exponentially with the number of variables. However, it is less difficult to be
applied to coherent fault tree, i.e., (a) its structure function (Boolean function) is increasing (non-
decreasing) and (b) each basic event is relevant. A fault tree with only AND and OR connectives will be
coherent. A fast algorithm was developed for analyzing coherent fault trees in [Jung 2004]. In addition,
the size and optimality of BDDs are closely related to the ordering of the basic events when creating BDDs.
One way of dealing with this is to generate BDDs using the repeated basic events first, as discussed in
[Sinnamon 1996].

Considering the issue with the rare event approximation and the fact that only the AND and OR logical
operations are involved in the PCA quantification, the MCUB approach can be a better method, i.e., by
replacing the cut sets in Equation (4) with the individual contingencies of different orders.

For an example cut set or a sum of the contingencies, 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥3, if we assume that each
basic event or contingency has the same failure probability 𝑝𝑝, then the rare event approximation of the
top event gives that

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 3𝑝𝑝2

while the MCUB of the top event is

10

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 1 − (1 − 𝑝𝑝2)(1 − 𝑝𝑝2)(1 − 𝑝𝑝2)

 = 3𝑝𝑝2 − 3𝑝𝑝4 + 𝑝𝑝6

The exact probability of the top event can be calculated as

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃(𝑥𝑥1𝑥𝑥2) + 𝑃𝑃(𝑥𝑥2𝑥𝑥3) + 𝑃𝑃(𝑥𝑥1𝑥𝑥3) − 𝑃𝑃(𝑥𝑥1𝑥𝑥2 ∩ 𝑥𝑥2𝑥𝑥3) − 𝑃𝑃(𝑥𝑥1𝑥𝑥2 ∩ 𝑥𝑥1𝑥𝑥3) − 𝑃𝑃(𝑥𝑥2𝑥𝑥3 ∩ 𝑥𝑥1𝑥𝑥3)
+ 𝑃𝑃(𝑥𝑥1𝑥𝑥2 ∩ 𝑥𝑥2𝑥𝑥2 ∩ 𝑥𝑥1𝑥𝑥3)

 = 3𝑝𝑝2 − 2𝑝𝑝3

by using the Sylvester-Poincare development in Equation (1). Therefore, the MCUB result is obviously less
conservative than the rare event approximation.

In the PCA application, 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 can be outages of individual component outages, e.g., Line 1, Line
2, and Line 3 outages. The top event can be the system problems, i.e., over-/under-voltage, overloading,
a loss of load. Therefore, the physical meaning of the given top event can be an overvoltage issue caused
by the outages of any two of the three lines, Lines 1, 2, and 3.

The BDD approach can also be used to calculate the probability of the same example top event here. The
top event can be rewritten as 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑥𝑥1(𝑥𝑥2 + 𝑥𝑥3) + 𝑥𝑥2𝑥𝑥3, which can be represented by the ITE
connectives, if we use the order 𝑥𝑥1 < 𝑥𝑥2 < 𝑥𝑥3, as:

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 1,0)�𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 1,0) + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0)� + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 1,0)𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0)

 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 1,0)𝑖𝑖𝑖𝑖𝑖𝑖�𝑥𝑥2, 1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0)� + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0), 0)

 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0)),0) + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0), 0)

 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 𝑖𝑖𝑖𝑖𝑖𝑖�𝑥𝑥2, 1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0)� + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0), 0), 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0), 0))

 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 1, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0)), 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥2, 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥3, 1,0), 0)) (11)

In the above calculation, the operation rules of ITE connectives shown in Equations (9) and (10) are
repeatedly used. From Equation (11), the BDD representation of the top event can thus be shown in Figure
5:

1

1 0

𝑥𝑥1

𝑥𝑥1𝑥𝑥2

𝑥𝑥2 𝑥𝑥2

𝑥𝑥3 𝑥𝑥3

1 0 0 𝑥𝑥1𝑥𝑥3

𝑥𝑥2𝑥𝑥3

11

Figure 5: A BDD structure of 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑥𝑥1𝑥𝑥2 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥1𝑥𝑥3.

Figure 5 shows that the cut sets are 𝑥𝑥1𝑥𝑥2, 𝑥𝑥1𝑥𝑥3, and 𝑥𝑥2𝑥𝑥3 by enumerating the paths from the top node to
“1” leaf nodes. The probability of the top event is calculated by counting the probabilities of the events
that do and do not occur along the paths, i.e.,

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃(𝑥𝑥1𝑥𝑥2) + 𝑃𝑃(𝑥𝑥1𝑥̅𝑥2𝑥𝑥3) + 𝑃𝑃(𝑥̅𝑥1𝑥𝑥2𝑥𝑥3)

= 𝑝𝑝2 + 𝑝𝑝2(1 − 𝑝𝑝) + 𝑝𝑝2(1 − 𝑝𝑝)

= 3𝑝𝑝2 − 2𝑝𝑝3

which is apparently the exact solution of the top event without any approximation.

This simple case here is given only to illustrate the basic idea behind the rare event, MCUB, and BDD.
Computer code will be needed to deal with a large number of cut sets or contingencies that need to be
quantified. In addition, only the probability calculation is discussed. In PCA, system problem frequencies
and durations are also of interest. These issues will be further investigated below.

12

3. System Reliability Indexes Calculation in PCA

3.1 Calculation of System Problem Probability in PCA

Compared to the fault tree/event tree applications in a nuclear PRA, the quantification in a PCA is even
more straightforward since only basic logical operations AND and OR are involved and there is no need to
quantify the success branches that include negations [Epstein 2005]. In the PCA, the probabilities of
individual contingencies including single, double, triple, or even higher order contingencies that cause
system problems, i.e., voltage, overloading, or loss of load, need to be calculated separately and summed
to calculate the total probability of causing system problems.

From this perspective, the process is exactly the same as the quantification of the minimum cut sets in a
nuclear PRA. Currently, a rare event approximation is the most commonly used quantification method for
PCA applications. The truncation process is not very often used since the major barrier to a PCA is the
difficulty performing a contingency analysis, not the number of cut sets or contingencies, i.e., high order
contingencies makes it difficult to solve power flow and often lead to the divergency of power flow.
Usually, triple contingencies are only considered in very long-term planning activities. Therefore,
truncation process may be considered automatically in PCA.

3.2 Calculation of Problem Frequencies and Durations in PCA

The previous sections focused on quantification of the top event probabilities for the given collection of
cut sets (or contingencies) assuming that the probabilities of individual component outages are known.
In the PCA applications, the top event or system problem probabilities are only one type of the reliability
indexes that need to be calculated. Other indexes include system problem frequencies and duration times,
which will be further investigated in this section.

This section first investigates the calculation of the probabilities, frequencies, and durations of individual
component outages or single contingencies based on the state transitions in the Markov model. For the
high order contingencies (double or triple contingencies), the discussion focuses on how to calculate the
frequencies and duration times using the Markov model. The procedures for calculating the system
problem reliability indexes are presented. An exact quantification scheme of the system problem
reliability indexes based on the full Markov model is also discussed, although difficult to implement in
practice, especially in the presence of common mode failures or outages (CMOs).

3.2.1 Single Grid Component Outages

In existing probabilistic contingency analysis, almost every grid component outage is described using a bi-
state model, i.e., in-service (or up) and out-service (or down). A simple Markov model can be used to
describe the component A outage, as shown in Figure 6;

Up Dn
𝜆𝜆𝐴𝐴 𝜇𝜇𝐴𝐴

13

Figure 6: A Two-state Markov Model for Component A Outage.

The probabilities of Component A at Up and Dn states3 can be solved as:

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) =
𝜇𝜇𝐴𝐴

𝜆𝜆𝐴𝐴 + 𝜇𝜇𝐴𝐴
+ �1 −

𝜇𝜇𝐴𝐴
𝜆𝜆𝐴𝐴 + 𝜇𝜇𝐴𝐴

� 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)𝑡𝑡

 = 𝜇𝜇𝐴𝐴
𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴

+ 𝜆𝜆𝐴𝐴
𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴

𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)𝑡𝑡

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝜆𝜆𝐴𝐴
𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴

(1 − 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)𝑡𝑡) (12)

 Therefore, the stead state probabilities of the two states for Component A at Up and Dn states are:

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜇𝜇𝐴𝐴
𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴

, 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜆𝜆𝐴𝐴
𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴

where 𝜆𝜆𝐴𝐴 is the failure rate or outage rate of Component A and 𝜇𝜇𝐴𝐴 is the repair rate, or 𝜇𝜇𝐴𝐴 = 1
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

with 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 the duration time of Component A outage. Apparently, 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 1.0.

More generically, if a system with multiple states is observed for 𝑇𝑇 hours, 𝑇𝑇𝑖𝑖 hours are spent in state 𝑖𝑖,
and number of transitions from state 𝑖𝑖 to 𝑗𝑗 is 𝑛𝑛𝑖𝑖𝑖𝑖 during the period of observation, then the transition rate

from state 𝑖𝑖 to 𝑗𝑗 is given by 𝜆𝜆𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖

, and the steady-state probability of being at state 𝑖𝑖 is 𝑃𝑃𝑖𝑖 = 𝑇𝑇𝑖𝑖
𝑇𝑇

.

The concept of frequency 𝐹𝐹𝑖𝑖,𝑗𝑗 of encountering state 𝑗𝑗 from state 𝑖𝑖 is the expected (mean) number of
transitions from state 𝑖𝑖 to state 𝑗𝑗 per unit time, i.e.,

𝐹𝐹𝑖𝑖,𝑗𝑗 = 𝑛𝑛𝑖𝑖𝑖𝑖
𝑇𝑇

=
𝑛𝑛𝑖𝑖𝑖𝑖

𝑇𝑇𝑖𝑖�
𝑇𝑇
𝑇𝑇𝑖𝑖�

= 𝜆𝜆𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖 (13)

In the state transitions, the rule of frequency balance always holds, i.e., frequency of encountering a state
(or a subset of states) equals to the frequency of exiting from the state (or the subset of states). Therefore,
for the two-state component A outage model in Figure 6, the frequencies of encountering state Up and
state Dn should be the same, i.e., 𝐹𝐹𝑈𝑈𝑈𝑈,𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝐹𝐹𝐷𝐷𝐷𝐷,𝑈𝑈𝑈𝑈(𝑡𝑡). To simplify the notation, we let 𝐹𝐹𝑈𝑈𝑈𝑈,𝐷𝐷𝐷𝐷(𝑡𝑡) =
𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) and can be represented by 𝐹𝐹(𝑡𝑡). This together with Equation (13), we have

𝐹𝐹(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝜆𝜆𝐴𝐴 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝜇𝜇𝐴𝐴

Since 𝜇𝜇𝐴𝐴 = 1
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

, we have

 𝐹𝐹(𝑡𝑡 = 𝑇𝑇) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡=𝑇𝑇)
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 (14)

in the observation time 𝑇𝑇. Equation (12) and (14) are used to calculate the probability and the frequency
of Component A outage with the known outage duration time 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.

3 Sometimes the probability of the down state can be approximated by 𝑃𝑃𝐴𝐴𝐷𝐷𝐷𝐷(𝑡𝑡) = 𝜆𝜆𝐴𝐴𝑡𝑡. This needs to be used
cautiously since repairs may not be accounted for here.

14

3.2.2 Higher Order Component Outages

Similarly, for a double outage model of Component A and Component B, the Markov state transition
diagram is shown in Figure 7 below.

Figure 7: A Markov Model for Component A and B Outages.

Denoting 𝑃𝑃1 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵, 𝑃𝑃2 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵, 𝑃𝑃3 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵, and 𝑃𝑃4 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵, then we have

𝑑𝑑
𝑑𝑑𝑑𝑑
�

𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
𝑃𝑃4

� = �

−(𝜆𝜆𝐴𝐴 + 𝜆𝜆𝐵𝐵)
𝜆𝜆𝐴𝐴

𝜇𝜇𝐴𝐴
−(𝜆𝜆𝐴𝐴 + 𝜇𝜇𝐴𝐴)

𝜇𝜇𝐵𝐵
0

0
𝜇𝜇𝐵𝐵

𝜆𝜆𝐵𝐵 0
0 𝜆𝜆𝐵𝐵

−(𝜆𝜆𝐴𝐴 + 𝜇𝜇𝐵𝐵) 𝜇𝜇𝐴𝐴
𝜆𝜆𝐴𝐴 −(𝜇𝜇𝐵𝐵+𝜇𝜇𝐵𝐵)

� �

𝑃𝑃1
𝑃𝑃2
𝑃𝑃3
𝑃𝑃4

�

The time domain solutions of the states4 are given as:

𝑃𝑃4(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵

 = 𝜆𝜆𝐴𝐴𝜆𝜆𝐵𝐵
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵) (1 − 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)𝑡𝑡 − 𝑒𝑒−(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)𝑡𝑡 + 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴++𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)𝑡𝑡

 = 𝜆𝜆𝐴𝐴
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴) �1 − 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)𝑡𝑡� × 𝜆𝜆𝐵𝐵

(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵) (1 − 𝑒𝑒−(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)𝑡𝑡)

 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) (15)

i.e., the probability of both components being down is the product of the probabilities of individual
components being down. In fact, for other states in Figure 7, we also have

𝑃𝑃1 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡),

𝑃𝑃2 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡),

𝑃𝑃3 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) (16)

Therefore, the steady-state probabilities of all states can be easily calculated, i.e.,

4 Sometimes, the probability of both A and B being failed can be approximated by using 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵 = (𝜆𝜆𝐴𝐴𝑡𝑡)(𝜆𝜆𝐵𝐵𝑡𝑡) =
𝜆𝜆𝐴𝐴𝜆𝜆𝐵𝐵𝑡𝑡2, which again needs to be used cautiously.

AUp
BDn

ADn
BDn

𝜆𝜆𝐴𝐴 𝜇𝜇𝐴𝐴

AUp
BUp

ADn
BUp

𝜆𝜆𝐴𝐴 𝜇𝜇𝐴𝐴

𝜆𝜆𝐵𝐵

𝜇𝜇𝐵𝐵 𝜇𝜇𝐵𝐵

𝜆𝜆𝐵𝐵

15

𝑃𝑃1 = 𝜇𝜇𝐴𝐴𝜇𝜇𝐵𝐵
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)

𝑃𝑃3 = 𝜆𝜆𝐵𝐵𝜇𝜇𝐴𝐴
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)

𝑃𝑃2 = 𝜆𝜆𝐴𝐴𝜇𝜇𝐵𝐵

(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)

𝑃𝑃4 = 𝜆𝜆𝐴𝐴𝜆𝜆𝐵𝐵
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)

Note the probability of both component down 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵 in Equation (15) is the product of the probabilities
of Component A being down and Component B being down, each can be calculated using Equation (12).
Following Equation (13), because the total rate exiting state (𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵) is (𝜇𝜇𝐴𝐴 + 𝜇𝜇𝐵𝐵), the frequency of
encountering state (𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵) is denoted as 𝐹𝐹(𝑡𝑡) and can be calculated as:

 𝐹𝐹(𝑡𝑡) = 𝑃𝑃4(𝑡𝑡)(𝜇𝜇𝐴𝐴 + 𝜇𝜇𝐵𝐵)

 = 𝑃𝑃4(𝑡𝑡)(1
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 1
𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

) (17)

 𝑇𝑇 = 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝜇𝜇𝐴𝐴+𝜇𝜇𝐵𝐵

 (18)

The probability, frequency, and duration time of both Components A and B being down are calculated
using Equations (15), (17), and (18) in the given time period 𝑇𝑇, e.g., one year.

The same strategy can be used to calculate the probability, frequency, and duration time of a triple
component outage. The Markov model for three bi-state components A,B, and C can be found in many
references and an example with different failure rates and repair rates defined for each component is
shown in Figure 8 [Sperandio 2006]:

Figure 8: A Markov Model for Component A, B, and C Outages.

where 𝐴̅𝐴, 𝐵𝐵� , and 𝐶𝐶̅ indicate the down status of the components, i.e., 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑃𝑃𝐴̅𝐴,𝐵𝐵� ,𝐶𝐶̅(𝑡𝑡).

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝜆𝜆𝐴𝐴𝜆𝜆𝐵𝐵𝜆𝜆𝐶𝐶
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)(𝜆𝜆𝐶𝐶+𝜇𝜇𝐶𝐶) (1 − 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)𝑡𝑡 − 𝑒𝑒−(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)𝑡𝑡 − 𝑒𝑒−(𝜆𝜆𝐶𝐶+𝜇𝜇𝐶𝐶)𝑡𝑡 +

 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴+𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)𝑡𝑡 + 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴+𝜆𝜆𝐶𝐶+𝜇𝜇𝐶𝐶)𝑡𝑡 + 𝑒𝑒−(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵+𝜆𝜆𝐶𝐶+𝜇𝜇𝐶𝐶)𝑡𝑡 −
 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴+𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵+𝜆𝜆𝐶𝐶+𝜇𝜇𝐶𝐶)𝑡𝑡)

 = 𝜆𝜆𝐴𝐴
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴) �1 − 𝑒𝑒−(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)𝑡𝑡� × 𝜆𝜆𝐵𝐵

(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵) �1 − 𝑒𝑒−(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)𝑡𝑡� × 𝜆𝜆𝐶𝐶
(𝜆𝜆𝐶𝐶+𝜇𝜇𝐶𝐶) (1 − 𝑒𝑒−(𝜆𝜆𝐶𝐶+𝜇𝜇𝐶𝐶)𝑡𝑡)

 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) (19)

16

The Markov model for the three components is not shown here but can be easily developed. Also note
that we have:

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)

⋮

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) (20)

And the steady-state probability for all components down is 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶 = 𝜆𝜆𝐴𝐴𝜆𝜆𝐵𝐵𝜆𝜆𝐶𝐶
(𝜆𝜆𝐴𝐴+𝜇𝜇𝐴𝐴)(𝜆𝜆𝐵𝐵+𝜇𝜇𝐵𝐵)(𝜆𝜆𝑐𝑐+𝜇𝜇𝑐𝑐).

Again, since the total rate existing the state of all three components being down is the sum of repair rates
of these three components, the corresponding frequency and duration time can be calculated as:

𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)(𝜇𝜇𝐴𝐴 + 𝜇𝜇𝐵𝐵 + 𝜇𝜇𝑐𝑐) (21)

𝑇𝑇 = 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶𝐶𝐶 = 1
𝜇𝜇𝐴𝐴+𝜇𝜇𝐵𝐵+𝜇𝜇𝐶𝐶

 (22)

In PCA studies, the total probability of a set of contingencies that cause system problems need to be
calculated. Usually, these contingencies may be up to the third order and can be treated as minimum cut
sets for quantification.

Equations (15), (16), (19), and (20) indicate that the probability of a Markov state for the two- and three-
component models in Figures 7 and 8 is simply the product of the probabilities of the individual
components being at the corresponding states. This is not a coincidence and the rationale behind this is
that the failures and repairs of these components (A, B, and/or C) are completely independent of each
other. Therefore, the probability of both components being down is the product of the probabilities of
individual components being down, and so on. This can, therefore, be extended to cases for quantifying
the state probabilities for the system with arbitrary number of components and will significantly reduce
the complexity of calculation of probability, frequency, and duration time.

3.3 Exact Quantification of System Problem Indexes

This section presents two methods for calculating the system problem indexes: one based on a fully-
expanded Markov model while another one based on the collection of minimum cut sets. The associated
difficulties are also discussed.

3.3.1 System Problem Indexes Based on a Full Markov Model

Theoretically, following the same train of thoughts above a Markov model can be built by considering all
possible combinations of single outages, and a Markov state is represented by the statuses (e.g., Up and
Dn for a bi-state component model but multi-state models can also be used) of all the grid components.
An illustrative Markov model is shown in Figure 9, where the repairs are not included.

The system consists of 𝑀𝑀 components and Component 𝑖𝑖 has 𝑁𝑁𝑖𝑖 failure modes. The tree-like Markov model
starts from a system state without any component failure, i.e., the initial system state is
𝐶𝐶(1,0)𝐶𝐶(2,0) ⋯𝐶𝐶(𝑀𝑀,0), where 𝐶𝐶(𝑖𝑖,0), 𝑖𝑖 = 1,2,⋯ ,𝑀𝑀, indicates the normal status of Component 𝑖𝑖, and the

17

transitions to other states that contain component failures are characterized in the figure. Each additional
failure generates a new system state. A Markov state stops branching out and becomes an end state when
either the state represents that all components are down or the state causes the system to fail. In other
words, for the PCA studies, a state becomes an end state when it causes a system problem.

Note this model differentiates the order of failures. Therefore, the states with the same component
failures but different orders can be combined in the PCA application5. Based on the fully expanded Markov
model (repairs can be naturally included), the following procedures will lead to the exact quantification
of the system problem probability, frequency, and duration.

Figure 9: A full Markov model for a system consisting of 𝑴𝑴 components (repairs not modeled).

5 In PCA, for two contingency occurrences A and B, AB=BA, i.e., they occurred simultaneously.

)0,()0,2()0,1(MCCC 

)0,()0,2()1,1(MCCC 

)0,()0,2(),1(1 MN CCC 

)0,1()0,2(),(−MNM CCC
M



)0,1()0,2()1,(−MM CCC 

)0,()0,3()1,2()1,1(MCCCC 

)0,()0,1()0,1()0,3()1,2(),(Miiji CCCCCC  +−

)0,1()0,3(),2(),(2 −MNNM CCCC
M



)1,()1,1()1,2()1,1(MM CCCC −

),()1,1()1,2()1,1(MNMM CCCC −

),1(),1(),(11 NNMNM CCC
MM


−−

)1,1(),1(),(1
CCC

MM NMNM 
−−

)0,()0,1()0,1()0,3(),2(),(2 MiiNji CCCCCC  +−

)0,1()0,1()0,1()0,3()1,(),(−+− MiiMji CCCCCC 

)0,1()0,1()0,1()0,3(),(),(−+− MiiNMji CCCCCC
M



)0,()0,1()0,1()0,2(),(Miiji CCCCC  +−

18

Algorithm 1:

(1) Calculate the probability of each state causing a system problem by multiplying the probabilities
of all components being at the status, similar to the probability calculation in Equations (16) and
(20) for double and triple outages, e.g., 𝑃𝑃𝐶𝐶(1,0)𝐶𝐶(2,0)⋯𝐶𝐶(𝑀𝑀,0) = 𝑃𝑃1𝑈𝑈𝑈𝑈,2𝑈𝑈𝑈𝑈,⋯,𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑃𝑃1𝑈𝑈𝑈𝑈𝑃𝑃2𝑈𝑈𝑈𝑈 ⋯𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 = (1 − 𝑃𝑃1𝐷𝐷𝐷𝐷)(1 − 𝑃𝑃2𝐷𝐷𝐷𝐷)⋯ (1 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀) based on Equation (12).

(2) The probability of a specific state causing the system problem and the transition rates exiting the
state6 are used to calculate the frequency of encountering this state using Equation (13).

(3) The probabilities and frequencies of states that cause system problems can be simply added
together as the system problem probability 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and frequency 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 since all these Markov
states in the fully expanded model are exclusive.

(4) Finally, the duration time of the system problem can be directly calculated as:
𝑇𝑇𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (23)

(5) End

Note that major issue with this quantification is that Markov state probability calculation may not be as
straightforward as in Equations (15) and (19). The calculation of a state probability needs the probabilities
of all component status in the state (see the example in Step 1 above). This calculation is still manageable
but is much exacerbated when CMOs need to be modeled.

In general, a CMO is modeled as a single contingency event. For example, the CMO of Components A and
B can be a separate outage event with its own occurrence frequency and repair time. However, this CMO
cannot be combined with the Component A outage or the Component B outage since they cannot occur
together and are no longer independent, which changes the structure of the Markov model and caution
is needed when formulating the Markov model. Therefore, the probability of the state is no longer simply
the product of the probabilities of the individual components at the specific status, i.e., Equations (15),
(16), (19), and (20) do not hold any more. The details are not discussed here but an example can be found
in [Billinton 1981], where the steady-state probabilities of both components being down were calculated.

The only way to obtain the exact state probabilities is to solve the entire Markov model, which is generally
intimidating and almost impossible for a system with a relatively large number of components. Without
knowing the exact probabilities of the states, the exact quantification of system problem probabilistic
indexes cannot be achieved.

3.3.2 System Problem Indexes Based on Contingency List

In general, quantifying the probabilities of each Markov state for a large system can be difficult since it
needs to account for probabilities of all components that are up and all components that are down. It is
more feasible to use the Cut set Probability Truncation method discussed in Section 2, e.g., consider only
the single, double, and triple outage results. To calculate the system problem indexes caused by a
collection of minimum cut sets (of the top event or the system problem) 𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇], i.e., the contingencies

6 Since this state causes the system problem, it becomes an end state. Therefore, the transition rates exiting from
this state are only the repair rates.

19

of different orders, different procedures can be developed according to the methods that are being used
to calculate the system problem probability.

If rare event or MCUB approximation methods are being used, then Algorithm 2 can be used:

Algorithm 2:

(1) Calculate the probabilities of outages of individual components, i.e., Component A, B, C, … using
Equation (12) for single contingencies.

(2) Calculate the system problem probability 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 by accounting for the probabilities of the
collection of the cut sets using either one of the approximation methods (rare event in Section 1
or minimum cut set upper bound approximation in Section 3).

(3) Calculate probabilities of individual cut sets 𝑃𝑃𝑖𝑖 , 𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇] using Equations (12), (15), and (19)
for single, double, and triple contingencies.

(4) Calculate the frequencies of individual cut sets 𝐹𝐹𝑖𝑖 , 𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇] are calculated7 using Equations
(14), (17), and (21) for single, double, and triple contingencies based on result from Step (3).

(5) Calculate the system problem frequency by summing the frequencies of individual contingencies,
i.e., 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑𝐹𝐹𝑖𝑖 , 𝑖𝑖 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀[𝑇𝑇𝑇𝑇𝑇𝑇].

(6) Calculate the system problem duration time by using Equation (23).
(7) End

Algorithm 2 based on rare event approximation is currently being used. Obviously, the calculated system
problem indexes are not exact.

The exact quantification of system problem indexes can be done by using the BDD, as shown in Algorithm
3 below:

Algorithm 3:

(1) Calculate the probabilities of outages of individual components, i.e., Component A, B, C, … using
Equation (12) for single contingencies.

(2) Create BDD diagram for the given list of cut sets and enumerate paths in the BDD diagram from
the leaf nodes to the root node.

(3) For each of the paths,
(3.1) Calculate the probability by multiplying the probabilities of the events along the path
(3.2) Calculate the corresponding frequency of each path, i.e., the product of each path probability

and sum of failure rates of all events that are not failed (the else branch) and the repair rates
of all events variables that failed (the then branch) along the path8.

(4) Calculate the total probability 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and frequency 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 by summing the probability and
frequency corresponding to each path

(5) Calculate the system problem duration time by using Equation (23).

7 Again, the total rate exiting from a cut set is the sum of the repair rates of individual components involved in the
cut set.
8 This is based on Equation (13), similar to the step (2) in Algorithm 1. The states of individual events along a path
can be considered a combined Markov state and the frequency can thus be calculated using Equation (13).
Alternatively, the frequency of each path can be the product of each path probability and sum of failure rates of all
events that are failed (the Then branch) and the repair rates of all events variables that not failed (the Else branch)
along the path.

20

(6) End

Calculation of the total probability of top event is straightforward using BDD. The frequency calculation in
Step (3.2) can be explained using the example BDD diagram for the top event in Figure 5:

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃(𝑥𝑥1𝑥𝑥2) + 𝑃𝑃(𝑥𝑥1𝑥̅𝑥2𝑥𝑥3) + 𝑃𝑃(𝑥̅𝑥1𝑥𝑥2𝑥𝑥3)

The events involved in a path actually formulate a system state, i.e., the combination of the occurrences
or not of the events. For path 𝑥̅𝑥1𝑥𝑥2𝑥𝑥3, 𝑥̅𝑥1𝑥𝑥2𝑥𝑥3 is also a state of the system. From this perspective, all the
possible transitions to and from the state can be defined, as shown in Figure 10. These transitions are
from and to different states. The transition rates from or to the state can be used to calculate the
frequency to encounter this state, as shown in Equation (13). Note that in Figure 10, 𝑥̅𝑥1 means the success
state of 𝑥𝑥1 and 𝑥𝑥2 and 𝑥𝑥3 mean the failed state by following the convention in BDD representation.

Figure 10: Transitions of an example state.

Taking the path that corresponds to this state 𝑥̅𝑥1𝑥𝑥2𝑥𝑥3 as an example, the top event will occur if 𝑥𝑥1 does
not fail, 𝑥𝑥2 and 𝑥𝑥3 both fail. The probability of this path 𝑃𝑃(𝑥̅𝑥1𝑥𝑥2𝑥𝑥3) = (1 − 𝑃𝑃(𝑥𝑥1))𝑃𝑃(𝑥𝑥2)𝑃𝑃(𝑥𝑥3) and the
frequency is 𝑃𝑃(𝑥̅𝑥1𝑥𝑥2𝑥𝑥3)(𝜆𝜆1 − 𝜇𝜇2 − 𝜇𝜇3) [Amari 2000], i.e., the frequency exiting this state (see Equation
(13)).

Therefore, system problem indexes can be either approximately or exactly calculated by using different
methods. If the BDD is used to quantify the probability of the system problem 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, then the top event
probability also becomes exact, just like the quantification method based on the Markov model. Similarly,
the system problem frequency and duration time are also exact. A cut set can be considered an end state
that is causing the system problem and the total probability of the collection of cut sets can be exactly
calculated by adding the probabilities of the paths that are exclusive and lead to the root node in the BDD,
i.e., the system problem, similar to the quantification of the probabilities of the Markov states. Therefore,
the quantification methods based on the full Markov model and the cut sets can be equivalent and all
exact.

Also note that Step (3) suggests that this quantification method also suffers a similar issue as using the full
Markov model when CMOs are modeled. The exact probabilities of both (or three) components being
down can still be calculated by solving the two- (or three-) component Markov model and three-
component Markov model with CMOs modeled (if only up to triple contingencies are considered). The
issue arises when the BDD is used since it will build the BDD diagram assuming that the CMOs are

𝑥̅𝑥1𝑥𝑥2𝑥𝑥3

𝜆𝜆3 𝜇𝜇1 𝜆𝜆2

𝜇𝜇2 𝜇𝜇3 𝜆𝜆1

21

independent events and include them in the BDD diagram and the paths leading to the root node. This
can be potentially solved by removing the paths that consist of the CMOs and the single outages of the
corresponding components in the CMOs. For example, if a path from a leaf node to the root node consists
of a CMO of outages of Components A and B and the single outage of Components A and/or B, then the
path is discarded since it is impossible. Therefore, it is still possible to calculate the exact probability. As
long as the total probability is exact, then the calculated frequency and duration time are also exact.

22

4. Implementation of PCA Quantification Methods
Rare event approximation has been implemented. Its implementation is very straightforward and does
not need any further discussion. MCUB, although not implemented in commercial PCA too, is also easy.
The major focus here is on the BDD implementation. In this study, all these three methods have been
implemented in Python scripts and a study is performed using an example list of contingencies to compare
the conservativeness of the approximation methods and demonstrate the BDD capability of handling a
large number of contingencies.

4.1 Existing Open-source BDD Software Packages

The key idea to implement a BDD data structure is to store an ITE node 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥,𝐺𝐺,𝐻𝐻) using a hash table
consisting of a variable 𝑥𝑥 and two addresses for 𝐺𝐺 and 𝐻𝐻 [Rauzy 1993]. Rather than develop our own BDD
manipulation program, we sought to use existing reputable open-source packages.

Since the target application of this study is to quantify the system reliability indices beyond the
probabilities of the contingencies, we were particularly interested in open-source BDD software packages
that can be tailored for this purpose. Multiple open-source software libraries for BDD were identified,
including Sylvan, Cudd and Tulip-dd. A comparison of these packages is shown in Table 1.

Table 1: Selection criteria for BDD software tool

Packages Ease of usage,
documentation,
configuration

Quantification Scalability Additional
functions

Track record

Sylvan Very difficult to install
because of the shared
workers

No built-in
quantification

High scalability
(Parallelizable)

N/A Between Cudd and
Tulip

Cudd C/C++ based, good
documentation and
relatively easy to
setup, poor interface
design and additional
interface is needed to
take input

No built-in
quantification

High scalable by
optimizing the
BDD structure
and memory

Deal with ZDDs
(Zero-suppressed)
DDs, built-in
strategies to
reduced BDD sizes
via reordering

Well-established with
many users

Tulip-dd Python-based, very
easy to install and use
with flexible interface
to parse input

No built-in
quantification

Medium to high Tulip is a Python
library with
C/Python (Cython)
bindings to Sylvan
and Cudd

The newest of the
packages. Its main
purpose is to

The major characteristics of each BDD package are also provided in Table 1. Scalability is key to applying
to real problems with potentially thousands of variables found in power systems. However, as indicated
above, the cut sets for reliability assessment in PCA are coherent, i.e., only AND and OR operations are
involved and the BDD representation can be very efficient. In addition, the number of contingencies that
need to be evaluated is more limited by the power flow computation effort. Therefore, the scalability
should be manageable.

On the other hand, it appears that these tools were developed for circuit design applications and only
create BDD diagrams. None of the tools has a built-in probability quantification function. Therefore, the

23

section below is dedicated to the development and implementation of the quantification schemes based
on the BDD diagrams created by the existing tool(s).

4.2 A Recursive Algorithm for BDD Quantification

Theoretically, the BDD quantification is straightforward, i.e., it can be done by enumerating the individual
paths from leaf nodes to the top event or root node and calculating the probability of each path. Since
these paths are disjoint, the probabilities of individual paths can be summed as the total probability of
the top event.

The main problem with enumerating BDD paths to compute the top event probability is that the number
of paths grows exponentially with the number of variables. The existing BDD packages, although do not
have built-in quantification functions, can generate the paths exhaustively and dump them into a text file.
The text file can thus be loaded to calculate probabilities of individual paths and therefore, the total
probability of the top event. However, text files with all the path elements of the BDD grew to terabyte
order of magnitude once we got to more than 100 variables. Besides being very slow, the amount of
memory required rendered this method extremely high, which renders the path enumeration an
impractical solution. We thus sought a recursive algorithm that does not require storing paths.

A BDD is essentially a data structure that stores the precursor (or parent) and successor (or child)
information. The top event probability can be calculated recursively. We denote 𝑃𝑃(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝑡𝑡) the
probability of node 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (lower case) in the “then” branch, 𝑃𝑃(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝑒𝑒) the probability of node
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 in the “else” branch. The top event probability is thus denoted as 𝑃𝑃(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉). Then in the
BDD, the probability of a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 node can be calculated as:

𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,∗) = 𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑡𝑡) + �1 − 𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�𝑃𝑃(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑒𝑒)

where “*” means either 𝑡𝑡 or 𝑒𝑒. Note 𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and 1 − 𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) are the probabilities of occurrence
and non-occurrence of variable 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. A child node may also be a parent node to its child nodes.

Following the above notation, the top event probability in Figure 5 is 𝑃𝑃(𝑋𝑋1), 𝑃𝑃(𝑋𝑋2, 𝑡𝑡) is the probability of
node 𝑥𝑥2 in the “then” branch of 𝑥𝑥1, and 𝑃𝑃(𝑋𝑋2, 𝑡𝑡) is the probability of node 𝑥𝑥2 in the “else” branch of 𝑥𝑥1,
so that

𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃(𝑋𝑋1) = 𝑃𝑃(𝑥𝑥1)𝑃𝑃(𝑋𝑋2, 𝑡𝑡) + �1 − 𝑃𝑃(𝑥𝑥1)�𝑃𝑃(𝑋𝑋2, 𝑒𝑒).

𝑃𝑃(𝑋𝑋2, 𝑡𝑡) and 𝑃𝑃(𝑋𝑋2, 𝑒𝑒) can be solved recursively until the leaf nodes are encountered, i.e.,

𝑃𝑃(𝑋𝑋2, 𝑡𝑡) = 𝑃𝑃(𝑥𝑥2)𝑃𝑃(1, 𝑡𝑡) + (1 − 𝑃𝑃(𝑥𝑥2))𝑃𝑃(𝑋𝑋3, 𝑒𝑒)
= 𝑃𝑃(𝑥𝑥2) + (1 − 𝑃𝑃(𝑥𝑥2))𝑃𝑃(𝑥𝑥3)

and

𝑃𝑃(𝑋𝑋2, 𝑒𝑒) = 𝑃𝑃(𝑥𝑥2)𝑃𝑃(𝑋𝑋3, 𝑡𝑡) + �1 − 𝑃𝑃(𝑥𝑥2)�𝑃𝑃(0, 𝑒𝑒)

= 𝑃𝑃(𝑥𝑥2)�𝑃𝑃(𝑥𝑥3)𝑃𝑃(1, 𝑡𝑡) + �1 − 𝑃𝑃(𝑥𝑥3)�𝑃𝑃(0, 𝑒𝑒)�

= 𝑃𝑃(𝑥𝑥2)𝑃𝑃(𝑥𝑥3)

24

Note that 𝑃𝑃(0, 𝑒𝑒)= 𝑃𝑃(0, 𝑡𝑡)=0 and 𝑃𝑃(1, 𝑒𝑒)= 𝑃𝑃(0, 𝑡𝑡)=1. Therefore, 𝑃𝑃(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑃𝑃(𝑋𝑋1) = 𝑃𝑃(𝑥𝑥1)[𝑃𝑃(𝑥𝑥2) + (1 −
𝑃𝑃(𝑥𝑥2))𝑃𝑃(𝑥𝑥3)] + �1 − 𝑃𝑃(𝑥𝑥1)�𝑃𝑃(𝑥𝑥2)𝑃𝑃(𝑥𝑥3).

This implementation of such a recursive algorithm will be further described in section 4.3 below.

4.3 Scalable Implementation of Recursive BDD Quantification

The recursive algorithm discussed above, coupled with a memoization (or tabling) scheme to store the
intermediary results in cache so they can be recalled rather than re-computed, enables a scalable
implementation of the BDD quantification. Two such algorithms are described in [Rauzy 1993] and [Zang
2000]. We implemented the algorithm in [Zang 2000], shown below as pseudo-code:

 Prob(F) {
 if (F == 0)
 return 1
 else if (F == 1)
 return 0
 /* Memoization */
 else if (computed-table has entry {F, P_F})
 return P_F
 /* recursive call F = ite(x, F1, F2), P(x) is given in the input */
 else {
 P_F = Prob(F1) + P(x) * (Prob(F2) – Prob(F1))
 }
 insert_computed_table({F, P_F})
 return P_F
 }

Figure 11: Pseudo-code for the recursive quantification algorithm.

The algorithm was implemented in Python using the Tulip-dd BDD manipulation package. In the next
section, we compare its performance to the approximation methods.
The Python implementation was validated by using the simple example shown in Figure. 5, which is easy
to calculate the exact probability manually. The BDD drawn by the Tulip-dd is shown in Figure 12, which
is essentially the same as the BDD in Figure 5 except that leaf nodes are combined into a single one here.
With the hourly failure rates of 0.01, 0.02, and 0.03 and duration hours of 10, 20, and 30 for variables 𝑥𝑥1,
𝑥𝑥2, and 𝑥𝑥3, the top event probabilities are calculated as 0.204, 0.194, and 0.180, respectively, using the
rare event, MCUB, and BDD in the script.

Using Equation (12), we have 𝑝𝑝1 = 0.0909, 𝑝𝑝2 = 0.2857, and 𝑝𝑝3 = 0.4737. Therefore, it is easy to verify
that the top event probabilities calculated using Equation (3) for rare event approximation, Equation (5)
for MCUB, and BDD for Figure 5 in Section 3 are exactly the same as the values calculated using the Python
script above.

25

Figure 12: Reproduced BDD for 𝑻𝑻𝑻𝑻𝑻𝑻 = 𝒙𝒙𝟏𝟏𝒙𝒙𝟐𝟐 + 𝒙𝒙𝟐𝟐𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟏𝟏𝒙𝒙𝟑𝟑

4.4 Input Files

To create a standalone application that can be used to quantify the probability of a list of cut sets or
contingencies that will cause certain system problems, we designed a simple I/O system with two input
files. The first file is a csv file with the list of the contingencies. In this file, each separate contingency is
represented in a single line by the single outages that it contains. Figure 13 shows an example of a cutset
file snippet and its Boolean expression equivalent.

 x1
 x2,x3 ↔ 𝑦𝑦 = 𝑥𝑥1 + 𝑥𝑥2𝑥𝑥3 + 𝑥𝑥3𝑥𝑥4𝑥𝑥5
 x3,x4,x5

Figure 13: The cut sets file snippet on the left and its Boolean equivalent on the right.

The second file is also a csv file with a column for the single outage variables and two columns for their
respective hourly failure rates and durations in hours. Two example input files are shown in Appendix A
of this report.

The interface to handle the files intake was designed in Python so it could be directly handled in the
Python/Tulip-dd environment. This simple I/O design can be adapted to interface with the APIs of a
contingency analysis tool such as the PSS/E.

4.5 Comparing Exact and Approximate Methods

Rare event and MCUB (minimum cut set upper bound) approximation methods were also implemented
to compare to the exact BDD solutions for system problem probabilities, frequencies, and durations, as
discussed in Algorithms 2 and 3. Using a set of sample contingency cutsets, a comparison of calculated
probabilities using these methods is presented in Table 2. The annual probabilities of system problems
are calculated using the standalone application.

26

In the comparison study, cases considering a total number of 50, 150, 1,000 and 1,250 single outages were
evaluated using the rare event, MCUB, and BDD methods, as shown in Table 2. The BDD diagram for the
50 contingency case is shown in Figure 14, where the event in the top is the top event that we are trying
to quantify. The top event probability is the sum of each event probability along all paths from the leaf
node 1 in the bottom of Figure 13 to the top event. The failure rates and durations of single outages were
sampled from uniform probability distributions. We used a Uniform(0, 1/500) distribution for the hourly
failure rate and a Uniform(0, 50) distribution for the duration in hours.

Table 2 shows exact solutions given by the BDD computation, while the approximations are more
conservative, producing larger estimates. Frequencies and durations are also calculated and shown in
Table 2. Note that frequencies are calculated using the Step 4 of Algorithm 2 for simplicity. Since the
calculation times for rare event and MCUB approximates are negligible (less than half a second), they are
not shown. Since the total probabilities of the cut sets or contingencies are determined not only by the
probabilities of individual outages, but also whether different cut sets contain the same single outages,
the numbers of single, double, and triple contingencies as well as how many of them contain the same
single outages (overlap ratio) are also indicated in Table 2 for each case.

In Table 2, the probability of the rare event estimate is above 1 when 1,000 single outages are used. This
nonsensical result obviously can be a big issue when the number of contingencies is large and/or the
failure probabilities of individual outages are high. The MCUB, however, may offer a good compromise,
as it is only 6% higher than the exact solution (.653 versus .610) while taking only tenths of a second as
opposed to BDD’s tens of seconds. On the other hand, the calculation times of BDD method for different
cases appear manageable. In addition, the duration times calculated by using rare event approximation
are also much conservative compared to MCUB and BDD methods. The most time consuming calculation
is the contingency analysis. The time for BDD calculation can be acceptable.

27

Figure 14: A BDD diagram for 50 contingencies

28

Table 2: Comparison of system problem index calculation

Number
of single
outages

Contingencies
Structure; number of
single/double/triple
contingencies and
overlap ratio

Computati
on time
BDD
(secs)

Probabilities Frequency Durations (hours)
Rare
Event

MCUB BDD Total (per
hour)

Rare
Event

MCUB BDD

50 20/30/0; overlap
ratio ½

.056 .409 .341 .335 .0162 25.2 21.0 20.7

150 20/80/50; overlap

ratio 2/3
0.70 .514 .407 .389 .0217 23.6 18.7 17.9

1,000 20/80/900; overlap
ratio 2/3

28 .709 .514 .465 .0287 24.7 17.9 16.2

1,000 40/60/900; overlap
ratio 2/3

29 1.046 .655 .610 .0420 24.9 15.6 14.6

1,250 80/120/1050;
overlap ratio 2/3

44.4 1.384 0.756 0.710 .0560 23.2 12.7 11.9

In a summary, this comparison study shows that

(1) Both rare event and MCUB produce conservative results in terms of total probability and duration
time while the BDD method can provide the exact solutions;

(2) The results using MCUB, although conservative, appear much less conservative than the results
from the rare event approximation;

(3) The BDD method is more time consuming than the rare event and MCUB approximation but
appear manageable and can be a feasible approach for the PCA quantification.

29

5. Summary
This report summarizes some of the existing top event quantification methods including the Sylvester-
Poincare development and BDD that can be used to calculate the exact probabilities of Boolean functions,
as well as the major approximation methods, such as the rare event approximation, truncation, and
MCUB, which are frequently used in practice. Note that another method that can quantify the exact top
event probabilities is the sum of disjoint products (SDP) by converting the cut sets into mutually exclusively
disjoint products (see e.g., [Rauzy 2003]). The SDP method is not reviewed here because it suffers a similar
combinatorial explosion issue as the Sylvester-Poincare development.

As indicated in the summary, the MCUB is a better approximation method than the commonly used rare
event approximation, especially since MCUB does not lead to a probability of more than 1.0. Since the
quantification of contingencies of different orders involves only AND and OR operations, the
implementation of BDD in the quantification of contingency probabilities is feasible even for a large
number of cut sets [Jung 2004]. Therefore, the MCUB approximation and BDD are better candidates for
quantification applications in a PCA.

In addition to the probabilities of system problems, the theory and the procedures of calculating two other
metrics including the frequencies and duration times are also discussed in detail in this report. It is shown
that the system problem indexes can be possibly quantified with exact solutions using both the Markov
model and cut sets, even with the presence of common mode failures.

Based on system reliability theory, two algorithms for quantifying the exact probabilities, frequencies, and
durations of system problem indexes in PCA are developed. The MCBU and BDD methods have been
implemented in this study by developing standalone Python scripts.

A demonstration of the proposed system problem indexes quantification was performed by using the rare
event approximation, MCUB method, and the BDD method, respectively. For multiple cases with different
number of contingencies, the results are consistent with what we expected, i.e., the rare event can
produce very conservative outcomes, even with calculated probabilities larger than 1.0. On the other
hand, the BDD method provides the exact result while it takes a longer time for calculation. The MCUB
method may offer an acceptable trade-off, i.e., with conservative but reasonable results.

All these methods have been implemented in Python script that can be a standalone module to interface
with a PCA tool and calculate system problem indexes using different methods. Since existing PCA tools
use only the rare event approximation, the developed module provides useful and improved
quantification schemes that enhance the state-of-the-art PCA analyses.

Future work may include the development of a user-friendly interface and post-processor to create load
duration points from each case studied, then interpolate and/or extrapolate among these points to have
an approximated load duration curve that can be overlaid by the calculated unserved energy using the
same approach. In addition, a case study can be performed using the latest ePCA tool together with NERC
guidelines and renewable generation data by considering both solar and wind generation in a real utility
system.

30

References
[Amari 2000] S.V. Amari, “Generic Rules to Evaluate System-Failure Frequency,” IEEE Transactions on
Reliability, vol. 49, pp. 85-87, Mar. 2000.

[Billinton 1981] R. Billinton, T. K. P. Mledicherla, and M.S. Sachdev, “Application of Common-cause Outage
Models in Composite System Reliability Evaluation,” IEEE Transactions on Power Apparatus and Systems,
Vol. PAS-100, No. 7 July 1981.

[Bryant 1986] R. E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE
Transactions on Computers, C-35-8, August 1986, pp. 677 – 691.

[Esary 1970] J. D. Esary and F. Proschan, “A Reliability Bound for Systems of Maintained and Independent
Components,” Journal of the American Statistical Association, 65 (1970), pp. 329 – 38.

[Jung 2004] W. S. Jung, S. H. Han, and J. Ha, “A Fast BDD Algorithm for Large Coherent Fault Trees
Analysis,” Reliability Engineering and System Safety, 83 (2004) pp. 369 – 374.

[Epstein 2005] S. Epstein and A. Rauzy, “Can We Trust PRA?” Reliability Engineering and System Safety, 88
(2005), pp. 195 – 205.

[Rauzy 1993] A. Rauzy, “New Algorithms for Fault Tree Analysis,” Reliability Engineering and System
Safety, 40 (1993) pp. 203 – 211.

[Rauzy 1997] A. Rauzy and Y. Dutuit, “Exact and Truncated Computations of Prime Implicants of Coherent
and Non-coherent Fault Trees within Aralia,” Reliability Engineering and System Safety 58 (1997) pp. 127
– 144.

[Rauzy 2003] A. Rauzy, E. Chatelet, Y. Dutuit, and C. Berenguer, “A Practical comparison of methods to
assess sum-of-products,” Reliability Engineering and System Safety, 79 (2003) pp. 33 – 42.

[Russell 1993] K. D. Russell and D. M. Rasmuson, “Fault Tree Reduction and Quantification – an Overview
of IRRAS Algorithms,” Reliability Engineering and System Safety, 40 (1993) pp. 149 – 164.

[Sinnamon 1996] R. M. Sinnamon and J. D. Andrews, “Fault Tree Analysis and Binary Decision Diagrams,”
Proceedings of IEEE Annual Reliability and Maintainability Symposium, 1996.

[Sperandio 2006] M. Sperandio and J. Coelho, “Constructing Markov Models for Reliability Assessment
with Self-Organizing Maps,” Proceedings of PMAPS 2006.

[Vesely 1981] W. E. Vesely, F. F. Goldberg, M. H. Boerts, and D. F. Haasl, “Fault Tree Handbook,” NUREG-
0492, U. S. Nuclear Regulatory Commission, January 1981.

[Way 2000] Y.-S. Way and D.-Y. Hsia, “A Simply Component-connection Method for Building Binary
Decision Diagrams Encoding a Fault Tree,” Reliability Engineering and System Safety, 70(2000) pp. 59 –
70.

[Yue 2019] M. Yue and J. Zhan, “Development of a Risk-informed Decision-making Capability Using
Standard Electric Power Industry Planning Tools,” A Technical Report Submitted to DOE AGM Program,
July 31, 2019.

31

[Zang 2000] Zang, Xinyu, Hairong Sun, and Kishor S. Trivedi. "A BDD-based Algorithm for Reliability Graph
Analysis." Department of Electrical Engineering, Duke University, Tech. Rep (2000).

32

Appendix A: Example Input Files for Quantification Demonstration
Several case studies were performed in Section 4. The two input files needed for one of the case studies
are shown here for an illustration purpose. The input files for other case studies are similar.

An example input file of parameters for single outages is shown below. This .csv file can be read directly
by the Python script. It contains variables representing the single outages and the corresponding the
hourly failure rates (failr) and duration times (dur) in hours.

var failr dur

x1 0.000353 23.04639

x2 0.001439 11.44409

x3 0.000703 10.97336

x4 0.000211 28.62413

x5 0.001013 29.28446

x6 0.000572 15.69213

x7 0.001648 13.29514

x8 0.001249 0.687074

x9 6.43E-05 27.38387

x10 0.000614 2.479479

x11 0.000608 47.07507

x12 0.000307 47.60727

x13 0.001112 3.169638

x14 0.000451 37.6664

x15 0.000417 11.02617

x16 0.000868 25.54466

x17 0.001841 1.381362

x18 0.001429 41.87028

x19 0.001037 39.32516

x20 0.000421 46.06745

x21 0.001363 14.21914

x22 0.000232 41.26374

x23 0.000725 7.898564

x24 0.001176 49.75737

x25 0.000389 45.84436

x26 0.000537 40.21153

x27 0.001707 49.68438

x28 0.000376 38.39084

x29 2.04E-05 46.49559

x30 0.001476 35.59515

x31 0.000889 30.44849

x32 0.001277 30.11126

x33 0.000562 24.08951

x34 0.00032 44.92315

x35 0.000291 13.98515

33

x36 0.00093 9.264152

x37 0.001062 39.87017

x38 1.25E-05 37.75764

x39 0.001173 42.60311

x40 0.000401 35.51793

x41 0.000957 44.67263

x42 0.000335 0.359748

x43 0.000763 8.064783

x44 0.000628 49.42973

x45 0.000661 25.97955

x46 0.001556 11.25907

x47 0.000764 12.90673

x48 0.000311 34.38296

x49 0.001634 20.08437

x50 0.000792 10.25143

This example input file contains a list single and double contingencies consisting of the single outages
above. The .csv file will be read by the Python script to create the corresponding BDD for the union of
these contingencies and perform quantification of the total probability, frequencies, and duration times
using BDD, rare event approximation, and MCUB method.

x1
x3 x5

x2
x4 x6

x5 x7

x6 x8

x7 x9

x6 x8

x10
x7 x9

x11 x12

x9 x11

x12 x13

x14
x13 x15

x14 x16

x13
x15
x14 x16

x17 x19

x16 x18

x20
x19 x21

34

x20 x22

x21 x23

x20 x22

x24
x21 x23

x22 x24

x23 x25

x24 x26

x25
x27
x26 x28

x30
x27 x29

x28 x30

x29 x31

x30 x32

x31 x33

x35
x32 x34

x33 x35

x34
x36
x35 x37

x36 x38

x40
x37 x39

x38 x40

x39 x41

x40 x42

x41
x43
x42 x44

x43 x45

x44 x46

x45
x47
x46 x48

x50
x47 x49

x48 x50

	Acronyms
	Executive Summary
	1. Introduction
	2. Survey of Quantification Methods for Contingencies
	2.1 Rare Event Approximation
	2.2 Minimal Cut set Upper Bound
	2.3 Cut set Probability Truncation
	2.4 Binary Decision Diagram
	2.4.1 Shannon Decomposition and ITE Connectives
	2.4.2 Graphic Representation of BDDs
	2.4.3 Qualitative and Quantitative BDD Analyses

	3. System Reliability Indexes Calculation in PCA
	3.1 Calculation of System Problem Probability in PCA
	3.2 Calculation of Problem Frequencies and Durations in PCA
	3.2.1 Single Grid Component Outages
	3.2.2 Higher Order Component Outages

	3.3 Exact Quantification of System Problem Indexes
	3.3.1 System Problem Indexes Based on a Full Markov Model
	3.3.2 System Problem Indexes Based on Contingency List

	4. Implementation of PCA Quantification Methods
	4.1 Existing Open-source BDD Software Packages
	4.2 A Recursive Algorithm for BDD Quantification
	4.3 Scalable Implementation of Recursive BDD Quantification
	4.4 Input Files
	4.5 Comparing Exact and Approximate Methods

	5. Summary
	References
	Appendix A: Example Input Files for Quantification Demonstration

