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ABSTRACT

The grain.boundary misorientation: distribution . of :203-grain ::-boundaries -in bulk:

processed high Tc superconductor YBa,Cu3075 with five-processing conditions; was studied.

Two ' complementary analytical ‘approaches; Grain Boundary Misorientation - Distribution

(GBMD) from the random description, using a hypothesis -test- and :* analysis, -and. Grain ..

Boundary Character Distribution (GBCD), using:the Coincidence Site Lattice (CSL) model, .

were applied: The GBMD and GBCD both showed grain boundary evolution departing from:. -
a random:distribution above 935°C processing temperature. The GBCDanalyses indicated
an approximately linear increase in the:population of CSL-related boundaries, among which ..

the :tetragonal CSL-(¢/a # 3) boundaries grew :in-the same trend -while" orthorombic .

boundaries (c¢/a = 3) became stagnated. . The results}from comparing - the: corresponding..

GBCD and volume: averaged J; for. each batch indicated that the tetragonal CSL boundaries
were oxygen deficient and - accounted for,:among:other current limiting:factors, lower current -

carrying ability.-
INTRODUCTION
Grain boundaries in'the high T, superconductor, YBa;Cu30+3, are detrimental to the

critical current:carrying capability. . Efforts have béen made to understand the correlation - -

between the misorientation and.the measured J,. It is generally:found that there is a sharp
decline in'J, where the boundary. misorientation exceeds 10°'(Chaudhari et al. {1]; Dimos et
al [2,3]). »Such low J; persists over a wide range of misorientation angle up to:90° where

unusually - high - transport :current  was: reported." Ttis exemplified . in. the: systems. of -

polycrystalline thin films.( both a-/b- and:c- axis orientated) (Hwang et al..[4],-Eom ef al.

{5,6]) -and. of . bulk bicrystals:(Babcock ef al [7], Larbalestier ef al.:[8]).of YBazCugon .
Knowledge of the crystallographic and electronic structures of the grain boundaries is: crucial -

for understanding - the superconducting - current - densities: in bulk *YBa,Cu3O75 . and - for -

overcoming this:major. hindrance to practical applications of cuprate superconductors.:

Grain boundary studies:rely primarily.on two theoretical approaches the coincidence .

site lattice (CSL) model (Bollmann [9]) and. the:structure unit' model (SUM) (Sutton and

Vitek [10]). The SUM provides detailed. atomic configuration. at the grain boundary:if the..
interatomic potential is known. - Such information is only available in-high symmetry simple .
crystals, which limits its'application in lower symmetry: crystal systems. The CSL model, on..

the:contrary, - has been: successﬁJlly and widely-used in-grain boundary studies in various

crystal lattices, particularly in the. cubic. system. A :boundary..is considered : phys1cally :
significant and potentially special when the- boundary formed- by two nelghbormg grains has -

a hlgh number of lattice sites from both. grains:in.coincidence: . A CSL is formed when two-

grains rotate about a common axis with respect to one another for a certain-angle. -To denote -
how well two grains are in coincidence, the reciprocal value:of the ratio of the!volume of the ..
supercell formed after rotation to the volume of the crystal unit cell is defined asthe Z. The ..
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smaller the-Z values are; the more lattice sites are shared by both' grains

An experimental problem in. categorizing a grain boundary is-to designate a CSLito . -

the boundary. In.cubic crystals, a common rule.of thumb.is the-Brandon-criterion which. .
defines a maximum deviation angle which ‘a boundary-can Stlll be classxﬁed to a particular.
CSL.: For non-cubic crystals; the geometrical model.requires a*: 2:b%:c? to have rational values-

to allow the formation:of a three dimensional CSL. Assigning-a CSL to a:boundary can be . . :
complicated in non-cubic system for two reasons. F1rst numerous- CSLs can be related to:. .. -
various type.of 'Zs, depending on the' choice -of :a’ b2 2 Second, in addition to the'

introduction of grain -boundary dislocations, it is necessary-to constrain the ratios of the.

lattice parameters at the boundary region to the closest rational.values to form a CSL,.and it -~ =
is called constrained: coincidence site:lattice (CCSL).::The CCSL model'has been shown to'+ ..
apply in Zn (Cheri and King [11]); 'YBa;Cu307.5 (Singh and:King [12], Wang. and-King i -
[13]). Extensive work on textured YBa;,Cu3O75 was performed by Zhu et al [14] for about - /"

300 grain boundaries.
In YBa;Cui;07.5 the lattice parameters are very sensitive to and.vary with the oxygen

stoichiometry. . . The - simple - geometrical “constraint::in local. lattice: parameters can-be. -
accommodated by a- stoichiometric change which .can be:confirmed by looking into:the: . -
compositional variation at the.boundary::* Using -electron energy loss: spectroscopy (EELS), . . .
Zhu'et al [15] measured grain boundary oxygen hole: density, by the oxygen pre-peak located -

at 529¢V, as a function of grain boundary misorientation..It was demonstrated that oxygen

depletion occurred at the boiindary where, based on the CCSL' model, the axial ratio (c/a) ~ “
required to. adjust to the - misorientation, . while grain.interiors are oxygenated.‘Figure la - ===

shows a series. of electron-energy-loss spectra of the oxygen K edge collected at S0A apart,
across 2 large-angle grain boundary. The CCSL system is 2£31/69.22°/[310] with axial ratio
of a%:c? = 15:140.The i intensity of oxygen pre-peak decreasing at the boundary confirms the::

prediction by the CCSL 'model.’ Figure 1b denotes a boundary'with" atcd=15:135orale = -
1/3:a nominal value for - YBa;Cu;0-.- There is no marked decrease of oxygen pre-peak across .
the ‘boundary as predicted by the CCSL." Zhu et al [16] provided more:direct evidence .
between CCSL prediction and oxygen content by. convergent -beam .electron- diffraction.
(CBED) to measuring local lattice:parameters:at the grain boundary.region and-by EELS for-
the oxygen content.

In this paper, we present an analysis.of more.than 200 grain boundaries in bulk " .
processed YBa,Cu3O+:5 using a two-step. screening :procedure: initially by the grain boundary. -

misorientation distribution (GBMD), then followed by grain:boundary character distribution
(GBCD). The GBCD analysis was analyzed with respect to critical current J;. :Our goalisito. -
establish the GBCD. analysxs in bulk processed YBa;Cu30-; and to- elucidate a possxble link .

with J..

The precursors.of 'YBa;CusO75 were prepared by a pyrolysis technique,.detailed by -

Wang et al.[17] to ensure: spherical uniformity, pressed under 9000 psi static pressure, then
sintered at.the temperature range from:935°C +t0:975°C:: After sintering, the ambient -
temperature was gradually .decreased at the rate of '4°C/min to'800°C; followed by a slow -
cooling rate 0.05°C/min to the final sintering temperature.

TEM specimens: were cutfrom the bulk’samples using.an ultrasomc disk:cutter with..

3mm diameter. The specimens were thén:mechanically dimpled to:about SOum at the center. -
and ion milled to perforation by using:4kV argon ions.at an-incident .angle of 12°. At the *
final stage; the incident angle was reduced to10%and-the ion energy-was lowered to 3kV to
avoid the formation of artifacts induced by ion-bombardment... . s
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Total of 203 grain: boundaries were analyzed. The data were grouped .according:to:.

processing temperatyre and duration. . The respective numbers. of grain boundary are listed in:-

the following: -
Process  |.935°C/36hr:| 950°C/24hr.:| 950°C/240hr . 965°C/24hr | 1973°C/24hr .
Observation- | i 61 27 37 - 330 1 45
s

Table 1: Experimental observations:for different processing temperatures and times.

itrary unit

a

Intensit
Intensity (
d

520 530540 - 550

520 + 530« 540 550 _
Energy Loss (eV)

Energy Loss (eV) -

Figure 1: A series of electron-energy-loss:spectra of the oxygen K edge collected at..
50A. apart across (a).an oxygen-deficient grain: boundary: (£31/69. 22°/[310] w1th ‘axial ratio .-
of a%:c*=:15:140): (b) a fully oxygenated grain boundary(£3/83:56°/[100], a’:c?=15: 135) ‘

Grain boundary .misorientations were determined by taking the Kikuchi patterns from .
the abutting grains, then following the geometrical: method of Zhang and King [18] based on- .
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Young et al [19], Ball. [20],;and-Chen:and King [21] to- deduce the: misorientation between

the two. The collegtive misorientations of samples. from:each processing temperature were::
then analyzed against the theoretical random distribution-for the:tetragonal system derived by
Grimmer [22]. A hypothetical test and .x* analyses were applied to:indicate how well the
experiment distribution falls into being random.” The hypothesis defines that sample exhibits-.
a random -GBMD" “Any- deviation from-being random, determined: by ¥ -suggests the::-
existence of texture. Equation (1)-denotes that the x? values according to the expected and the - -

observed frequencies -

Sy Vi = oo )f | | Q.

S ectsd.

where focwai is the observed frequency ‘and fogecea the predicted value.Up. to this step,.the
information is batch-wise corresponding to the processing temperature.- Next we determine -

individual boundary characteristics by the CCSL model.such that the GBCD is obtained. -
RESULTS AND:DISCUSSION. .

Histograms:.of grain - boundary misorientation are plotted - against: the:.random"
distribution curve in figure 2 with a bin size of 10°:-. The ¥ analysis:was applied to evaluate -
the'deviation of experimental result. Figure 3 illistrates the * values corresponding to each .

batch. The horizontal line indicates.the significance level that-was set at 0.1; thus the last -

four batches. were regarded being non-random:- a clear indication that the microstructure:.
evolution has occurred. It is:important to note that thereis no linear relation between the .

values.
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Figure 2:The" grain :boundary. misorientation- distribution: of each'processing temperature is . -

plotted against the randdm distribution curve.

Figure :3:Each of % value is plotted with tespect to thermal processing temperature and time. .
The horizontal line indicates that only the batch processed-at 935°C is within the. s1gmﬁcanoe
level 0.1 and satisfies the random description..
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Figure-4 shows that the  population. of CCSL-related grain. boundaries increases
monotonically‘with increasing.temperature.. Chan ef al [23] demonstrated that:grain rotation -
into_energetically-favored orientations is thermallyactivated. However, not all thermally::-
stable boundaries do'necessarily exhibit good electrical properties.- King et al.[24] and Zhu : -
et al [25] pointed out that:some boundaries formed above 950°C; having theioxygen deficient .
composition. of ' YBa;Cuz07.5 (6 ~ 0.7), may: be CCSL-related.”" Afier a oxygen uptake -
process, though other boundaries may have the § = 0, these relatxvely low energy | boundanes-"
remain oxygen deficient :due to. the. orientation constraint... It is.conceivable - that ‘the:
increasing amount - of such boundaries undermines the : current :carrying: capability: of -
YB&:CU307L8.

Grain Boundary. Character Distribution -
of bulk processed YBa,Cu,0, ;-
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Figure:4: -The!’grain boundary character: distribution shows:the population: of CCSL-related. -
grain boundaries increases ‘with increasing temperature. Among which, the:growth rate of -
¢/a=3 grain boundaries becomes stagnated at temperature -above 950°C while the c/a =3
grain boundaries increases monotomcally ~The-critical current J. drops drastically. when the .
butk: YBazCu307.a processed above 950°C.+ Lfs

Based.on the aforementioned, we proceeded to investigate the axial ratios of CCSL.:
Each:GBCD: was divided into two:groups by their axial ratios; ¢/a =.3 and c/a # 3, as shown
by two-shaded bars of ‘each group in figure 4.- The-increase of non-3.0 boundaries with.
respect to elevated annealing .temperature suggests that more tetragonal phase boundaries:
evolved, and remained in the microstructure after the orthorhombic transformation. -For ¢/a=
3 ‘boundaries, on the contrary, the growth rate.of the population :becomes .stagnant above -
T=950°C.  Thisresult may correlate with the measured bulk'J. because fewer boundaries are
able: to -accommodate: oxygen. - Consequently, - the -critical - current: carrying capability is
drastically reduced. .. ‘
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SUMMARY

Grain boundary analysis using both GBMD:and GBCD with hypothesis testi.ng by x*
analysis yields a higher degree of confidence in interpreting experimental results: It is shown. .
that,: due to.the orientation constraint, the: CSL boundaries of ¢/a #3 remain in the structure -
formed ‘at high -temperature : during -;0xygenation-:process... Though'sthe. grain interiors

underwent : the :tetragonal-to-orthorombic - transformation, the vicinity. of the boundary is - -

depleted - in. oxygen content... The GBCD analysis strongly isuggests that:CCSL-related .
boundaries: are -energetically favorable -when processed at high- temperature: .. Howev.te;', '
among them, the growth of .c¢/a=3 boundaries :becomes. stagnated-while c/a % 3 :boundaries-

increase above 950°C: In :addition.to other current limiting.. factors, -this-promotes the :. .

degradation in J; of the bulk YBa;Cu3O7.5 processed above 950°C..
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