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Taking the first orthogonal polynomials in the conventional 
radial mode expansion in the eigenvalue type perturbation 
approach, the usual Keil-Schnell criteria for the microwave 
instabilities can be obtained. In this way, a close relation- 
ship between the two approaches is established. The exist- 
ing results are reviewed, and some comments and modifi- 
cations are made. 

1 INTRODUCTION 

A brief review of beam instability analyses shows that its 
development either belongs to a Vlasov-equation-evolved 
perturbation approach, or belongs to a Keil-Schnell- 
criterion type approach. In the first approach, see [l] and 
the references therein, both azimuthal and radial expan- 
sions are used to explore the particle distribution evolu- 
tions. Current direction is to include the potential well de- 
formation, see for example [2], and to include the effect of 
Landau damping, see for example [3]. The development 
is unlikely to give rise to analytical solutions that can be 
easily used. On the other hand, the second approach uses 
crude beam profile (with an exception for the longitudi- 
nal coasting beams) to estimate the instability threshold for 
both bunched and coasting beams. General results can be 
found in [4] and the references therein. These results have 
been proved very useful and often provide guidance to the 
development and improvement of accelerators. The crude 
beam profile, however, has certainly imposed limitations in 
the application. 

In this report, we show that the use of the first orthogonal 
polynomials in the perturbation approach can give rise to 
identical results obtained by the Keil-Schnell type criteria 
This is owing to the fact that, in general, the first orthogonal 
polynomial represents the most prominent radial mode. In 
this way, a close relationship between the two approaches 
is established. Therefore, comments will be made regard- 
ing to the limitation and possible error in the applications 
of the simplified criteria. Some modifications will then be 
developed, if necessary. 

2 TRANSVERSE INSTABILITY 

Using the first orthogonal polynomial for the azimuthal 
mode m = 0, setting ,8 w 1, the bunched beam dynamic 
equation becomes, 

. -  m 
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where wp is the betatron frequency, R .- the machine ra- 
dius. The average beam current is IO = Newo/27r, where 
N is the number of particles, and wo is the revolution 
frequency. Also ZT (n) is the transverse impedance, and 
A,,,(n) is the spectrum of the first orthogonal polyno- 
mial for m = 0, where n represents the effective spec- 
trum line, T represents the radial position. The nota- 
tion n' denotes the chromatic effect. The equivalence 

used in this article, where nrr denotes the frequency shift 
equals n' but in the opposite direction. 

Consider the normalized Gaussian distribution in phase 

E,"=-, &WG,l(.') = E:=-, ~T(12"P;,l(n) is 

space, 
2 -2r2/r: $o(r) = ..i'" 

where re is the half bunch length in radius. The transverse 
weight functionis defined as WT(T) = $o(T). 

In the following, the instability threshold will be ob- 
tained by the rule of thumb, which is, 

lAQl< A w  (3) 
where Ai2 is the coherent frequency shift, and Aw is the 
nns or the half width of half maximum frequency spread. 

2 1  Bunched Beam 

An estimate of the bunched beam instability threshold can 
be obtained using A;,,(d) w 11277 in (l), 

The criterion given in the equation (5.62) of [4] can be writ- 
ten as, 

Using ro = e2/moc2,  TO = Pn/wo, wo = /3c/R, the equa- 
tion (5) becomes identical to (4). 

For a long bunch with a nanow spectrum, the error of us- 
ing (4) can be large, mainly owing to the use of Af,,(n') M 
1/2a, the peak of the power spectrum. Also the chromatic 
effect can introduce uncertainties. 

For an improved estimate, therefore, we need to use, 

Substituting (6) into (l), and considering the chromatic ef- 
fect, we get, 

.. . 
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0 A criterion is given in [5], which can be written a, 

where z~ is the fuil bunch length, and 2~ (n") is the 
averaged impedance over the width of the bunch spec- 
tnun. The summation on the right side of (1) can be 
approximately taken as, 

Substituting (9), using mo = &/c2, the equation (1) 
becomes 

Which differs from (7) by a factor of 05. 

[6]. With m = 0, it can be written as, 
0 A better formalism is presented in the equation (18) in 

The left side is called the &eetive impedance, where 
ho (n') -is the power spectrum of the bunch. If only the 
first orthogonal polynomial is used, we have ho(n') = 
A$,l (n!) . The redundancy in the equation (1 1) involv- 
ing the effective impedance is shown as the follows. 
Using rt = z ~ / 2 R ,  we can write, 

Applying this equation into (1 I), the bunch length ZL 
is cancelled. Since the information of the bunch length 
has been represented by the bunch spectrum ho (n') in 
the numerator of the effective impedance, this triple 
representation of the bunch length can be Seen as re- 
dundancy. In comparison, the use of the total effective 
impedance shown in the left side of (7) seems to be 
more straightforward. Substituting (12) into (1 I), we 
8% 

(13) 
This differs from (7) by a factor of 1.13. 

2.2 CoastingBeam 

For a coating beam, the power spectrum of the perturba- 
tion is a delta function at a frequency nlwith an amplitude 
1/27r. The equation (l), therefore, is modified as, 

then the instability threshold can be estimated as, 

The criterion given in the equation (5.91) of [4] is, 

(16) 

which is identical to the equation (15). 

0 The equation (4) in [5] can be written, 

(17) 

which can be written as, 

Taking F = 1, this equation differs from (15), which 
is less tight, by a factor of 0.64. 

3 LONGITUDINAL INSTABILITY 
Using the first orthogonal polynomial, for the m = 1 mode, 
the longitudinal beam dynamic equation in [ 11 becomes, 

w - w s =  j2lrws IO 5 F A ? , , ( n )  (19) 
n=-m v cos 4s 

where ws is the synchrotron frequency, and 4s is the syn- 
chronous phase, V is the RF gap voltage per ring, and 
ZL(n)/n is the longitudinal impedance. For a Gaussian 
distribution with the half bunch length TL , the longitudinal 
weight function is, 

3.1 BuncbedBeam 

Ushg the equations (19) and the approximation, 

the bunched beam instability threshold is written as, 

where A w  is the synchrotron frequency spread. The corre- 
sponding equation (5.69) in [4] is, 

Using wg = -wgeqV cos 4.5/2nE, the equation (23) is 
shown to be the same as (22). 



This criterion is indeed very crude, owing to that in 
arriving (21), the approximation of the Bessel fundon 
J1 (nr) a nr/2 is used, which is only valid in a small range 
nr < 1. 
An improvement to this criterion, therefore, can be made 

(24) 

d 

Substituting (24) into (19), we get, 

0 The result in the equation (5) in [7l can be written, for 
m = 1 and the harmonic number h = 1, as, 

where hl (n) M Af,,(n) is the power spectrum of the 
bunch, and B = re/7r is the bunching factor. Note 
that we have, 

(27) 
Substituting (27) into (26), using (24), we get, 

(28) 
which differs from (25) by a factor of 0.69. Again 
we consider that the use of the equation (25) is 
more straightfornard than (26) with the effective 
impedauce. 

3 2  CoaStingBeam 

The Landau damping in the longitudinal coasting beam is 
the most explored one. Together with the dispersion rela- 
tion, the stability diagram can be plotted on the real and 
imaginary impedance plane. Compared with the others, 
this is the only case that no external focusing presented, 
therefore, one may expect that this case should be com- 
pletely different from the others. 

The successful application of the coasting beam insta- 
bility criterion to the bunched beams, i.e. the Boussard 
criterion, has opened the door to think that at least for the 
long bunches andor strong instability, the effect of the syn- 
chrotron focusing is not irreplaceable. It is found that using 
an equivalence 

ws M AW (29) 

and the local current, the bunched beam criteria is closely 
related with the coasting beam criteria. To establish the 
relation, using, 

(30) 
1 Aw w s  re 

we find that the equation (29) is equivalent to re = 2. 
For this case, the beam power spectrum is still a delta 

function, but the amplitude is no longer constant. Since 
the amplitude of a delta function equals the area of the 
function, Le. cF=-, ~ i : , ~ ( n ) ,  removing the impedance 
ZL(n)/n out of the summation on the right side of (19), 

Substituting re= 2, the equation (31) becomes, 

The Keil-Shell criterion shown in the equation (5.131) 
in [4] can read, 

where the tri-elliptical spectrum is used. This equation can 
be written the same as (32), except that the factor 5.66 be- 

. comes 4.27. 

0 The equation (1) in [5] can be written, 

where the form factor F is a unity. Since A p / p  is the 
full momentum spread at half height, using A p / p  = 
2 ( A p / ~ ) ~ ~ ~ ,  the equation (34) is the same as (32), 
except that the factor 5.66 becomes 4. 
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