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Abstract. The purpose of this article is to provide a summary of the useful 
tools related to symplectic integration. This article is neither exhaustive nor 
meant to be a historical survey. Instead we will present the state of symplectic 
integration for periodic accelerators with an emphasis on tools most useful to 
our field. We will also discuss the Yoshida formulation and a new application to 
non-symplectic problems such as radiation in rings. 

I. INTRODUCTION 

In accelerators the ideal conditions for the usage of symplectic integration 
are met. First, it can be said that we know rather poorly the exact fields 
produced in OUT magnets. Most of the time we have little or no idea of the exact 
nature of the fringe fields; we may know approximately the fields in the body of 
ideal magnets, but we are uncertain about the nature of the fields introduced 
by construction errors. Furthermore we have only an approximate knowledge 
of the exact position of the magnet with respect to alignment monuments. 
Second, what is true about an existing ring, is certainly even more so about 
the ring prior to construction. How can we tell the magnitude of errors which 
are the result of the construction process? 

The above situation would be hopeless if the purpose of i simulation was to 
predict the exact behavior of a single particle after a finite but large number 
of turns. Indeed if we could measure the exact position and momentum of a 
particle at injection and asked its position in phase space after, for example, 
10000 turns, it is likely that we would make a 100% error in phase. 

Moreover if we did track for a very Iarge number of turns near a big res- 
onance used for extraction, our simulation could easily predict totally wrong 
results for the fate of this individual particle. 

Thus from the point of view of single pass systems (electron microscopes, 
spectrometers, etc.) our situation would look hopeless. However one must ask 
a crucial question: what are we trying to see with our simulations? In light 
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of such a question it becomes clear that symplectic integration is an ideal and 
indispensible tool for rings while it may not be a useful tool for single pass 
systems where the fate and exact position of a ray is of paramont importance. 

, 

Symplectic integration works best when ye are most interested in the ba- 
sic topology of phase space and on the effect of changes of the operating 
parameters on this basic topology. The symplectic condition has a tremen- 
dous influence on the shape of phase space. Many structures which are found 
in nonsymplectic systems are forbidden by the symplectic condition: sinks, 
strange attractors, limit cycles, etc. Symplectic integration allows us to per- 
form simulations in which these structures cannot appear. The preservation 
of the topological structure of phase space by a nonsymplectic integrator re- 
quires a large number of integration steps and/or a high order integrator. For 
an ordinary integrator, the preservation of the syrnplectic condition is tied to 
its accuracy. Thus with a symplectic scheme we can take advantage of the fact 
that the basic topology does not seem to depend much on the model, provided 
certain structural properties are held constant (tunes, chromaticity, etc.). In 
a sense when using a symplectic integrator it is useful, if not essential, to re- 
interpret the integrator as a different model of the ring. If one fails to do this, 
then one is tempted to increase the number of integration steps until the inte- 
grator produces the tunes (chromaticities, etc.) of the exact solution. Instead 
one should re-fit the parameters of the ring so that the integrator behaves in a 
way similar to the exact solution with a number of integration steps as small 
as possible. This is the basic philosophy of symplectic integration applied to 
ring dynamics’. 

In closing this introduction we point out that symplectic integration is also 
important in electron ring simulations with classical radiation. Indeed the 
effect of radiation though being small OD a magnet by magnet basis, is im- 
portant and should be included on top of a symplectic scheme. Otherwise its 
effect would be swamped by integration errors. 

‘ 

2 ExmrcrT SYMPLECTIC INTEGRATION 

We mentioned that this primer is geared towards accelerator dynamics. 
Therefore we wi l  cover mostly explicit symplectic integration. It is worth 
noting that all the so-called “kick codes” which use matrices to represent “lin- 
ear elements” (quadrupoles and bends) and thin lens kicks for the multipoIes 
are second order explicit symplectic integrators. These integrators require the 

‘1 This is also partially R. Talman’s point of view: “Instead of using approximate formulae 
to perform tracking through “exact” (Le. thick) elements, it is possible to perform exact 
tracking through (i.e. thin) elements. The approximation can be improved by breaking 
thick elements into several thin elements. Long-term precision in such a program is only 
compromised by round-off error in the computer.” See reference [l]. 
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ability to split the Hamiltonian into exactly solvable parts, for example ma- 
trices and kicks in standard kick codes. It may be noted that the construction 
of explicit symplectic integrators of higher order was addressed in the early 
eighties by R. Ruth C2]. However, in this papef, we will follow the more recent 
approach of H. Yoshida because of its simplicity and greater generality. 

. 

2.1 Exact Tracking through Inexact Elements 

Consider the following s-dependent Hamiltonian which may represent a drift 
followed by a combined function quadrupole-sextupole magnet: 

(1) 

where the functions k2(s) and k3(s) have period 1. Thus it suffices to define 
them between 0 and, 1: 

1 
k ; = O f o r O < s < -  

2 

and 

We can plot the exact solution for this system at s = 3/4. This is depicted on 
figure 1. 

Consider now the following Hamiltonian where the thick lense quadrupole- 
sextupole is replaced by a single thin lens at s = 3/4: 

where Sp(s) is the periodic Dirac delta function. The reader will notice that 
this system is exactly and trivially solvable. The one-turn map at s = 3/4 is 
given by a drift of length 3/4, a combined function kick and a final drift of 
length 3/4: 

( p p F )  ( x f i n  ? X  p n )  

f 
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FIGURE 1. Exact Tracking 
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One can look at this new map in two different ways; the second way will be 
addressed in the next section. First, the thick “combined function quadrupole- 
sextupole” has been replaced by a thin quadrupole-sextupole at s = 3/4. This 
new system has a phase plot given by figure 2, on which it can be seen that the 
topology is drastically different from that of the original system depicted on 
figure 1. In fact while the tune u of the exact solution is 0.2309, the impulsive 
system is exactly on u = 1/4. How do we improve this? One could increase 
the number of integration steps until the system produces nearly the right 
phase space topology, but this would be an in inefficient usage of symplectic 
integration. Instead one should consider the integrator to be the exact lattice 
and readjust the parameters of the system. For example, if we fit the tune 
to 0.2309 by adjusting the quadrupole strength kz to 3.522 one obtains the 
topology of figure 3. It is clear that we are doing much better now. To further 
improve our results, it would be customary in an accelerator to increase the 
number of thin lenses by one and to refit again. It is important to redefine the 
element as being the integrator itself. In the next section we will reinterpret 
the example of this section in light of explicit symplectic integration. 
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addressed in the next section. First, the thick “combined function quadrupole- 
sextupole” has been replaced by a thin quadrupole-sextupole at s = 3/4. This 
new system has a phase plot given by figure 2, on which it can be seen that the 
topology is drastically different from that of the original system depicted on 
figure 1. In fact while the tune u of the exact solution is 0.2309, the impulsive 
system is exactly on v = 1/4. How do we improve this? One could increase 
the number of integration steps until the system produces nearly the right 
phase space topology, but this would be an in inefficient usage of symplectic 
integration. Instead one should consider the integrator to be the exact lattice 
and readjust the parameters of the system. For example, if we fit the tune 
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element as being the integrator itself. In the next section we will reinterpret 
the example of this section in light of explicit symplectic integration. 
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FIGURE 2. One Step of a Quadratic Integrator 

2.2 Splitting the Hamiltonian in Exactly Solvable Parks 

Consider a Hamiltonian 

such that both HI and H2 are exactly solvable if considered as separate Hamil- 
tonians. This is certainly the case for the example of section . In that case we 
have 

The Hamiltonian HI represents a drift while Hz is a kick. It is now useful to 
introduce Lie maps which act on functions of phase space. First one defines a 
Lie operator : f : associated with a function f as follows: 

J 
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FIGURE 3. One Step of a Quadratic Integrator Refitted 

where g is an arbitrary function of phase space. Using this definition of a Lie 
map for the drift HI,  the map MI is constructed: 

This map, unlike the usual transfer map, acts on functions of phase space. It 
describes the evolution of a function. The usual transfer map is regained by 
letting MI act on the functions x and p i.e. the projection functions of phase 
space (the identity transfer map): 

P2 ~ l ( x , p )  = exp(: -s- : ) (x,p) 
2 

= (eip(: -s- P2 : )12:,exp(: -s- P2 : )p) 
2 2 

The above Lie representation is then used to reinterpret our integrator scheme. 
One can show that the exact Lie map for the combined function "quadrupole- 
sextupole" is given by the formula 



M = exp (-t : Hl + H2 :) . (10) 

This operator can be approximated as follows: 

S 
~ ( s )  21 exp (-? : H~ :j exp (- s / H ~  :j exp (-; : H~ :> 

= S2(s). (11) 

Of. course this formula would be exact if the operators : HI : and : 112 : 
did commute. But then, by assumption, we would have an exact solution by 
solving for the map due HI and theo for the map due to H2, There would be 
no need for an integration scheme. Thus it is fair to assume that : HI : and 
: H2 : do not commute. 

Since the map 62 is an approximation, we can ask to what order in s does 
it agree with M ?  The answer is given by 

&(s) ~ e x p  (-s : HI + H2 + O(s2) :) 
= M ( S )  -l- O(s3) : . (12) 

Thus we conclude that the approximate map &(s) is a second order approxi- 
mation. 

What is important, however, is the fact that none of what we say is depen- 
dent on the nature of the operators : HI : and : H2 :. In fact they do not need 
to be symplectic at all. In the next section we discuss Yoshida’s approach [3] 
and its application to accelerator physics [4]. 

2.3 Yoshida’s Appraoch 

It is easy to check that the operator S2(s) is “time” reversible i.e. its inverse 
is given by S ~ ( - S ) :  

ST1(s) = {exp (-; : HI :) exp (-s’: H2 :) exp (-i : Hi :>>-I 

= exp (: : Hl :) exp (s : H2 :) exp (z : HI :) 
d 

=’ 62 (-5.). 

It then follows that such an approximation of the map M ( s )  has a single Lie 
representation containing only odd powers of s: 

00 

-s : H : + s2n+1 : 
n=l 

This can be derived from the time-reversibility; the actual form of S2(s) is 
actually irrelevant. Yoshida’s idea is to construct a new quartic approximation 

, 



S*(s) out of products of the operator &(s).  One writes the simplest possible 
symmetric (i.e. time-reversible) product of S2’s: f 

& (s) = s2 (zos) s2 (21 S)S2 (xes) 6 

= exp (-(2z0 + XI 1s : H : + ( 2 4  + x: >s3 : c3 : + 0 ( ~ 5 ) )  . (15) 

We have made use of equation 14. One obtains a set of equations for zo and 
Z1: 

- 

2zo.f 2 1  = 1 
22; + x; = 0 

The solution is found to be: 

It is quite clear that Yoshida’s scheme is recursive. If we have a 2nth order 
time-reversible approximation of the map S2n, one can immediately derive a 
(2n + 2)th order approximation: 

It follows again trivially that the coefficients 20 and x1 are given by 

2.4 Sixth Order Explicit .Integrators 

Yoshida [3] constructed integrators for the sixth order and eight order which 
use less steps than the ones obtained by applying the recursive formula of 
equation 18. The sixth order formulae might be useful in small machines 
and thus given below. For higher order optimal integrators the reader should 
consult references [3,5]. 

The sixth order most efficient integrator is written in terms of second order 
time-reversi ble operators : 

&(s) = ~2(~3s)s2(uI2s)s2(~1s)~2(uI0s)s2(~1s)s2(~2s)~2(~3s) (19) 

The coefficients w; are given in Table I. 

Table I: Yoshida’s Sixth Order Integrators. 



W1 

UJ2 

W3 

Further using Yoshida’s approach, we can obtain Ruth’s formula immedi- 
ately. We substitute exp (-: : HI :) exp (-s : H 9  :) exp (-4 : HI :) for the 
operator &(s): 

S4(s) = exp (- : d l s H 1  :)exp (: - k l s H 2  :)exp (- : d 2 s H 1  :) 
xexp (: -1E,sH2 :) C20) 
x exp (- : d p H 1  :) exp (: -Ic1sH2 :) exp (- : d l s H 1  :) . 

The coefficients d; and k; are obtained from xo and 2 1  of equation 16: 

dz = a d 1  
1 dl = 

2(1 -k Q) 

Solution A Solution 8 Solution C 
-0.11776799841887 IO’ . -0.213228592200144 10’ 0.152886228424922 

0.235573213359357 0.426068187079150 IO-’ -0.214403531630539 10’ 

-0.784513610477560 0.143984816797628 IO1 0.144778256239930 10’ 

WO = 1 - 2 (w1 f W 2  + W 3 )  

1 I C -  7 k2 = ( a  - 1)k1 
- (1 + C Y )  

It is worth noticing that this formula applies to any exactly solvable Hamil- 
tonian HI and I12 while Ruth’s derivation restricts its validity to a drift-kick 
split of H. 

3 GENERALIZED APPLICATION OF THE THEORY . 

In the following sections we review applications of Yoshida’s theory not 
covered in his paper [3] that could be used in the field of accelerators. 

3.1 Multi-Map Inkegrat ors 

Consider an s-independent Hamiltonian which can be rewritten as the sum 
of Q solvable parts: 

Q H = G H Q .  
n=l 

Then consider the symmetrized time-reversible map 

S S 
~ ~ ( 3 )  = exp (-5 : H~ :) exp (-- : H ~ -  

2 
:) 

exp (-- S : H Q - ~  :) exp (-2 S : HQ :). 
2 



It then follows that the map S4(s) given by 

&( s )  = & (zos)& (ZlS)S2 (w ), (24) 
is the fourth order multi-map version of Rutys integrator. Higher order inte- 
grators are created recursively from equation 23. 

3.2 Integrators for s-dependent Hamiltonians 

Consider. the Hamiltonian in equation 22 and let us assume furthermore 
that all the terms are s-dependent and exactly solvable under the incorrect 
assumption that s is a parameter different from the integration parameter (in 
other words, the map exp(--L : H; :) is exactly solvable even though the exact 
solution is the time-ordered exponential Texp(- 

Although it is easy to write a first order approximation of the map from s 
to s + ds as 

: 

ds : Hi : ) ). 

Q 

k 
&(s + s + ds) = n e x p  ( d s  : Hk(s)  :) (25)  

the generalization of Yoshida’s method gives us an immediate prescription to 
include the s-dependence beyond first order. 

To handle the s-dependence, we replace the s-Hamiltonian H by a cr inde- 
pendent Hamiltonian K where s and p ,  are new canonical variables. 

H(q‘,+) + K(iT’F’~s,P,) = H(C,,S) + P S  (26) 
The new Hamiltonian is integrated from Q = 0 to c = L with the initial value 
s(0) = so. The reader can check that the Lie map exp (-L : K :.) is the exact 
solution in extended phase space where the subscript o refers to extended Lie 
transforms. The extended Lie transform is defined as follows: 

af 8s as af : ‘f :ug = [f,g] + -- - --. asap, asap, (27 j 

We are in a position to ereate a simple symmetrized quadratic approxirna- 
tion for exp (-L : K :.) namely 

L L L 
s2(L) =exp (-5: p ,  :.) exp (-y: HQ :.> exp (--: 2 

L L L - - exp (- y: 2 :.) exp (-T: HQ :.) exp (-y: p ,  :.) . 

The operator exp (-5: p ,  :.) in formula 28 provides a prescription for eval- 
uation of the various exp (-$: Hi :n) at the correct time (or s) so as to make 
the entire procedure converge at the expected rate. Once again, higher order 
integrators are created recursively from equation 28. 

c 
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4 APPLICATION T O  NON-SYMPLECTIC 
PROBLEMS: RADIATION 

Yoshida’s method is based on the existencgof a Lie operator of some sort and 
a quadratic time-reversible approximation of the exact map. Thus Ruth’s [2] 
as well as Yoshida’s [3] integrators have little to with the symplectic structure 
per say. There are more connected to the Lie representationzof operators and 
clearly apply to non-symplectic systems. 

A- useful non-symplectic application of Yoshida’s methods in accelerators 
is in the domain of classical radiation in electron rings. If a computer code 
computes the change in energy of an electron due to radiation at each time 
steps, one will be able to determine various useful properties of the ring such as 
the phase at the cavities and the damping coefficients. Typically one computes 
the new closed orbit with radiation and the matrix around it using something 
like a truncated power series algebra package (TPSA package i.e. “DA”, for 
example see [6,7]). The eigenvalues of this matrix will give us the damping 
time of the ring under consideration. 

One can ask why bother with symplectic formalisms when there exist in the 
literature high order integration schemes which would work very well on a non- 
Hamiltonian force? The answer to this lies in the smallness of the radiation 
effects in a ring. On a turn by turn basis a particle will rarely loose more than 
one percent of its energy; typically it looses about one part in tenathousand. 
It turns out that, if this effect is added on top of a symplectic scheme, it 
will be easily detected even if the scheme itself is relatively inaccurate. If, 
on the other hand, we use a nonsymplectic scheme, we would need a highly 
accurate scheme in order to resolve the nonsymplectic inaccuracies introduced 
by the integration of the Hamiltonian system from the actual radiation. By 
adding radiation on top of a symplectic scheme we can continue to use the 
Talman philosophy (see footnote) of “exact” tracking through “inexact” re- 
fitted elements. 

How does this work? Consider a beam element (magnet) represented by 
a Hamitonian H and approximated in the tracking code by a time-reversible 
quadratic approximation S~(S). As we have seen this is general enough to 
encompass Ruth’s integrator and the whole sequence of Yoshida’s high or- 
der formulas. In passing we point out the obvious: if the element without 
radiation is exactly solved, it is certainly a “quadratic approximation.” For 
example in standard kick codes, bends and quadrupoles are often solved ex- 
actly within the framework of.large machine Hamiltonians (the solution being 
in terms of matrices for transverse phase space and quadratic polynomials for 
the longitudinal variable e.). 

The effect of radiation can be added as a force @rad(.’,p3 which we Twill 
assume to be s-independent within a particular magnet. Then it is clear that 
a new quadratic approximation of the Lie map can be written as follows: 

J 



Siad(s) = exp -F" - V &(s) exp -F" - V . (; - -1 (; - -1 
The operators are all assumed to be in canonical variables as reflected by 

the superscript "c". A first order solution ofkhe transfer map associated with 
the operator fi. ? can be derived easily. We will proceed now 'with a sketch 
of such the derivation (see [8] or 191 for more details). 

Following Sands [lo] the change in the relative momentum deviation 6 (we 
are assuming an ultrarelativistic electron) is given by 

. - b  4 

BL * BL ; K, = 1.40789357 loT5 E:- 
db 
dl Brho2 
- = Kc(l + ~ 5 ) ~  

The reference energy of the electron Eo is measured in Gev. The field l?L is 
the component of the local magnetic field perpendicular to the direction of 
propagation. The quantity gL - can be easily computed from the value 
of the field given along the unit vectors of a cylindrical frame of reference. 
Needless to say that these quantities should be available to a well-written 
tracking code. 

For an ultrarelativistic particle phase space can be described by the set 
(z,p,, y,p,, S, l )  where the transverse momenta and. the energy S are scaled 
by the design momentum PO. Since our variable of integration is a distance s 
along the magnet, we need to convert the derivative with respect to C into a 
derivative with respect to s. This is done using the underlying Hamiltonian 
of the magnet under consideration: 

dS dS& 
ds deds 
- -  -- - 

d6 db dH 
de de as 

- - - [l, H ]  = --- .(31) 

During the radiation process, an ultrarelativistic particle will emit a photon 
in the forward direction only. Thus, the usual directions and 2 are left 
unchanged while the transverse momenta actually change. Therefore, to the 
symplectic integrator of step size As, we must add the radiative terms: 

, 

25~-5~ i3H 
Brho2 dd 

sf = s+ K"(1 + 6) -AS 

1 +sf 
P! = (2% - a,) - l + d  +ax 

1 + sf 
1 + 6  Pi = (PY .- a y )  - 

(33) 

(34) 

The above set of equations constitutes a first order solution of the transfer map 
associated with the radiation process. .Although it can be part of a multi-step 
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Yoshida integrator, terms proportional to it will not converge with the rate 
predicted by the theory. 

This situation can be improved by using the non-canonical variables (e,$) 
instead of the canonical variables ( p z ,  py ) .' In non-canonical variables, the 
radiative operator has a simple form because only the energy b is changed by 
the process: 

F 

Furthermore the quantity which expresses the change in path length cannot 
depend on the energy when expressed in terms of the non-canonical variables 
(%,%). Thus equation 29 can be re-written as 

.: 

where C is a change of variables from (p5,py) to (%,$). 
exp (AS@-' - e) changes only the variable S according to the relation: 

The operator 

J*(A~)  = exp ( ~ S f i - ~  - d) b 

Because equation 37 is an exact solution of the radiative operator, equation 36, 
if used in one of the high order inteeators previously discussed, will behave 
appropriately and preserve the expected rate of convergence of the integrator. 

CONCLUSION 

We have emphasized the techniques of explicit symplectic integration in 
accelerators. We point out that the explicit schemes allow the addition of 
new forces on top of an existing integrator. Furthermore, if the Lie map 
associated with a new force is exactly solvable, then the resulting scheme 
has a rate of convergence predicted by the theory. We showed an example 
of such an addition, namely the inclusion of classical radiation on top of an 
existing symplectic scheme (Le. a tracking code). Another example could 
include the addition of a solenoid component on top of a multipole field within I 

the framework of large machine Hamiltonian. 
It is now clear that tracking codes (i.e. "kick codes") can and should handle 

the full six dimensional phase space with or without classical radiation. Such 
codes, when equipped with TPSA (Le. "DA"), can extract reliably all the 
linear and nonlinear lattice functions including all the radiation integrals. 
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