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Abstract. Kinetics of longitudinal ionization cooling is analysed by use of 
method of moments. Special attention is given to “supercooling” situation when 
longitudinal damping coefficient is much more than synchrotron frequency. It is 
shown that in this case the emittance damping becomes slower, and it should be 
taken into account in designing of the ionization cooling system. 

INDIVIDUAL PARTICLE OSCILLATIONS 

For muon muon collider [l] a longitudinal ionization is created by “wedges,” 
which represent the pieces of matter with a transverse gradient of the “ion- 
ization losses”; these pieces should be placed at sections where dispersion 
exisits. Inside such pieces change of A p  (deviation of a muon momentum p 
from its equalibrium value p s )  is proportional to A p ,  which results in longi- 
tudinal damping. Equation of longitudinal motion for individual particle in a 
presence of wedges may be written in the following form: 

Here y = x - zs (x is a longitudinal coordinate of particle, x, is a longitudinal 
coordinate of equilibrium particle), 2a is a longitudinal damping coefficient, i-2, 
is a synchrotron frequency, Wv(x) describes the heating effect due to “knock- 
on” electrons. 

A longitudinal damping coefficient is defined by the following formula: 
~~ 
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Here: P, y are relativistic factors; m is a muon mass; sign () means averaging 
on z;  are ionization losses of energy per unit of length, depending on a 
transverse coordinate z; @ is the dispersion function. Parameter Lo is defined 
by the following expression: 

Momentum deviation Ap is connected to our variable y by standard expres- 
sions: 

Emittance in our variables is defined by 

and a normalized longitudinal emittance is given by 

Using Eq. (4), we find: 

Pr 
= - r e g  

The longitudinal (synchrotron) frequency s2 is defined by: 

2~eE,,  - COS ( 9 ~ ~ )  A 2 R =  
mc2XP2y 

Here E,, is an amplitude of the r.f. field, and X is its wavelength. 

are defined by: 
Let us consider a case when a and R are constant. Eigenvalues of Eq. (1) 

We have two different regimes of operation: 



a) a > R, non-periodic motion; 
b) a < R, periodic oscillations. 
At the first regime both modes are damped with different damping rates. 

For a >> R a damping rate of “slow” mode is defined by: 

For optimal cooling it is necessary that a = a1 where a1 is a transverse 
damping coefficient. 

Numerical estimations show that in this case for reasonable amplitudes of 
the accelerating field a >> R, and a damping rate of “slow” mode is defined 
by Eq. (11). 

For periodic oscillations 

A172 = -a f i d i K - 2  = -a f i W 1  (12) 

We see that both waves are damped with the same damping rate. 
Let y(z = 0) = yo,y’(z = 0) = yb; then we can write: 

Here (p1,2 = exp(A172z). For aperiodic case: 

”” - a 
A2 - A1 a0 

= exp(-az) chao z + --ha0 z 
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a 
= exp(-az) chao z - - shaox A 2 9 2  - Alp1 

A2 - A1 

We can obtain similar expressions for periodic case from Eqs. (14)-(16) 
using change: 

shao z - __ sin wl z w 1 =  d i K - 2  (17) 
chao x + cosw1z 

a0 W1 

Using Eqs. (14)-(16) it is easy to calculate an evolution of moments and the 
emittance by direct calculations. However, in order to take into account the 
heating it is simpler to use method of moments. 
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EQUATIONS FOR MOMENTS AND ITS SOLUTION 

Using Eq. (l), we derive a system of the first order equations for moments 
($ ) ;  (yg) and ((2) ). Let us define: (g2) = u; (ya) = v, ((a) ) = t. Then 
we can write 

2 2 

d u  
- = 2v 
d x  

dv 
- = t - 2 a v  - R2u 
d x  

d t  
d x  
- = -2R2v - 4at + w, 
- = -4a€; + tw, de2 
d x  

It is interesting to  compare Eq. (20 )  with "standard equation" 
which is usually used in literature [1,2]. Using Eq. (4), we obtain: 

d 2 h  
-((Ap) ' )  = -4a ( (Ap) ' )  - 2fl-(7~ A p )  + Wp 
d x  P 

We see that this equation differs from the standard one by a presence of the 
additional second term in RHS. Really, this term does not have affect on 
equilibrium parameters; however, this term has to  be taken into account for 
calculation of evolution of the moments and the emittance in time. 

Let us consider a case when a ,R  are constant. Then our system of four 
linear equations with constant coefficients can be solved analytically. 

Equilibrium solution of the system can be found, if we assume that all 
derivatives are equal to zero. Then (for a, R, Wy are constant) we obtain 

€eq Y = W y / 4 a R  

We see that for R = 0 an equilibrium solution is absent. 

may be written as follows: 
If at an initial point the beam has a longitudinal crossover, initial conditions 

1 u ( x  = 0 )  = uo; v(x = 0 )  = 0;  
t ( x  = 0 )  = to ;  E ( X  = 0) = E o  

We can solve our system with these initial conditions by use of Laplace 
transform (see Appendix). 
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In a case of “superdamping” (a >> R) it is possible to obtain comparatively 
simple asymptotic expressions for all interesting parameters. Let us assume 
that x = a /R ,  r = Rz, and that the initial beam is “matched,” Le., t o  = R2uo. 
Then, using Eqs. (45)-(47) we obtain (for exp( -2s~)  << 1): 

- VfT = - - R e x p ( - . / x ) n  X 

UO 2 

where ufr,vfT and t fr  correspond to free oscillations (for wy = 0). It is easy 
to  see, that 

(30) 
2 

UfT t f T  - v f ~  = 0 

Thus, we observe the following mechanism of the longitudinal free emittance 
damping in “superdamping” regime: a) the beam size is damped very slowly 
and practically doesn’t change (see Eq. (27)); b) the beam spread on momenta 
is fast decreased to  asymptotic value: 

and then it is diminished very slowly. 
Attenuation of the emittance is due to the “crossing7’ moment term ((3%)). 
In the region of slowly changed t ,  value of 6: is determined to  high accuracy 

by the following formula: 

Thus, in order to  find u(z) we must add to UfT an expression for Uh&. Using 
Eq. (48), we find: 

Using Eq. (27) and (32)-(33) we obtain the final result: 

fy feq  (34) 
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Usually $ = 2 >> 1, and with good accuracy we can write: 

It is easy to  see that for normalized emittances Eq. (35) is also valid. For 
normalized equilibrium emittance we have the following expression: 

Here 

Here re, me - classical radius and mass of electron; m - muon mass ; p, 2, A 
are density, charge and atomic number of the wedge material. 

DISCUSSION 

We see that kinetics of the longitudinal ionization cooling for strong damp- 

- Longitudinal oscillations of individual particles have nonperiodic character 

- During the cooling longitudinal beam becomes “unmatched.” 
- Longitudinal beam size is changing very slowly, and therefore time neces- 

sary to reach the equilibrium emittance is increased with an enhancement of 
the longitudinal damping rate. 

It is clear that these special features of longitudinal cooling should be taken 
into account when we look for the optimal characteristics of the cooling system. 

ing coefficient have a lot of special features: 

with different damping rate of two modes of oscillations. 

APPENDIX 

Let us apply Laplace transform to  Eqs. (19)-(21) with inital conditions 
(26). Thus we obtain 

(39) 
pu - 2v = uo 

R2U+ ( p +  2a)V - T = 0 
2R2v + ( p  f 4a)T = -I- t o  

For emittance we have the following equation 
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( p +  4a)@ = (30 + WU(5) (40) 

Solving this linear system, we have: 

2(fi2Uo + t o )  + uo(p + 2 a ) ( p  + 4 a )  2w 
(41) + 

a0 ( P )  PA0  (P)  
W P )  = 

(43) 
2R4uo + t o b ( p  + 2 4  + 2a2] w b(p + 2 4  + 2a2] + 

A0 (P)  PA0  ( P )  
T(P) = 

Denominator Ao(p) is given by 
The first terms in Eqs. (41)-(43) describe evolution of free oscillations, the 

second ones - evolution due to  heating. Substituting Eq. (42) in Eq. (41), we 
obtain: 

= ( p  + 2a)(p2  + 4ap + 4R2). 

Here U ,  V ,  T and @ are, correspondingly, Laplace transforms for u, 21, t and c2. 
The first term describes a damping of the initial emittance, the second term 
describes the emittance growth due to synergism between free oscillations and 
the heating, the last term describes the emittance growth due to  heating in 
an absence of an initial phase volume. 

Using the backward Laplace transform, we obtain for terms, describing a 
damping of free oscillations: 

For the second terms (due to heating) we obtain: 



It is easy to  see, that % and e -+ 1 for x -+ 00; ‘Uheat -+ 0 for x -+ 00. 

Expresion for c2(x) have the more complicated form: 

Here a0 = d m .  Expressions for oscillation regime can be found by 
subst it ut ions using: 

sh2aox + sin2wlz w1 = d n  
ch2aoz -+ COS2WlX 1 
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