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Abstract. We present an Inverse Free Electron Laser with a Square Wave 
Wiggler (IFELSW) as a new acceleration scheme and show Analytically and 
numerically about factor of 2 gain in the energy when compared to the standard 
IFEL with the Sinusoidal [l] field Wiggler. 

I INTRODUCTION 

The Nonlinear Amplification of Inverse-Bremsstrahlung Electron Accelera- 
tion (NAIBEA) is a scheme of acelerating charged particles that uses a laser 
coupled to a static applied field structure in which a constant magnetic, or 
electric, field alternates sign at some appropriately determined positions 3 
such a way that the particle is always accelerated. This may be understood as 
a kind of the Inverse Free Electron Laser Acceleration (IFEL). In both of these 
acceleration schemes [1,2] , relativistic particles move under the combined ac- 
tion of an electromagnetic travelling wave, the laser field, and a magnetic, or 
electric, applied static field. Both, the laser radiation and the beam of parti- 
cles, propagate along the field structure. This static field, usually provided by 
magnets, acts like a wiggler by producing a small undulation in the particle 
trajectory. The transverse velocity of this undulation couples in such a way 
to the electric field of the electromagnetic wave that the energy is transferred 
from the laser to the beam. 

In the standard IFEL this wiggling motion is created by an undulator whose 
magnetic field varies sinusoidally with the longitudinal distance [ 11 , while in 
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fl  

- = -eEx + ePzBy + ePZBapp. dPX 
dt  (3) 

With E,  = By = -Exo sin4, 4 = k(ct - z )  and Bapp = Bof(#~), where 4 
corresponds to the phase of the laser field at the particle position, the above 

% equations become 

dt  = epxEx0 sin4 - epxBof(4) (4) 

where f ( 4 )  is a unit square wave of period 2n that switch signs at odd numbers 
of 5 and f ( 0 )  = -1. By multiplying the above equations by vz and v,, 
respectively, we obtain the energy equation 

(6) mc 2 - dr = evxEx0 sin 4. 
d t  

Eqs. (4) and (6) can be combined to give 

dP2 2 d 7 -  
d t  d t  

c- - mc - - -ev,Bof($). (7) 

First integrals of the motion are obtained by integrating Eqs. (4) and (5) 

Pzc = mc 2 y - e 1’ dtv,Bof($) + Kl (8) 

where we used the fact that $$ = kc(1 - ,&). These two integrals can be 
performed by parts using the fact that since f ( 4 )  is a square wave function 
its derivative is a sum of delta functions, namely, 

f’(4) = 2C(-1)”6 [$ - (2n + l);] * 

n 

We obtain 
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where 
i 

Ki = -KI - eBozo + 2B0 z ( - l ) ” x n  (13) 
n 

and i is the running index corresponding to the segment of the wiggler where 
the particle is located. 

In reducing the above system of equations to a one dimensional problem, 
for convenience we first change the independent variable from the time (t) to 
(+), and use a new variable Q such that $$ = P,, i.e., 

(14) 
d4 k 

Q’ = P, = m~-z’(+) = -(mc2y - P,)s‘(~)  
dt C 

Where the primes denote derivatives with respect to 4 and we have used the 
relation $$ = k(c  - w.) = &(mc2y - P,). Substituting P, in Eq. 14 results 
in 

and after integrating we obtain 

where the constant C; is introduced in order to assure the continuity of co- 
ordinate Q when the particle traverses the switching sign points of the field: 
They are given by 

Since Q” = P;, Eq. (9) and relativistic relations can be used to eliminate 
the dependence of Q in other variables except q5 (the phase of the laser field). 
This leads to the following equation of motion for Q as a function of q5 only: 

This is a nonlinear second order differential equation. It can be used to pre- 
dict the existence of a periodic solution as illustrated In Fig.3, We have the 
evolution of the variable Q and of the transversal displacement z, obtained 
inverting Eq. (16), as a function of 6. This is a resonant trajectory. It is 
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locally periodic, in the sense that its amplitude and period vary slowly as the 
particle accelerates. 

We observe in Fig. 3 that the electron enters and leaves each segment 
(in which the applied field has a given sign7, with 2 = 0 which means that 
the constants Ki and C; (given by Eqs. (13) and (17)) remain the same in 
all segments. We further note, that multiplying the equation (18) by f(4) 
the product f ( $ ) Q ( $ )  satisfies an equation which remains invariant, since 
f2(q5)  = 1 and f(q5) sin q5 does not change from one segment to the other. As a 
consequence an oscilatory periodic motion for Q follows. The relatively small 
perturbation to the periodicity being caused by the lack of symmetry of the 
laser field term (the last term in Eq.18) inside each segment of the square 
wave. 

A solution to this nonlinear second order differential equation can be con- 
structed and used to obtain an expression for the rate of energy increase. 
However here, we follow a simpler approximate approach by obtaining from 
Eq. (12), an expression for the transversal velocity vx and puting it into the 
Eq. (6) (neglecting the oscilatory parts, as we are not interested in). We 
then observe that in a given segment of the applied field, the variation of the 
longitudinal distance z is exactly half of the wiggler period A,. Since z is a 
monotonic function of $, (in the average) we can further assume that z in- 
creases linearly with $. Then the two terms left in the expression of v, define 
a triangular wave. So we can write, 

eB0.h, 
% - -d#) 4mc2y 

where g($) is a unit triangular wave with the Fourier representation 

“ 8  nr 
g($) = - - sin - sin n+ 

n2r2 2 n=l 

(19) 

Substituting this into Eq.19 and equation 19 into Eq.6 (again neglecting the 
high frequency terms) we find, 

(21) 
dy - eEx, eBoAw - -- - 
d t  mc2 8ymc2 

This expression is to be compared (as in e.g. [lo]) with the equivalent one for 
a sinusoidal wiggler and a plane polarized wave (Eq. (27) of Ref. [I]). We find 
that the square wiggler gives it rate of increase that is about two times larger. 

I11 CONCLUSION 

We found in the last section, that it is possible to construct an Inverse 
Free Electron Laser (IFEL) with a square wave wiggler (IFELSW) such that 
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the particle in a resonant trajectory is always accelerated. The particles are 
supposed to be injected along with the laser radiation, i.e., with no transversal 
velocity. By giving to the square wave a phase shift of the wiggling motion 
acquired by the electrons will be in phase with the laser field and they will be 
accelerated. 

It was possible to  obtain an explicit expression for the average rate of energy 
increase and as a result we have found a gain in energy of about two times 
when compared with the standard IFEL with a sinusoidal wiggler. We note 
that, although Maxwell’s equations do not allow an abrupt change ‘of sign 
of the field, the results we have obtained here suggest that the acceleration 
scheme using laser field turns out to be more efficient as we approach the 
square wave field patterns. 

REFERENCES 

1. E.D. Courant, C. Pellegrini and W. Zakowicz, Phys.Rev. A32, 2813 (1985). 
2. M.S. Hussein and M.P. Pato, Phys. Rev. Lett. 68, 1136 (1992). 
3. M.P. Pato, M.S. Hussein, and A.K. Kerman, Nucl. Inst. & Meth. in Phys. 

4. M.S. Hussein, M.P. Pato and A.K. Kerman, Phys. Rev. A46, 1136 3562 (1952). 
5. M.S. Hussein, M.P. Pato, Mod. Phys. Lett. B6, 747 (1992). 
6. M.S. Hussein and M.P. Pato, Int. Jour. of Mod. Phys. AS, 3235 (1992). 
7. R.M.O. Galviio, M.S. Hussein, M.P. Pato, and A. Serbeto, Phys.Rev. E49, 

8. M. P. Pato, Private communication. 
9. Z. Parsa, ‘An Inverse Free Electron Laser with a Square Wave Wiggler’, Propsal 

to ATF Steering Committee, Report - October 30, 1996. 
10. Z. Parsa, ‘Square Wave Wiggler IFEL’ Supporting Information for ATF Steer-: 

ing Committee Review Meeting, Report - November 20, 1996; and references 
therein (1996); 

11. Z. Parsa, ’Inverse Free Electron Laser Acceleration Scheme with a Square Wave 
Wiggler’, Presentation UCSB/ITP-56, Santa Barbara, CA (1556). 

12. Z. Parsa ’New IFEL’ Experimental Proposal for BNL-ATF (1597). 
13. Z. Parsa, ’Improved NAIBEA and IFEL’, APS-APR97 No. 5933, Presentation 

14. Z. Parsa, T. Marshall, ‘Enhanced IFEL Experiment using a Novel Wiggler’ - 

Res.A328, 342 (1993). 

R4807 (1994). 

Washington D.C. (1957). 

PAC97 Presentation, Vancouver, Canada (May 1997). 

Figure Captions: 
Fig.1- Show the directions of the laser field and Injection of Electrons. 
Fig.2- A sketch of the Wiggler Magnetic field. 
Fig.3- Show the trajectories as the electron moves through the Wiggler. 
Fig.4- The evolution of energy as the electron moves through the Wiggler. 
Fig.5- Energy distribution in terms of y. 
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Fig. I-.: Plot of the directions of the laser field and injection of electrons. 
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Fig.2- .: A sketch of the Wiggler Magnetic field for the proposed IFELSW 
and the positions where the sign of the magnetic field is to 
be switched 
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Fig.3- .: Plot of the trajectories as the electron moves through the 
Wiggler '(case a Ref. [SI) 
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Fig.4 i Plot showing the predicted IFELSW evolution of the enera as 
the electron moves through the Wiggler (case a, where the 
initial prarneters are the Same as recent BNL- ATF IFEL 
experiment [case a Ref. 191) 
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Fig-5- : Plot showing Energy distribution in terms of yas a normalized 
$istogram for different Temperatures of ?O-150 KeV for example of the initial 
density of 10**8 cm**-3. Other simulations can be done. 
a) T=10 KeV, b) T=SO KeV, c) T=lOO KeV, d) T=150 KeV. 


