
>Paper submi t ted to :
QCALEPCS ' 97
I B e i j i n g , China

b11/3-7/97

Application Of Object Oriented Programming Techniques
In Front End Computers*

Joseph F. Skelly
AGS Department, Brookhaven National Laboratory

Upton, New York 11973 USA

BNL-6 4229

Abstract

special demands on software, beyond real time performance
and robustness. FEC software must manage a diverse
inventory of devices with individualistic timing
requirements and hardware interfaces. It must implement
network services which export device access to the control
system at large, interpreting a uniform network
communications protocol into the specific control
requirements of the individual devices. Object oriented
languages provide programming techniques which neatly
address these challenges, and also offer benefits in terms of
maintainability and flexibility. Applications are discussed
which exhibit the use of inheritance, multiple inheritance
and inheritance trees, and polymorphism to address the
needs of FEC software.

The Front End Computer (FEC) environment imposes

Introduction

The Standard Model for accelerator control systems [1,2]
describes two levels of computers, often called Console
Level Computers (CLCs) and Front End Computers (FECs),
joined by a network. The purpose of this paper is to discuss
the advantages of using an Object Oriented Language in
writing software for Front End Computers. The benefits of
Object Oriented Programming (OOP) have been much
discussed in recent conferences; what this paper focuses
on particularly is its use in Front End Computers, and
especially on the use of an Object Oriented Language in that
environment, which is more novel. The presentation is
technical, but at a conceptual level; no code is presented.
The reader is assumed to be familiar with the basic concepts
of OOP.

A basic difficulty in this endeavor is ensuring
compatibility of the Object Oriented Language with the
requirements of the Real Time environment. A commercial
Real Time Operating System (RTOS) is an attractive
solution to the need for providing real time performance in
the FEC, but until recently there was no commercial RTOS
that supported use of an Object Oriented Language; hence,
an effort to achieve the benefits of OOP necessarily
employed a procedural language. The use of an Object
Oriented Language offers additional advantages, which this
paper explores.

Historical Review

The use of Object Oriented Programming in accelerator
control systems was discussed in ICALEPCS91 and has
been revisited at each ICALEPCS since, with increasing
enthusiasm. For the most part, the discussions have focused
on the use of OOP in applications written for Console Level
Computers [2,3,4]. One contribution at ICALEPCSPI [5]
discussed the use of OOP in a Front End Computer, but
without benefit of a formal Object Oriented Language; this
effort used an Object Oriented approach which was written
in the procedural language C, a technical tour de force,
motivated by precisely the constraint discussed above, the
unavailability of an Object Oriented Language for the real
time environment. That report is nevertheless a lucid and
complete presentation of the software organization required
for the FEC environment. Another report at ICALEPCS93
[6] discussed prospective development at AGS and RHIC of
FEC systems along these lines; the present report provides
additional technical description of the AGS effort.

Technical Context of AGS Front End Computers

The object oriented software techniques discussed here can
be employed in any FEC, regardless of its technical context.
For the sake of a concrete perspective, however, the AGS
Front End Computer is described in this section.

The AGS control system conforms to the Standard Model,
with Unix workstations used for Console Level Computers,
and VME systems used for Front End Computers (as well as
an inventory of legacy FECs of older design). Computer
nodes in the control system are linked by Ethernet. An
application program in a CLC communicates with an FEC
by means of client-server techniques, using a Remote
Procedure Call (RPC) protocol. The FEC nodes employ
Single Board Computers with 68040 processors, residing
in VME crates. The FEC runs a commercial Real Time
Operating System (VxWorks) which is C++ friendly. The
FEC-resident C++ objects which implement the accelerator
device interface are called Accelerator Device Objects
(ADO4 161.

Accelerator Device Objects may be characterized as
containing either homogeneous or heterogeneous data types;
AGS ADOs are heterogeneous. This means that a single
ADO contains data of multiple types, and provides an
Application Programming Interface which communicates
multiple data types. All AGS ADOs contain up to 4

4

command fields and up to 16 status fields; command and
status fields are of type "char". In addition, AGS ADOs
may contain setpoint and measurement fields which may be
of another type, eg type "int" or "float" Use of
heterogeneous ADOs permits all features of a complex
accelerator device (such as a power supply or vacuum
gauge) to be integrated into a single ADO

Challenge of Accelerator Device Objects

environment is orderly management of a broadly diverse
inventory of ADOs while taking advantage of the
substantial common features they possess Perhaps the
most significant such feature IS a common Application
Programming Interface, usually implemented via calls into
device object methods from an W C server task

The fundamental software challenge presented in an FEC

The diversity found in the ADO inventory is motivated by
the diversity in underlying accelerator devices. This
diversity is manifested in such characteristics as:

Hardware interface
Behavior
Data content
Timing requirements

This issue is addressed herein as a series of 5 specific
challenges, along with their solutions. Each of these
solutions is a simple application of a standard feature in
Object Oriented Languages; the feature set assumed here is
that of C++. By means of examples for each of these
solutions, a set of ADO classes is developed, which
implements a model of the device classes needed in an FEC
software environment. In this context, only the ADO class
software is discussed; there is no discussion of the
procedural software required to implement RPC server
functionality.

Challenge 1: Device Inventory Management; Solution:
Inheritance

The challenge of device inventory management is
addressed with inheritance. A base device class is defined,
from which all other device classes are derived; this class
might be called the "ADO" class. Then a single array of
"ADO" objects will serve as the inventory record for all
device objects, whether of the base class or of derived
classes. The base "ADO" class possesses a set of methods
which define the fundamental common behavior and
interface for all derived classes.

For example, one might derive the following list of classes
from a base "ADO" class.

class ADO

class PowerSupply
' class TimingDevice

class VacuumGauge
class BeamPositionMonitor

Challenge 2: Diversity in Hardware Interface and
Behavior; Solution: Polymorphism

The challenge of diversity in hardware interface and
behavior is solved using polymorphism, ie redefinition
(overriding) of methods. The diversity in the classes
derived from the "ADO" class can usually be confined to a
few methods, and only these few methods need be redefined
for each of the derived classes to implement the desired
functionality.

For example, the "ADO" class might define the following
methods

class ADO Methods

GetImmediateReport - report state of device
GetDeviceDetails - report device configuration details
RequestReport - request reports on ensuing accelerator

SendReport - send previously requested report
Watchdog - check device state, send error report if any
AcquireState - obtain state information from hardware
CommandToDevice - send new command to hardware
WriteArchive - write cache record for device
ReadArchive - read cache record (restore state after reboot)

cycles

The first 4 or 5 of these methods mainly implement client-
server features, and the base class methods are probably
valid as well for all derived device classes, one might
debate the issue for the "Watchdog" method, based on
behavioral considerations, and override on a case-by-case
basis as needed The "AcquireState" and
"CommandToDevice" methods deal with the hardware
interface, and certainly would be overridden The last 2
methods help implement device persistence when an FEC is
rebooted, the base methods here are probably adequate for
derived classes as well

The combined use of inheritance and polymorphism
promotes extensive reuse of common methods, enhancing
efficiency and maintainability

Challenge 3: Diversity in Data Content; Solution:
Templates

For each of the classes derived above from the base
"ADO" class, one would probably employ different data
types for the setpoints and measurements, eg.

This challenge can be addressed by using a templated
ADO class, Nith the data type of the setpoint and
measurement specified by the templated type In this way,
the code which handles setpoints and measurements need be

written only once, resulting in substantial code reuse, and
therefore efficiency and maintainability. The notation for
such a templated class is, eg, ADO+.igned int>.

Challenge 4: Semi-homogeneous Subsets of Devices;
Solution: Multiple Inheritance

A hypothetical FEC might have an inventory of Power
Supply devices and VacuumGauge devices which were all
interfaced using the General Purpose Interface Bus (GPIB);
certain types of operations would be common for all GPIJ3
devices. The challenge here is to deal efficiently with this
commonality. An effective solution is the use of multiple
inheritance. A new base class can be defied to deal with
the common properties of GPIB-interfaced devices, perhaps
named "GpibUnit"; device-specific information such as
its gpib address would be private to each "GpibUnit" object.
In this case, one might define the following methods for the
"GpibUnit" class:

class GpibUnit Methods

TransmitCmnd - transmit a command (over gpib)
Receivestate - request state information, receive it (over
a i b)

Then the "PowerSupply" and "VacuumGauge" classes are
derived from both the "ADO" and "GpibUnit" classes.
Methods in the "PowerSupply" and "VacuumGauge"
classes could invoke the Transmit Cmnd and Receive State
methods as necessary. The inheritance relationship then
looks like this:

ADO<signed int> GpibUnit ADO<float>
\ I \ I
PowerSupply VacuumGauge

As above, use of multiple inheritance promotes code reuse.

Challenge 5: Chains of Semi-homogeneous Subsets of
Devices; Solution: Inheritance Trees

A not uncommon circumstance is the need to support two
(or more) almost identical power supplies, with only minor
differences. For example, two sets of supplies from the
same vendor, with one set operating in a monopolar mode
and the other in a bipolar mode. The vendor has
provided subtly different command strings to accommodate
this situation. The solution here is to develop an inheritance
tree which reflects the situation. An intermediate class
eg "VendorPowerSupply", is provided to implement the
common features, and then derived classes, eg "BipolarPS"
and "MonopolarPS", handle the distinctive features. The .
inheritance tree looks like this:

.

Through the use of polymorphism, the fiial derived
classes, "BipolarPS" and "MonopolarPS", can be extremely
terse, since most of their features are implemented in the
"VendorPowerSupply" class. Yet again, this approach
promotes code reuse.

Conclusion

efficiency in development and maintenance of software, due
to the extensive reuse of code in Accelerator Device Object
classes. It is equally important to note that these techniques
also make the software more readable and comprehensible.

Use of each of these techniques leads to substantial

Development of such an FEC software environment began
at the AGS in 1993, and commissioning began in 1994.
These systems have been in operational use at the AGS
since 1995. At present, 17 such FEC nodes are operational,
supporting a total of some 8250 device objects, representing
125 different device classes. There are also some 30 legacy
FECs of older design which will be either
retired or replaced by FECs of the new standard. Beyond
this goal, deployment of new FEC services (eg more
capable RPC server features) as well as protocol
improvements is envisioned.

* Work performed under the auspices of the US.
Department of Energy.

1. B. Kuiper, "Issues In Accelerator Controls", Proc.
ICALEPCS 91, Tsukuba, 1991
2. V.N. Alferov et al, "The UNK Control System", Proc.
ICALEPCS 9 1, Tsukuba, 1991
3. J. Skelly, "Object-Oriented Programming Techniques
for the AGS Booster", Proc. ICALEPCS 91, Tsukuba, 1991
4. J. Chen et al, "CDEV An Object-Oriented Class
Library for Developing Device Control Applications", Proc.
ICALEPCS 95, Chicago 1995
5. A. Gotz et al, "Object Oriented Programming
Techniques Applied to Device Access and Control", Proc.
ICALEPCS 91, Tsukuba, 1991
6. L.T. Hoff and J.F. Skelly, "Accelerator Devices as
Persistent Software Objects", Nucl. Instr. and Meth. in
Phys. Res. A 352(1994), 185-188

ADmsigned int> GpibUnit
\ I
VendorPowerSupply
I \

BipolarPS MonopolarPS

