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There are three goals in the accurate nonlinear diagnosis 
of a storage ring. First, the beam must be moved to am- 
plitudes many times the natural beam size. Second, strong 
and long lasting signals must be generated. Third, the mea- 
surement technique should be non-destructive. 

Conventionally, a single turn kick moves the beam to 
large amplitudes, and turn-by-turn data are recorded from 

multiple beam position monitors (BPMs) [l-6]. Unfortu- 

nately, tune spread across the beam causes the center of 

charge beam signal to “decohere” on a time scale often less 
than 100 turns. Filamentation also permanently destroys 
the beam emittance (in a hadron ring). Thus, the “strong 
single turn kick” technique successfully achieves only one 
out of the three goals. AC dipole techniques can achieve all 
three. Adiabatically excited AC dipoles slowly move the 
beam out to large amplitudes. The coherent signals then 
recorded last arbitrarily long. The beam maintains its orig- 
inal emittance if the AC dipoles are also turned off adiabat- 
ically, ready for further use. 

Figure 1: Adiabatic excitation of an AC dipole, in the ro- 

tating frame. The circles represent single particle motion. 

The exact general solution for linear motion is [ 101 

* .rT = ze i2nQ.x.T + 6_ ei2rrQ~T _ d+ e-i2aQ~T p) 

where 2 = to - S_ + 6+ is a constant given by the initial 
conditions, and the complex AC dipole strengths are 

The AGS already uses an RF dipole to accelerate polar- 
ized proton beams through depolarizing resonances with 
minimal polarization loss [7]. Similar AC dipoles will be 
installed in the horizontal and vertical planes of both rings 
in RHIC [8]. The RHIC AC dipoles will also be used as 
spin flippers, and to measure linear optical functions [9]. 

d_ = i ex~(--iIrQ- - $01) 
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where Q- = QD - Qx and Q+ = QD + Qx. 
The oscillating closed orbit is defined as that orbit which 

exactly repeats itself after one modulation period. The so- 
lution on turn T is obtained by putting 2 = 0, so that 

1 LINEAR MOTION 

Horizontal motion is described using complex phasors 

Z Z x’+ix = a@ (1) 

so that the unperturbed one turn motion is just 

a+1 = R.zt (2) 

where R = exp(i2nQx). Here QX is the betatron tune, 
and the normalized coordinates x and XI both have the di- 
mensions of length. An AC dipole just after the reference 
point gives a real normalized angular kick on turn t of 

zco = 6_ ei2nQDT _ ,J, e--i2rQDT (7) 

generally following a tilted ellipse, not a circle, in normal- 
ized phase space. The semi-minor and semi-major axes are 

1 IS_ I- Id+ I I and Id_. I + Id+ I long. In practice the aspect ra- 
tio of the ellipse is close to 1 when the AC dipole is driven 
at a tune close to the fractional betatron tune (Q- M 0). 
When 16_ I >> IS+ I the approximate motion is 

z’r M zei2nQxT + J_ ei2nQDT 
(8) 

AZ, = Ax’ = 6 cos(27rQDt + $c) (3) 

where QD is the drive tune and T+!JO is the initial phase. The 
AC dipole strength is 6 = (BL/(Bp)) PO, where BL is 
the integrated field amplitude, (Bp) is the rigidity, and /?D 
is the ‘IXss function at the dipole. 

If .z = zo just before the lirst dipole kick, then the net 
displacement phasor on turn T is 

zT = RTzo+(RTAzo+RT-lAzl~~~+RIAzT--l) (4) 

Motion in the rotating frame, which rotates with the AC 
dipole drive at 2~r&~ per turn, is denoted by over-bars. As- 
suming the previous approximation to be accurate, 

zT = d_ + ze-i2nQ-T (9) 

That is, a test particle slowly circulates the vector 6_ at a 
radius of constant length 12 I, as illustrated in Fig. 1. 

When a bunch is considered, a distribution of 2 values 
must be used. A smoothly distributed beam has (Z) = 0 
and (z2) = 2& where () represents a bunch average, and 
cu is the unnormalized root mean square emittance. The 
center of charge motion in the non-rotating frame is just 

l Work supported by the DOE. (ZT) = 6_ e i2nQDT 
(10) 



Thus, the coherent bunch response to an adiabatically 
driven AC dipole has a constant amplitude 

QCOH = I&_ 1 = 1 6 I I 4 sin(nQ_) 
(11) 

This has been quantitatively confirmed in the AGS 171. 

Any bunch tune spread (due to non-zero chromaticity or 

nonlinear detuning) trivially modifies the rate of advance 
around the 6_ vector for different particles. Less trivially, 
the tune spread also modifies 6_, which is a function of 
Q_ (see Eqn. 6). This is not a practical problem if QD is 
sufficiently far outside the bunch tune spectrum. 

2 SHEAR MOTION - DETUNING 

The total approximate one turn difference map is 

AJ = ~~cos(2~Q~t)cos(4) (12) 

A4 = -$& cos(27rQ~t) sin(4) (13) 

+ 2.lr(Qxo + aJ) 

where $0 is set to 0, and the action J = a2/2Po has the 
dimensions of length. Detuning with action is present, pro- 
portional to Q J, since (if 6 = 0) 

Qx(J) = (A4)/2n = QXO +aJ (14) 

where () represents a time average. A one turn discrete 
Hamiltonian HI concisely describes this motion, through 

Since HI represents a difference map, and not continu- 
ous differential motion, it is not (necessarily) even approx- 

imately a constant of the motion. In the case at hand 

J,(t) = Jso - c 
IFVijkl Ji/o” Jj’” 

” sink&d i- 4Oijkl) 
ijkr 2 sin[rQkl] 

(23) 

fib 
HI = 2n(QxoJ+ ;J’) - - G J’12 cos(27rQ~t) sin(4) 

(16) 
This Hamiltonian is marred by its time dependence. 

A canonical transformation to the rotating frame is 

achieved by applying the generating function 

A single harmonic dominates if Qkl = kQx + Z&y ap- 
proaches an integer for some (k, 1) pair. With coherent 
bunch motion, QX and Qy represent the drive tunes of 
simultaneous horizontal and vertical AC dipoles, and Jzo 
and Jyo represent the average (fixed point) actions. 

The Discrete Fourier Transform (DlV) of a long action 
time series generates action harmonic coeficients 

- 
W(J,4,t) = 74 - 27rQ~ t7 (17) 

New and old action-angle coordinates are related through 

J E awla = 7 (18) 

D rkl = -k c 
v.. Jif2 Jjt2 ei&3,j*r 

2Sin[?@kl] ij Ilk’ r” Y” 
(24) 

3 E aw/ar = 4 - z?T&& 

The value of a coefficient (&I or Dykl) depends on the 
J,o and Jyo values used in that measurement. Multiple 
measurements on a grid of ( J,o, Jyo) values can be used to 
recover a Complete Set Of Vijkl and 4Oijkl Vahes. 

If one turn motion is small (Q- M 0), the transformation 
H1 = HI + aW/dt (averaged over many turns) yields 

Sometimes the motion is summarized by smear statis- 
tics [2]. The horizontal smear sZZ is given by 

2i-4 2j 

B, 2r(;T2 Q-7) 1 = = t2y;klaz0 ‘~0 - - - 6 
dTE 

412 J sin@) (19) c 
ijk, 2’+3+3sin2[rQkl] 

(25) 

H1 is independent of time, and is a good approximation to 

a constant of the motion. The fixed points are given by 

(20) 

In general there is either one stable fixed point, or one un- 
stable and two stable fixed points [7]. When detuning is 
absent (Q = 0) the fixed point amplitude is 

1 6 
aFp = - - 

I I 41r Q- 

agreeing with Eqn. 11 when Q_ is small! 

3 NONLINEAR MOTION 

(21) 

IN 2-D 

The action-angle time series (J,, dZ, J, , 4Z), is derived 
from turn-by-turn data (21, x2, y1 , y2)t recorded at 2 hor- 
izontal and 2 vertical BPMs. This requires the empirical 
adjustment of the p function ratio of each BPM pair, of the 
phase advance of each pair, and of the closed orbit error at 
every BPM, in a process which also corrects for the ellipti- 
cal motion of the oscillating closed orbit [ 1,3,6]. 

The general 2-D one turn discrete Hamiltonian is 

H1 = 2x&x0 Jz + ~‘IT&YO JY (22) 

+ C Kjkl JL’” Jj12 Y sin(k4, + 14Y + 4ijkl) 
ijkl 

where the appropriate set of indices (ijkl) depends on the 
dominant nonlinearities [2]. Only in the simplest of models 

can Vijkl and C$ijk[ be predicted analytically. The horizon- 
tal action time series is then 
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Figure 2: 1-D motion near a decapole driven resonance 
with an AC dipole OFF (TOP) or ON (BCYFIOM). 

(assuming /3= = & = 1). Similar expressions exist for the 
vertical and correlation smears, syy and sly. Predicted and 
measured smears agree well in controlled experiments with 
a small number of dominant nonlinearities [3,4]. 

4 A NUMERICAL EXPERIMENT 

Figure 2 illustrates a simple 1-D numerical experiment. 
Detuning (from Qz = 0.591 to 0.609 between a, = 0 
and 2.0) is driven by three octupoles, arranged to minimize 
octupole driven resonances [6]. A single decapble drives 
the Qz = 3/5 resonance, generating a chain of 5 islands 
at URES M 1.4 in the TOP figure. The AC dipole tune 
&D = 59/101 M 0.584 allows a plotting period of 101 
turns to be used in the BOTTOM figure. A coherent AC 
dipole ON signal is simulated by launching a single parti- 
cle at the fixed point in the B(Yl”IOM figure, to generate 
a turn-by-turn “BPM” time series. The goal is to show 
that this time series closely resembles that obtained with 
the same launch coordinates, but with the AC dipole OFF. 

- AC dipole OFF 
- - - AC dipole ON 
- - - - Octupoles only 

0.1 0.2 0.3 0.4 
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Figure 3: Discrete Fourier Transforms of the horizontal ac- 
tion of a test particle in the numerical experiment. 

Figure 3 shows action DFTs with the AC dipole OFF 
and ON. The harmonic peaks shift because Qx M 
0.593(0.584) in the OFF (ON) case. Nonetheless, the 015c 
and &aa values derived from both data sets are closely 
consistent, after correcting for the l/sin[rrQkc] depen- 
dence in Eqn. 24. This implies that single particle Hamil- 
tonian values b$jkl and +Oijkl can indeed be derived from 
measurements of coherent motion driven by AC dipoles. 
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