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Muon Colliders - Ionization Cooling and Solenoids* 

Z. Parsa, Brookhaven National Laboratory, 901A, Upton, NY 11973, USA 

Abstract 

For a muon collider, to obtain the needed luminosity, the 
phase space volume must be greatly reduced within the 
muon life time. The ionization cooling is tbe preferred 
method used to compress the phase space and reduce the 
emittance to obtain high luminosity muon beams. Alter- 
nating solenoid lattices has been proposed for muon collid- 
ers, where the emittance are huge. We present an overview, 
discuss formalism, transfer maps for solenoid magnets and 
beam dynamics. 

1 INTRODUCTION 

Alternating solenoid lattices has been proposed as desir- 
able for use in the earlier cooling stages of Muon Colliders, 
where the emittances are large. Since the minimum $1’~ 
must decmase in order to obtain smaller transverse emit- 
tances as the muon beam travels down the cooling channel. 
This can be done by increasing the focusing fields and/or 
decreasing the muon momenta, where the current carrying 
lithium lenses may be used (to get a stronger radial focus- 
ing and to minimize the linal emittance) for the last few 
cooling stages. The use of ‘bent solenoids’ may provide 
the required dispersion for the momentum measurement. 
Where the off-momentum muons are displaced vertically 
by an amount: 

where B, is the field of the bent solenoid and bbend is the 
bend angle. In Fig.1, the bending of the solenoid produce 
the dispersion required for the longitudinal to transverse 
emittane exchange. Where after one bend and one set of 
wedges the beam cross-section is asymmetric then the sym- 
metry is restored by going through the second bend and 
wedge system (which is rotated by 90 degrees w.r.t the 

first) ill. 

2 FORMULATION AND MAPS FOR 
SOLENOIDS 

The canonical e&tions in 2n-Dimensional phase space 
(e.g. 6 Dim., in our calculation) can be expressed as $$ = 
[@i, q, i = 1,2,. . . 2n, and in terms of the Lie transfor- 
mations as 

@i -=- 
dt 

: H : tii, i = 1,2,...272 (2) 

Where the Lie operator (: H :) is generated by the Hamii- 
tonian, (H), and Lie transformation, M = e--t’H’, could 
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Figure 1: Example of bent solenoids and Wedges - for emit- 
tance exchange. May be used for muon collider longitudi- 
nal cooling see e.g., Refs. in [ 11. 

generate the solution to Eq. (2) as tij = Mui( where 
+i is the value of $i(t) at t > 0 and @i (0) is the initial 
trajectory. The interest is to find solutions to equations of 
motion which differ slightly from the reference orbit Thus, 
one can choose the canonical variables, from the values for 
the reference tmjectory (for small deviations) and Taylor 
expand the Hamiltonian (H) about the design trajectory 
H = Hz + H3 + . . . . Where H,, is a homogeneous 
polynomial of degree n in the canonical variables. After 
transformations to the normalized dimensionless variables, 
one can obtain the effective Hamiltonian HNew, expressed 
as 

HNeW = Fz + F3 + F4 . . . , (3) 

Thus the particle trajectory q? = (X, Px , Y, I+, 7, P+) 
throu 

B 
h a beamline element of length L can be described 

by $+ = - : HNew : T/Q, i = 1,2,. . .2n. The exact sym- 
plectic map that generates the particle trajectory through 
that element is M = e-L:HN’“‘. where M describes the 
particle behavior through the element of length L. Using 
the factorization and expanding HNew as in Eq. (3), results 
in M = e-L:HN-: = ,yf%,:f$,:fG . . . ) (4) 

(e.g., for a map through 3rd order we need to include terms 
of A. fs, and f4). 

To illustrate the above formalism, consider the 
evolution of the motion of particles in an external 
electromagnetic field described by the Hamiltonian H = 
Jm*& + c’[(pz - qA,)” + (py - qA,)2 + (pz - qA-_)“] 
$erj(z, y, z; i), where m and q are the rest mass and charge 
of the particle, A and q!~ are the vector and scalar potentials 
such that B’ = v x A, E = -Go - v.q8t. 

Making a canonical transformation from H to HI and 
changing the independent variable from time t to z (for 
convenience) for a particle in magnetic field (e.g. of 
solenoid) results in pz = [(p, - q.4,)” + (p,, - q--l,)” + 
$12 - m”s] li2. Where H = -pt, HI = -p: and 
t = (z/v~~) the time as a function of 2. We next make a 



canonical transformation from Hi to HNew, with a dimen- 
sionless deviation variables (for convenience), X = z/l, 

y = Y/l. T = cll(t - z/voz), P, = pz/po, Py = p,/po. 
P, = (pt -pot)/pwz, where I is a length scale (taken as 1 m 
in our analysis), with P = 2. + pt, and Q = x’ + p defined 
as two dimensional vectors [5], po and pot are momentum 
and energy scales. Where po is the design momentum, ucz 
is the velocity on the design orbit and pot is a value of pt 
on the design orbit @ot = rn2& + p’,c”) (reminding that 
design orbit for the solenoid is along the z-axis). Thus, ex- 
panding the new Hamiltonian Eq. (3) leads to: 

P2 
F2 = (zsZrz) 

p3 
F3 = J - cBo(Q’ x +) - i 

(2f13r21 2P 

+$(B;Q2 + 4P2) (6) 

F4 = P,4(5 - P2) + p,Q2B,2@ - P2) 
W4r2 16p2 

-$j x p) . p@-;f12J 

+p,’ P2(3 -P”) + Q4 
2 2pz 

&B,4 - 4BoB2)/3 

+Q2 P23B; + Q2 + 

44 
$Q x ?). i(B2 - B;)/4 

-;(P - @2Bo - $0 x p) - iBo + $ (7) 

Following the Hamihonian 6ow generated by: 
HNe” = F2 + F3.. . 

from some initial $0 to a final $r coordinates we can calcu- 
late the transfer map M (Eq. (4)) for the solenoid. Where 
Fa, Fs, and F4 would lead to the 1 st, 2nd and 3rd or&r 
maps. The effects of which can be seen from Eqs. (5-7). 
For example, the 2nd order effects due to solenoid transfer 
maps are purely chromatic aberrations Eq. (6). In addition, 
we note the third order geometric aberrations Eq. (7). As 
shown by Eqs. (5-7), the coupling between X, Y planes 
produced by a solenoid is rotation about the z-axis which 
is a consequence of rotational invariance of the Hamilto- 
man HNew , due to axial symmetry of the solenoid field. 
For beam simulations, M can be calculated to any order us- 
ing numerical integration techniques such as Runge-Kutta 
method depending on the computer memory and space 
available [5]. 

3 HIGHER ORDER KINEMATIC 
INVARIANTS AND CORRELATIONS: 

Let p($) be the distribution of particles in phase space at 
any instant e.g. dsN = p(q)d%J, where dsN and d6$ 
are the number of particles, and small volume in the 6- 
dimensional phase space (w = [$, p7, qi, pi = 1,2,3), re- 
spectively. Let p(lM-‘$) be the final distribution at the 
end of the system such that a set of initial moments are 
0 = index), de&ted as k$’ _ Jp(v)Fj(@)dG$. Where the 

final moments become k{ = Jp(Q’)Fj(MU’)dGv’ with 
Fj(Mv) = C Djt(M)Fl($), (Djc is a IllhX and Fj($) 
are a complete set of homogeneous polynomials.) Thus, 
the moment transport can be expressed in a simple form as 
k: = Et F(M)jck,O. Djc(M) a quadratic functions of 
matrix elements Mij. 

In 6-Dim. phase space, there are 3 functionally inde- 
pendent kinematic invariants made up of quadratic mo- 
ments, e.g. ef, E;, $1 such that Jz(k) = ~2 + $j + e;, 
la(k) = ez + $ + e$ and l@(k) = e: + E: + cr, or in 

general In(k) = $(-1)“/2tV($IJ)2, where 1c, = 6 x 6 
matrix, whose entries are moments, +jk = ($j$k), with 

I 
0 I 

= 3 x 3 identity matrix and J = - _r o . [ 1 E.g.. h(k) = <z”>@:> - (2~:) + (Y”)(P;) - (ar~v)~ + 
(T2M) - @PA2 + 2(~Y)@zP$f) - 2(2p,)(YPJ + . . -- 
This is a generalization of 2-Dim. mean square emittance 
(e.g. see Refs. [2, 51). Thus, higher order kinematic in- 
variants (e.g. cubic and quartic moments); and correlations 
between various degrees of freedom may be constructed, 
and used as a tool, in nonlinear dynamic studies. E.G., 
for a beam transport system one may use an invariant: 

1 - (z2)(Pz>2 + <p”,>W2 - 2(~Pz)(a$(P,) constructed 
from a linear and quadratic moments. Noting that, the in- 
clusion of correlations between the variables may be detri- 
mental in (the accuracy of) beam dynamic studies. 

4 MUON COOLING 
Muon colliders have the potential, to provide a probe for 
fundamental particle physics. To obtain the needed col- 
lider luminosity, the phase-space volume must be greatly 
reduced within the muon life time. The Ionization cool- 
ing is the preferred method used to compress the phase 
space and reduce the emit&rice to obtain high luminosity 
muon beams. We note that, the ionization losses results 
not only in damping, but also heating: transverse heating 
appears due to multiple Coulomb scattering and longitu- 
dinal one is due to so named %raggling” of the ioniza- 
tion losses (we note that, this straggling is produced by 
fast ‘knock-on” ionization electrons), e.g. see [4]. The 
longitudinal muon momentum is then restored by coherent 
re-acceleration, leaving a net loss of transverse momentum 
(transverse cooling).To achieve a large cooling factor the 
process is repeated many times. The transverse cooling can 
be expressed (neglecting correlations) as 

de, 
ds= 

1 dE; c - L 
p2 ds E,, 

+ L 01(0.014GeV2 + 
p3 2 E,m, LR “” 

(8) 

where ,3 = v/c, en is the normalized emittance, PI is the 
betatron function at the absorber, dE,Jds is the energy 
loss, and LR is the radiation length of the material. The 
first term in this equation is the cooling term, and the sec- 
ond is the heating term due to multiple scattering. To min- 
imize the heating term, a strong-focusing (small 3~) and a 
low-Z absorber (large LR) is needed. 

In obtaining Eq. 8, the correlations were neglected (as 
e.g. in the Status Report see [l]), e.g. (zPz) = 0). and the 
relation (2”) = cfi* = % was used, which can not be 



Figure 2: Schematic of the dependence of ionization losses 
on momenta. 

assumed if the correlations are properly taken into account. 
Thus, if (zP,> # 0 then transverse cooling to be expressed 
as 

&I + L(s2)(0.014GeV12 + 1 dE en 
-= P 
ds P d.9 E,, j? 2&, E,,rn,, LR ‘.” (9) 

As in Fig. 1, by introducing a transverse variation in the 
wedge (absorber) density or thickness, where there is dis- 
persion (i.e. the transverse position is energy dependent), 
the energy spread, and the longitudinal emittance can be re- 
duced. As we noted earlier, from theoretical point of view, 
a situation with ionization cooling completely corresponds 
to a situation with radiation cooling whose theory is well 
developed. For some standard “hierarchy” of methods for 
analyzing such systems see e.g. Ref. [4]. 

In ionization method muons passing through a material 
medium lose momentum and energy through ionization in- 
teractions in transverse and longitudinal directions. The 
normalized emittance is reduced due to transvers energy 
losses. The curve in Fig. (2) shows the dependence of ion- 
ization losses on momenta. Damping rates (decrements) 
of individual particles in the absence of wedges (natural 
damping rate) are defined by the following formulaz 

(10) 

Where XI and XII are natural transverse and longitudinal 
damping respectively. Here (%) ion is the ionization losses 
of energy, m is the muon mass, 8, y are relativistic parame- 
ters, p, v are momentum and longitudinal velocity of muons 
being cooled. It was established, that the sum of all incre- 
ments is invariant of the cooiing system: A = 2x1 + $1. 
This curve is also plotted in Fig. (2) (as the dotted line). 
In Fig. (2) we see that there are two natural regions for 
cooling: region A (“frictional cooling”) and region B (“ion- 
ization cooling” for intermediate and high energies). Fric- 
tional Cooling is convenient only for cold (low energy) 

muons (e.g. Kinetic energy 10 to 150 Rev), and therfore it 
is difficult to use for high energy muon source, (in addition 
to big noises due to coulomb scattering etc.). Classical Ion- 
ization Cooling is useable for kinetic energy range of 30 to 
100 MeV. Which due to abscence of “namml” longitudinal 
cooling it is necessary to use “wedges** for which R & D is 
needed. A propsal for such studies is being considered [ 11. 

5 MUON COOLING “MERIT FACTOR” 

Luminosity of collider L is defined by the following ex- 
pression: 

L 
N2f N2f 

N - = Ef,. pi (11) 
!MY 

zz ~~~n~~~~s~~~~~~~~~c~~~ 

point and & = p-function at collision point Usually & 

is limited by condition: ,f3{ 2 of where of is a longitu- 

dinal bunch size. Let us assume, that: 1) F is known 
(monochromatic experiments); 2) we can redistribute emit- 
tances inside a given six-dimensional phase volume. Then, 
taking into account losses in the cooling system we can 
rewrite Rq. (11) in the following form: 

L- 
Nkp (-$,.I; &) D2 

@q * (3: (12) 

Here “No” is a number of particles at an entrance of the 
cooling system, “exp” describes muon decay, “LY de- 
scribes muon losses in cooling section, and “VeN” is an 
invariant six-dimensional phase volume of muon beam. 

Thus we can introduce “merit factor” which describes a 
quality of muon cooling system. We obtain_ 

R= J 

m 
(13) 

Note that, the dependence on VeN may be stronger. With 
account of all the circumstances, we can write 

R N (V,“)” (14) 

with a in interval (0.5; 20). For more info. see Refs. [l-5]. 
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