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ABSTRACT

Sect. I The spectra, angular distribution and. polarlzatlon
functions of synchrotron radiation are tabulated in parametric
form. . Numerous .graphs of the functions . are included, and can be
used for rapid estlmatlon of photon flux as 4 functlon of the
-varlous parame!:ersn

_ Sect. II The_extended synchrotron radiation source is
described and the exact, but unintegrable, equations are derived.
Properties of this source depend upon at least nine parameters.. -

~ An approximation of the source accurate enough for estlmatlng
':flux in optlcal instruments is developed

‘Sect. IIT “Power and power density in the radiation beam
are described and convenient approximations are developed,

Sect, IV Simple optical transformations are used to
o dllustrate some of the important properties.of the extended
:'source descrlbed in Sect. II.

C-Appendix A Brief descrlptlon and short table of the -
Bessel functions used.

Appendix B Outline of the propertles of electron
orbits -in a storage ring. :

Appendix .C . Descrlptlon and short Lable of 1ntegrat1ng
iunctlon ef(a Y)
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I. Synchrotron Radiation Spectra

The basic equations of synchrotron radiation were published by
Schwingerl and by Sokolov and Ternov.2 ‘Quantitative measurements of
the radiation were given by Tomboulian and Hartman.3 However, there
_is no reasonably complete numerical compendium of the spectra in the
iiterature;'and-;he required 5essei functiqns_arefnot égsily_available
in tables..'(They_afe.now readily generated by the large:scientific
éomputers.) .Nuﬁerous review papers haﬁe been puhiisheé, Qf_whicﬁ Mack,4
Codling,5 Rowe6 and the Orsay Group7 are good examples.. The CEA internalz
~report by Macka'is paramétric_in:terms of fluﬁ'ﬁer'eV.bué_is_not_now_
easy to.obtain :(see -Appendix A). -The.Orsay Group paper has the most
.complete'published sﬁ:vey'of thé spectra_but'the méﬁy graphé and tables
apply specifically to the ACO and DCT rings. If one can find it (E.Mo
Rowe kindly sent.me a copy) ﬁhere is é'uéeful report.by_Ellis.éhd _
o and G(x). o

. 8 _
Stevenson which Fabgla;gé K1/3{ K2/3, KS/B_

This section is an -attempt to.summarize the characteristics of .
synchrotron radiation in parametric form. - Tables and graphs are ‘arranged
to give values to two or three figures by .inspection, or by use of a hand

-calculator,

:'l. Fundamental Equations

If an electron is moving with velocity v the quantity f is defined by

B =v/e
‘and the total energy of the electron is
moc 2
E = --.ﬂ._-z = -.( moc (1)
with m the electron rest mass and ¢ the velocity of light. Since the
“rest energy of the electron is 0.5110C MeV

y = 1957 B, o

and at large valueg of v we can put E as either total energy or kinetic
energy with very small errvor. (Particle enevrgy in accelerators is usucally

quoted as kinetic energyl.

%

Since ' o g = (1~ l/yz) o 12— 1[2y2 . (2



1-3
and even -at vy = 1000 is less than 1 by only 1/2 part per .million, 8 w111
be set equal to 1 ‘and will not be prllcltly 1ncluded in the equations.

‘If the electron is moving in a4 circular path in magnetic field B the

radius of curvature is -

- p = pe/en =.moﬂyc2/eB | S 3

: o ' : R

-and the energy.radiated per turn is (Ref, 1, Eq. I.10)-
2 ' ' _

8E = 4me y4/3p_ RO Wy

1 ' :
. Schwinger (Eq. II. 16) derlves the power per unlt angular frequency of the

radlatlon, w, per electron, per unit tlme_

322, wuw @ B . ' B
_ 322t 4, R ST
Plopt) = =Sy =% [ Ky () an e
. woowe T : : :
Y W, . :
. - 3.3 3
with - S = p/g and w=7 wy = 3cy /2p
. dX _ dX dv .
Us;ng_aa = Ty Iw and Fhe_relaqupships
w = 2Ty = 2mc/A
B _ 3
Ao = 2Mc/w = bip/3y
A= (W) 4o/
g = = hw/2T = he/)
u%uh = \)/vc = e/ec = Xc/h =y

and defining the resolution by k = M /\; the power P and number of photons.

per sec N radiated into all space per electron are:

5/2 2 7 A o
P(A,t) = 3 5 Eﬁgm (7§> f Ky 7y (a7 per unit A
3/2 2 4
N, ) = %g““ *”%- (x—> J 5/3 (T)dm per unit A
hp :
(6)
N O t) = 5% -—X ( ) J Kg /g (AT per ki

&3
cgs units are used in accordance with Refs, 1 and 2.
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(e ) - éﬁ <2Ae :i'K (M7 | e
2z J R TETA A o per ge

ring current in amperes is related to the number of electrons and to

revolution frequency by
—=nff e ' L G e ()

a rving with field free sections the circumference C is greater than
and 1/10 = ne/C. But the number radiating is the fraction 2Wp/C of
total so n =. anI/]OL in agreement with {73y, If the formuli of (6)'

multiplied by n and by 8/2ﬂ the resuiL is radiatlon in all vertlcai

angles per currvent T and arc B

3

| P17 ecery’ Moy 7 .

PN, E) = 5 “£“§x"-(xg> i 5/3 (ﬂ)dﬂ . per unit A
' S 160m . p _ Yy g .
o 2

3/2 4 A o5 _ . o
L .3 efly (ME> J e ;
N{L,L) = Zagﬂ‘ i A\ ) K5/3 (MHdan per U?Lt A
o (8)
_ 3% kefTy ( c) { S
4 7edT p [ |
T :
NAe(G’t) = m___ize ; EE | K5/3 (M7 per hg
: 1037 h'e &y Yy : : - S
3% apell . _ _
Sor =g Ty YA, J Kgpg (a0 per he
hc b . e

The power radiated at all wavelengths as a function of angle ¥ to the

orbit is {(Ref. 1, Eg. I1.36)

or

" -5/2 . 2,2
o h - L+y7y - )
P(y,e) = Ceei Y F(y}) . per rad y ..:ergs[seg

% oo . o
‘I in amps, 8 in radians, p in cm, other units see p. 7. -
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2. Angular and Polarization Functions

Synchrotron radiation is normally generated over ‘an orbital arec 9
muoh larger than the radiation angle of emlssion, and is usually collectad
in such a manner as to sum over -the angles in the orbital plane, We are’

then justified in taking the radiation from arc © as 8/2m times the total

from a complete c1rcu1ar orbit.  The varlatlon with angle ¥, relative to
- the orbltal plane, is dlrectly observable and is a complex functlon of v,
- p_, ?\/?\ andllf .

. 8okolov and Ternov2 have examined the polarization in considerable -
detail, - They compute that, if B =~ 1, the ﬂ' polarized componént'of the
radiation (electric_vector parallel to the orbital rlane) contains 7/8 of
the_totalzradiated power, and . the 1 component only 1/8. - The proportion.
varies with wavelength._ 1f W 13 the energy (per seo) radlated into all -..

angles then (Ref, 2, p.. 32)

= { i = =
_owi W@J.y)dy W1th v AC/A e/ec

| %f 'w ' 2 : (10
0, =2y (c% + ) ] ), 5/3(’a>dn + (2 43 %y}
&2 =1, 63 = 0 for j linear polarization; Lz =0, &3 =.1 for ; linear .

- . polarization. If we could ohserve the radiation from a short segment of

arc, AB << 1/y, the total L component of radiation would appear to be four
lobes, the axis of each lying at angle 1/2v relative to the orbital plane,
and 1/2y relative to the normal plane through the tangent. Since only the
most critical optics could resolve the 8 angular structure, it is convenient

to express the functions of { as an average over 0.

The power radlated by a single electron in solid angle df¥ is glven by

Sokolov and Ternov (Eq. 5.17)

2 2
_ce y v 2/3 v 3/2
ap,(8,v) = T {660, 3@ &%) 4 4, cos 0 /e K1/3 @ e )} a0

in which their § is the complement of ¥. Harmonic order v defines

w o= = welp
0

3w 2.2
.wcx""-'é'"q"{g e‘—=1—-f323in29=.=1+;-—~ﬂ1—-

Y
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and L =1, %B = 0 for |j.; 4, =0, 4, #_1_f9rji ﬁolarization, If.we set.

2 3
4P dp e _
d¢_ = .2n Eﬁ gnd.substltute:for ¥ and_w._
e B T |
i 336 (_Ug__) 2 L
@ T2 N Y {a ?LY ¥H) |4, 2,3<§> + %vw vy __1 <a>[}
R TP [}
R - 32 a 3/2 '. - _
LW 2.2 : ; 2.2 : SRS “
-_iﬂ%;:(l“rN\b) =g (YD ] - an

L e = e __'Y'-F(?\ /27\: '\'q}) -
dy - mzp .w.c o c o .

If the two components are. summnd thls equatlon is 1dent1cal with Scthnger 8
l .

angular dlerlbutlon equation’ IT1.34, Making the substltutlons of the

- previoug section gives the radiation per I amperes, arc © and_per radian =

:of Vs

- - g 2 Lk _ .
P(YLA L) = Ezuwg 55511* (xﬁ) FO. /20,v¥) per unit A
SR 320m7 - p ML G
3
5 A
oy = 2 e8Iy {mg) : ;
N({,ht) =5 g AR F : per;unlt A (12)
. 80m” . o
' 2 h 2
: 22@_1‘%(_0_) U R
N8 = gy ) o oper i
| 2he eBIp Rc
N, (f,h,t) = g (”w) F R per Ag
he 2 A
10h ey _
8n Ae eeBf 2 :
NAe(w,e,t} = 5 h3 A ¥ per Ae
c oy

At ¢ =

P(_/2h, 0) ET 10) = K>

573 (hc/2h)



At angle ¥
' _ ' - 2 2 3/2.
. 2 2 2.2
Fip () = (L + v K, 5 |55 (L4 vy -
2/3 2% L (13)
i - 2 o, 3/2 '
C 2.2 2.2 LT e 2.2 -
T M =YD K Ay ]
for conyenient'ndrmalization éet
Ny (4,A) = Ny (0) Fy(9)/Fy(0)
e o (14)
CNL(EA) = N0 Fu(4)/Fy(0) and N = Ny + N, |
'l'expressed_as functions of v, RC/K and yi
" The degree of linear polarizatipn is then '
SELoEL | sy

5? Fy + El

In the orbital plane the polarization is linear and parallel. - Out of
“-the plane it is elliptical; the expressions are given by Sokolov and Ter-
: nov.2 One rather remarkable feature of-fhis eiliptical poléfization is a
phase difference between components always + /2, so that the axes of the

- polarization ellipse are always § and | to the orbital plane,

. 3. Numerical Values

Both Schwinger and Sokolov and Ternov use cgs units in their equations,

"Substituting

e =4.803 x 10710 asu
¢ = 2.9979 X 1010 cm/ sec
h = 6,6256 X% 10"27 erg sec
ey = 1.6021 x 10712 erg
1A= 10-8 cm
(3) - Bp = 1704 vy gauss cm = 33.35 E kéaussjm

“GeV
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(4) o8 = 88.5 4 / kev per turn
GLV .

(7 0= 1.308 X 1ollpm Ia electrons radiating . . (16)

2

’ = (3 =
(5) A, = 5.59 Fm/zce 186.4/8, LGeV

. .
With -p in meters, A and KC in A, e in QV, I dn amps and 0 in radians

¢, = 2218 E /e ey

(1/)

L | B oy ey
(8) "P(Oh,t) = 1.421 X 10 _~—~1m-(~—) .J (n)dn ergs/A sec all ¥
o) LA 2 \x 5/3 R
5194 ?\. 2 oo_.' ) . . e
WA, E) = 2,998 X 10 "EX“ (x9> f Ky /5 (AN photons/A sec . all §
o 16 AN ' N
N (L) = 1,256 X 1077 kit (KE> J Ky /5 (AN ph/ih sec  all y
N (L6) = 4.242 X 1022 3§£ j K. (T)an
Ag - : 5/3%°%
: Yoy
T - R . R
= 1.013 X 107 4 J Ry /5 (AT ph/ev sec | all |
. y . :
o . “15-XE£ _ SRR S
(9) P = 1.440 X 10 ; F(yy) w/mrad 8, mrad { _ (18)
4
-1 81y8 A .
(12) P(d,A,t) = 3,918 X 10 7 X (X“> F(KC/ZK,y¢) ergs/A sec rad |
6oy Aoy e
N(¥,A,t)y = 8,263 X 10 w?xw (XE F ' ph/A sec rad ¥
2
15 2 /e | 19
N (U Aot)y = 3,461 X 1077 kBly (X—> 7 ph/k) sec rad { (19)

22 815 (e '
'NAG(w,K,t) = 1,169 X 1077 %?Q (x$> Foo o ph/eV sec rad Y
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: ' - 28 .E:GI 2. : ' _ . R _
--.NA€(¢,e,t)_= 3.951 X 10 —fZE— F - S ph/eV sec rad ¥
: : oy . _ _ _ .

- The function G . s definéd_by Tomboulian énd HartmanB.as.
g }m- S SR
Sy Kspp(han

.This can_be.generalized_to_'

e =yt j_'y"Km_(n)dn with 1=0,1,2,3 o an
 Also 1ét..Hi(y,o).= yiK§/3(y{2)  o .'. o : '.. : :. . _._1 | _._.(21)

We can now wrlte (17) and (19) “in power and phoLons per sec per ma and per -

mrad of 8 and w (where appllcable)

with oy =0 /h'z'e/é
o S < ¢

(8) E(A) = 1.421 X.10 ;9 35 G3(y) ergs/A, sec, ma, mrad G,Iall y

N(\) = 2.998 X 10 _-%m G,(y) ph/h, sec, ma, wrad 8 all § o
NA) .= 20998 2! gl o e : (22)

Nk(?t)_2 1.256 % 1010~kyG](y) ph/k\, sec, ma, mrad 6 all y

= 16 p_
NAG(A)-“_4124 X 1075 5 6 (v) -
N
= 1.013 X 10° \A_ G_(y) plYev, sec, ma, mrad 8 all §
and at | =

8
(12) P(L,0) = 3.918 X 10‘23 Y3 H, (v,0) ergs/h, sec, ma, mrad 6, mrad §

1§

p
-5 5

N(L,0) = 8.263 X 10 _%— Hy (7,0) ph/A., sec, ma, mrad 6, mrad |
' L _ 2%)

L _NR(K,O)-% 3.461'x_106 kyz H (y,o) ph/kh, sec, ma, mrad 6, mrad w L
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NAG(A,O) = 1.169 X 1013 ﬁ Hl(y,O)' ph/ev, sec, ma, mrad 8,_mrad L)
o Lo .2 L . | _ | _ -
NAe(e,o) = 3,951 X 107" mﬁ?«Ho (y,0) 'ph/eV, sec, ma, mrad ©, mrad §

~0f the above functions the ones most useful in opticy and spectroscopy. are
.“Nk and_NAe. 'Nk, with k small, 'is directly.rélated to the resolution of
monochromators and spectrometers, NAE gan be directly applled to level
widths and level density and so seems preferable to N per Ae/c although
' 'NAe is misleading at small € just as ﬁ.ls_m%sleadlgg at smgll_h. N(A)
is the function wost often seen in the literature, although its usefulness
s llmlted to.those 1nstruments whlch have constant raLhel Lh&n proportsonal

) resolutlon.

The flux functions of (22) and (23) are listed -in Table 1 in teras of
fupctions Fi' These functiong are simply, as a maLter of convenlence,-the
:nuﬁerical constant combined with the Bessel funct;onn A short table of the
IEBessel functions is dincluded in Appendix A. The functions FO through 36 are
“graphed in Figs. I through 7. For estimating flux it is then only necessary
_:to select the muitiplier from Table I and to apply it to the selected point
_bf the corresponding curve. These log-log gré#hs are convenient becauge
their shape remains fixed while the axes are tran%lated by the mu'il:ip_13’.{31:_5.,7‘c
_ N {A) and N (R 0) seem partlcularly useful because, for a gilven ratio of
';K /h the flux is proportional only to vy or to yz respectively, The para-
‘meter y has been used, rather than E, because the angular functions are-

expressed more neatly in terms of wv.

A simple-minded log-log family of hc valueg is drawn in Figs. 8 and 9
for constant B and coustant p, These families can be scanned for ranges of

values, and are handy for sketching "tuning curves”.

The fraction of power radiated at all wavelengths gveater than A is

(v}
o]
jkl(h)dA/Ptota]

and the number of photons at all wavelengths greater than A is

Thls is not true for. Flgo 7 ox tor any iunctlon whose multipliers Lontaln
A or e expllcitly, :
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CTABLE T

Generai Relétions
YT 1937'FGeV _
Bp = 1704 v gauss cm = 133, 35 EC kgauss-m
OF = 8?.5 EGGV/Q kev.per turn |
n =.1.308 %10 1pm I, electrons radiating
| _~ " . ;L :
xc - 5,59 p /LGeV 186. 4/3 LG v A
= 0.3
KC §.189 X 10° pm/y A
s = 12,398/\ eV, A
PR B A B :
gc_. 2218 EGev/pm = 2.960 % ;0 Y /e,  eV
v=A fA=g/e
: el e

Flux ‘in photons per sec, ma, mrad 9

WO =y e r A perd, all ¢
N (A) = kyF, (A /Ay : per ki, all §
NAG(A) = (p/v )Fz(Ké/h).

= yh F (L /A) - per eV, all
¢ 3¢ . .

[

N, (h,0)= kyzFé(Kc/A,O) “.per ki, mrad ¢ at |

B

_NAG(K,Q) (p/y)FS(lC/l,O) per eV, mrad { at ¢.

i

]

NAG(6’0>'

0

0

(epz/ya)F6(hC/l,O) per eV, mrad y at-§ =




C 112
'J N(A)dx/j N(A)dA
These two functions afe-plotted_in Figs. 10 and 11 as'% vs., AN .
.'The pdwer.fadiated (at all d) as-a_functioniof-¢ is derived, from (9)

.:P(w)_% 1,44 X 10"18 Cstpm) F(yw)_;w]ma, mrad 9, mrad @ :.':.

R IR .S T at o | s _ R
or R FyT e By (y) e s
with F(yy) and F, plotted in Fig. 12.

.Linear polarization components vary.with wavelength, The function of
(10) . . . : . .

() = 0.3101 y.i(%i + 1) 6O + (2 - *ﬁ?_K2/3<7)} o

“is plotted in Fig. 13 for the | component (&2 =1, LB =.0), the ;'component
:(£2 = 0, &é = 1), and the total, vs.'h/hc = 1/y. Tbe_percenﬁageé’qf woand

of | components radiated into all angles are plotted in Fig. 14,

At a given wavelength A the flux varies with vertical angle ¥ {13)

as.

L | 3/2
El + (v¢>2}2 Kg,S {gﬁ |1+ (v¢>2] -}

IH

Bl

3/2
o {1+ oK, b on’y

1§

Fi(y)

- _ i . _
_These functions are .plotted in Fig. 15 as percentage.of Fy(0) vs. v{ for

_X/hc ratios ranging from 0.2 to 100, The sum, or variation of total flux

- ﬁs. vy, is also shown. Number of photons per sec, ma, mrad 8, mrad ¢ at

ény { can then be found by multiplying the ratio of Fig. 15 by the appropriate
N(A,0).

If the vertical acceptance angle A} is very small and is near § = 0
the flux is readily obtained as N(A,o) A, For larger acceptance angles

4t is necessary to integrate the angular functions.

*
‘. Note that these percentages are functions;of_h/hc rather than A.
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"f¥. The Source

The previous section treated the ?adiation from a current of electrons
._as if the current were a filament, br for the.angular functions,.as if the
élect;ons were travelling on parallel orbits, In-an alternating gradient.
ring the electrons will oscillate about the central orbit and the_oscilla-.
tions will cause a spread in position and angle, - This distribution of the
.'beam in size and angle is modulated by_ﬁhe_magnetic structure 6f_the ring
and the modulation produces a rather rapid variation of the transverse
dimensions. Photons radiated by ﬁhe electrons are distributed in angle
_about the trajectories of the particles aﬁd are emitted all along the
trajectory. Thus we have a source which is extended in three dimensions
in configuration space and in six dimensions in phase space. The proper-
ties of the source depend upon a sizeable number of parameters. In order
to make the problem somewhat manageable the procedures reduce the descrip-
~tion of the source to one in four phase space dimensions, -There seems to
- be no very satisfactory general methed., An cutline of the source in
laberatory space provides no angular information. A four-dimensional
phase space solution is general, although very complex, but cannot be
.drawn. We must then use two two-dimensional diagrams. The curvilinear
coordinate s is taken along the central electron orhit, assumed to lie

in a plane. Transverse coordinate x is perpendicular to g and in the
orbital plane, and x' = dx/ds. Since the angles are very small the
-paraxial approximation tan T = sin T &~ 7 is quite good. Similarly, y

and y' = dy/ds lie in the plane perpendicular to the orbital plane,

It is necessary to keep in mind that there are correlations between the

x, x' plane and the Y, y‘r plane and that the figures in these two planes

must often be considered together.

The configuration of the electron beam as it goes along s is well
known from accelerator orbit dynamics. Emittance of this beam is described
by the Courant-Snyder invariant. When the electrons in an element ds emit
photons the angular spread increases and the resulting photon distribution
can then be characterized by an invariant for succeding optical transforma-
tions, If the photon distributions from all elements of a source extended
in s are transformed to a single plane the result is a planar optical source

which can be described by four phase space dimensions.
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1.  Source Derivation

The electron beam in a well- behaved storage ring will have: an e111p~
tlcal cross section in configuration-space X,y (blg. 16).: Size of the
" beam isg governed by the characterlstlcs of the rlng :and “by the quantum
- fluctuations of the emitted radiation. - Slnce the latter are random a .
~stabilized beam (e.g. pne'with.small systematic instabilities) w;ll

-have a normal ‘distribution with probability ‘density:

L OExy) = 1 Wy 2?’_y2 ey

2o T
. %y

The probability functions will be defined as

72
: 1 -.202
co/in
2
: : -
5 X ~L2 ' 1 o 2Cr2
erf(x) = = J @ de » erf (x/0/2) = “;?ﬁ JX e dz
0 - -
and to normalize o ' - -
T : . : e s |
o 2 o o 20
2 =t _J21 : . S
e /22T e dz =1 (26)
e B Mo . S -
P(o) ;' 1
erfw /o o
The current in element dx dy at x,y is
47T =1 P(x,y) dx dy | 27)

Flectrons are distributed in phase space x,x’ and y,y’, and typical examples
are ghown in Fig. 16. Within the slice dy there is distribution in y'

d dy/ds is Lhe angle of the elechcn LrajecLory to the central axis s).

(y
Con81der the electron in element dydy + On succesive transits of the ring’
it will take various positions 1nd1cated by the dotted ellipse in Fig, 16,
" provided the motion is not On_a resonance. _A resonance is obviously un- =

' allowable .in a storage ring. . These paths of all elements in the phase
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'plane are similar'and if -y 1b a. normal varLaLe, Lhen y is also a normal
variate, A brief descl1pt:on of partlcle dynamics of a storage rlng is

_glven in Appendzx B.

An OuLllne cf the beam cross sectlcn in Lhe Y, y pldne 4s we pro-
ceed along s can be descrlbed by the CouranL Snyder 1nvar1ant
Yy_-fiZny + ﬁy e SR o (28)
This.iz an elllpse with coefficients w, B, ¥ which are functlons of s

- and an area equal to T lees the emlttance E, a constant of the moLlon.

rhere are conera1an

'.By;1+a2
. - (29
o= ~p/2
~Figure 17a shows the beam envelope at.a.waist, or minimum of B, where we
i_wili.set_é =0, Since o = 0 at this s = 0 the emittance ellipse is
' 2 2
Yy +py’ =&
~ A{'
v =WEly , §= BB, py =1
It is preferable to express the maxima as
§=uEB, §' =By and §/5°=5 .(30).
- (The third relation is not true if the ellipse axes are tilted.)
If the ellipse of Fig, 17a represents the one 0 contour of P(y,y') the
one O emittance becomes cycy, and the ellipse is described by
%' 2 % 2 .
Oy y o+ Ty = cysy: o (31?

" At s the transverse coordinates y,y'_are transformed by

_'yl iy
:_  y£ *:g£0/5> gt
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“and if there is no (magnetic) focussing the transformation matrix is
1 s

._M(O/s) R
S 1

Since synchrotron light sources are almost always bending magnets without

'gradient_focussing, this matrix can be. used to transform v,y and x,x’
" along s rather than the more .complex matriges of magnetic focussing sys-

- tems. The one G.contour.at s (Fig. 17h) is now

gy PR T s o} g s o ' .
A ) gy’ o+ (—XT +'w1m——> y' =g oy
¢ Oy - I (T YLy

y Ty Ly Ty

" 1f a bivariate distribution is de3cribed by (Ref. 9, Sect. 26.3)

2 -2 -
S X _2rxy . ¥
. 2 2. g o 2)
— 1 20 Ny Ty ol
. 2ﬂox?ynJl - ?
- the one ¢ contour is
x2 2T Ry + yz = (1 - 2
2 g0 2 r)
o % V. g -
= . Y
. | B
and .JJ P(x,y) dxdy = 1 =~ e * =0.,39

e

@y

34y

(35) -

@)

where the integral is taken over the area enclosed by (35)., If the contour:

'represents o the integral value is. L 23
1 - e '
! integral
1 0.39
2 - 0.865

.3 . 0.989

b 0.9997
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A general elliptical contour (centered on the axes) is described by
2 2 ' T o A
gx -+ Zaxy + by =1 L L e {37

and. by equating ¢oefficients to (34) or (35)

2

FLILI (erYy=(bg-a?) /b
oy Tbelsg-a’) ol =be/meogaly ERRET

area/m = 1//bg-a

" The area ig 1nvar1ant under a ]1near transformat:on and it is often useful -
to set area/ﬂ =R, the "emittance" of the bean, Flgure ]8 1ssts several B
useful propertles ‘of (37) ‘with the rh side Teplaced by E. " 1f (bg- a ) is

set equal to 1 (as is usually done in agcelerator dynamlgs) Lhe maxima of

the el]mpse ara qlmply described -
% = /B 5 = J/Es o (39)

Rewrite (33) with 1 on the rh side and (38) gives for the electron

beam at g:

2 2
o} = 0 + 5 (o
yl ¥
2 2
g, =0 ;
¥{ y (40)
2_ 2, 2 2 2
r) =S ;/(oy + 8 _cy;)
' 2 2 2 o2
Ior =g / o
while (34) becomes . 2.
1 2 : 2 2-2 o
=1y -2g + {c +s o,
5 ey ey ;0|
P (y,y') = s o ? : (41)
1 Yay oy o 4 & '
yy

To obtain the total current in dy at y (Fig, 16) integrate (27) over all x

AL =10 P(y) dy
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‘and since 1 | By =1
o __r:e_normalize | dZI = Io?l(y,y')dydyl o Tt el B : R o (42)

‘When an electron et_y,y"radiates its position y will'not change:instanﬁane-
;ously but the_radiatipn will be distributed about its instentgneous direction
‘according to ' ' ' ' '
o : 3 X S
- 3ke1ds_ 2 ( ) { 2 2 - }
Nk“§¢,h> ey (58 1w %y, { (1+y ¥ ) ] o _(43)

“obtalned from (12) and (13) by setting 10 = Ids/p to give number of
:ephotons per. amp in the element ds.n N W 1s somewhat arbltarlly selected
to simplify. ‘the expre551ons, and because the i component is: reflected or

dlffracted most eff1c1ent1y w1th vertlcal dlsper81on. If we define the.

. ~radiation angle as ¥' then § = ‘-y' and the number of photons from ds

in 4y’ from electron current in dy dy__is -

4 N

;The number of photons in dY’ at. Y’ as a function of y 1s

2 2
_i;i b —5 LZsyy —(U +szc ;)y 1 ‘
3., dyady’ Ty 1 y 1 (45)
vy e

‘for a given value of v and %:/h.

An optical system can be represented by an optical transformation.
If a source is extended along the optical axis the elements of the source
~.can be successively transformed into a surface in the image space in order
to compute the image. However, if M(si/sj) is the transformation along
the opticalnexis from s, to sj then I

.M(SOKSN) = M(SN—E/SN>"'M(SO/S1)

AN m TPy S ey dyayt ey RRCON
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Then if M(s /s )Lransforms a surface Ln the obJecL space to the d351red
surface in Lhe image space we can transform all Lhe elemean of the

orbit to Sy and create a gynthesized object, This can then be trans~

ferred to the image space by a 81nble LlansformaLlon. The synchrotron

light source is extended in the dlrectlon of Lhe optlaal axis and. 1L

is reasonable to transform all Lhe elements of the source to the Lrans~

verse plane at lLS center, The transformatlon is

Yo Loo-s Yy .
o (46)
v, 0 1 y! "
and the number of photong at Y’ as a functzon of v2 in_dydeI, can he
obtained by 1nLegraL1ng (45) over tho range of s. ‘Since Nk“ was defined
as photons per ds_ . . ' '
Y ' : { ' 2 22 2
_ ) (Y2+SY L —1—2 ;23(}(2-#51”)37/"_(0‘),“1“5 Gy;)y' ~1
re 8 2 200 - - _ o,
dy,d¥ io 1 20 1 . y dy | ds (47)
—w——-J e mjn WY =y ",A) e -
Mo o, TJdy, k .
. y y “Sl . -

where yz,Y’.are the y-phase coordinates at s = 0, defined as the position of -

a walst of the electron beam, This ‘would be the :situation at the  focusg :in

an insertion.  If the source lies between 8y and 8, and the next waist projected

from 8y is at s = 0, the source plane will be at & = (sl+s }/2. ‘The equa-~
tion replacing (47) is integrated from 8 to 8, and is obtained from (45)

by the transformation

Equation (47) was obtained by assuming that the central orbit lies in
the plane y = 0, a condition reasonably well satisfied when a storage ring

ig in good adjustment. In the x phase plane Eq. (45), with y,Y’ replaced

- by x,X7, represents the radiation from are element ds. But xx' are the

coordinates relalee to s at da.
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'The_opticai akis ?rojgéts:oﬁ thé piéne's %'O:at (Fig, 19)
2

St =5t xy = sle

and the transformation from s to s = 0 becomes

Ey - 1 -8 b4 % . S o
3 = : - +  s T . ' (48)

b4 O x 5

Eq.'(47)_expressed in x,x'_then becbmes,.projected_qn s = 0
s
' . +s( L.__ ——W
9 "1 dx dx SL 20 t'z 2? 2p4 e ' : .
4y = .90 2 2 Tx 17 ¢ 5 ’
[P JU—-. - e - . —J Nk”(x - X ,)\)
. Ay T . _ 11 22 ) :
. XK =8y : : . : S0 . : -
- uir ZSLX +s(x —J - §~J x'-(024s202,)x' } ds .
A 200 - X X ‘ .
20 T Cohdx

-

. 2. Approximation of the Source

The expressions of the preceeding sections can be systematized and numeri-
_ecally integrated, but they are too unwieldy for estimating the effects of the
several parameters. - The electron distribution is described by a normal.
 probab111ty function and, since the manipulation of these functions is well
'5knOWn, approximation of the radiation dlstrlbutlon by a probablllLy functlon
is 1nd1caLed -From (17)(19)(20)(21) '
16

N () = 1.256 X 107 KOIYG,

i

N (§,2) = 3.461 X 1072 kOTy?F (§) . per rad

il

N1 (0,0) = 3.461 X 10" kory’s,
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2
_ SN
It ve set N (PA) = () X e o 2
'k” e g .‘/.-2—”.-0‘ .
tﬁen | N "(o ;\.)"___. fh) x 1
EEEE R A
and _g(h) = 3 461 X 10 1> kGIYZH % /iF g ST : '(50);.::
But J N (2344 = g0 =_f_Nk(K) = 1.256 X 10 omys, 1)

‘where f is the fractlon of total radlatlon at A Whlch is polarlzed

' :and is plotted in Flg. 14.

" From (50)(51)

o fG‘_l .
yo = 1.448 T (rad)
2

and is a function only of-hC/k, plotied in Fig. 20. It is approximately _

0.425
yo = 0.565(A/x ) : (52)
c
2
_ -
and Nk”(¢,h) = 3,461 %X 10 kOTIy Hze (per- rad) ' (53)

The exponential of (53) is compared in Fig. 21 with the Bessel function
curves of Fig. 15. The agreement is good up to h/hc = 10 and is fair at
100. '

If we again start at an electron beam minimum, the current in dydy ’

is given by
2 / ,
d"1 = I P(y,y') dy dy (54)
and the one ¢ contour of the beam at s = 0 by G].). When transformed to s

the electron beam is described by (33) and (QO) In the.y,y' plane at s=s

the current in dy dy’ is

2 T | S
d°1 =1 P, (y,y') dy dy’ N €15
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with P, given by (41). Let the electrons radiate from arc 8 = ds/p and
(53). becomes

2
: -
_ P SRS
_.de]; (\lf,}\) = AT ds. Yo e Ady : SRR _(56). :
A = 3.46 X 10° k X /EE o H, o o (5T
The radiation angle, referred to s, is Y so. w}r Y’ - y_'. “Substitute

T from (55) in (56) to determme photon flux in dY f_rom element dy:dy' ds

2 2r.yy

S ’ 2.\
a*n = A1 ds ) exp | - —= ( AN SR 1 X
K 72 | 5 5 2
(2m)" " Too o 2(1-r) Oy o C )
yy Y 1 yl
X exp \ e (17ey ) 1 dy dy’ dy’ (58)
20 o

and to find the photon flux in dy dy’ integrate (58) over all y’

2

*’:z ) ] X

Oy, maras —LE o [ ( K

k © (2‘”)3/206 o (1 r )

O R (o . s

2{1-¢ )O‘ , 20 RN @ T8 0 T S I X
v1 1y
bz
2 _ - .
_but9 r e ~(ax +?bx) dx = A/% e® " "so (59) becomes
. 2 2r.o g
e 1"y
- 1 Y 2 1 2
\ T A y Yy 1
2[ +o 1(1-1‘1):] o : yl' SR -
By - ap _ds dyay . e | Y |
k o 20 ) o (60)
2n frch,jk 80 0 _
02; =g 2; + 02

' I_f_the exponential is put in the format of (34)



. e

(62)

2
r, = 1.0 %f(U % + o)
2 l-yl ¥y .

(1 r, ) Lg +~c , (l-r )1 (0 : + 02)
vy 1... -

- This flux in dy dY’ from ds must now be transformed back to s = 0.by

The exponential of (60) then becomes

2r 2 2r,. s 2 '
v° (25 % Yy’ (s ) 1 ) &
exp{ 2(1- r2 [ ( ay o o2 %y °y’+c z
7
y .y2 Y2 Y2 Yy 272

and equating coefficients to the form of (34), plus (62)

o) 2 == 3262_+-c§

(64)



2
: : +s oo A : S
2, _ J 3 - yUY' y /oo R : :
(L-1y) = gy = Ly e
: e ny o O'Y,r S N .
g 1, Y3
g %(02+5202) +-6202
- J ki

Ao+ o o
. (:y s.0)( IY_’ : )

then from (63) and (64), (60) transﬁorms to

: , .'
pp— Lyz B +">"2] "
2 g 0y - 2 R

| . E . " rz) ] v 09 g 3
. : ’ ] - i
d3N = AT ds dy dy e 37 Tysy _ 373 Y (65)
k ' O'QNVBZUQ +8%0%a’ L
Tyt Yy
. or substituting from (64)
!
d3Nk - AIO ds dy dy
2o CIY/+S ooy
Y Y  (66)
- L L(O‘Z r"rﬁz)yz -ZSO‘ZyY, + (024-3202)3("2:]
22 222 v y
Z(Gyoyﬁs oo :

>
o

This d3Nk is the number of photons in dy dY’ in the "source plane" s = 0,

which come from radiation along ds at s = s.

g
e

S

%

. Fig. 22 Successive transmations in vertical (y,y") phase space
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These successive Lransformatlons are showu graphzgally in Blg 22

'.in which the example is exaggerated, as 1f from the end of a VLry 1on?

. source., Most real sources, fortunately, have less rotation of the

elllpses. The contours are ¢ . (or ng) ell1pses.=-The electron-beam

ellipse at s ¥.O is upright, by arbitrary definition.-.lt fransforms

without magnetic focuss:ng, to a glanted ellipse in which the. angles

f;'y' are preserved but the size y 1ncreases.- The ‘radiation then increases

“the angles to form the real source and, at s, the den31ty of .this source
will be less than_at s =.0, " In order to synthesize the optical source

': the radiation is then transformed to s = 0 with angles preserved but Qith_
“idncrease in apparent size, Once éstéblishéd;_the radiation area in phase

space is an invariant but its shape can be changed and distorted.

The radical in (65) is oy Uyé l~r§ and we can 1ntegrate over iy,

using the propertxes of blvarlate dlstrlbut10n89 10
. 12
S
2
20y:
2 r. 3 3
d Nk AT  dsdy Vo e
73
/2
SN S A
2 2
2 (0' el )

AT dsdy’ 7=L———,.2__ge v - (67)

and since s occurs only as ds this integrates over s as

/2
2L Mx,mm
) o dsz ) 2 (o' ,-mvz-) o
dN (y)=j ds = 20T Ay’ m——fooer o | (68)
k -3 ds ° 2 de,+o

Similarly integrate (65) over y’ to obtain

2
S A
L2 22
(0 +8"¢7)

dsz = A-Io %ﬁdcsﬁ e Y co 2 (69)
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. Integration of (69) over s can be done by means of ‘a function which I
will call ef(a,Y), defined as . ' ' ' e

o at e _
: Y 1 w5 €os t SO . . -
xef(a,Y)“=_Jo e e de ST :_(70)_

and normalized by o :

'I ef(a,Y)da = /21 tan Y
' R TP . {ltsin Y)
- =3 T ——
ata =0 ef0,1) =% dn (7T

.2
a

_énd for ¥ < 0.1 ef{a,¥) =Y e

Appendix C has a description of the function together with a graph and

‘short table of values.

If we set cos t = Uy/ c§+s%32 and a = y/cy, then limit Y is

given by tan Y = crs/cy

o}
v3
The integral of (69) over s then becomes (Appendix C)
: a 2 . t o8
dy Y 1 5 COS. t
dN a j e - dt o
) = AL, e cos ¢ ¥
and the distribution of photons over y in the plane s = 0 is _
- d ¥y -1 gg)
de(y) = AIO V&%Pgef (0 ,» tan = (71)
y Y
while the probability that a photon iszin dy’ at y' is, from (68)
(c” o )
7 (72)

pe =
,\[Z;f\/c’yr'f'o

The distribution over s = 0 with equal contributions from negative s and
positive s is symmetrical about the y axis, and is from (72) symmetrical
about the y axis. There will be no cross terms of the independent variates
of (71) and (72) and the equi-intensity contours will be symmetrical about

' the axes, We can then combine (71) and (72) to give the v,vy' intensity in

_the synthesized source in the transverse plane s = 0 with (71)X2
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a® N, (y,y ) = AL ~—-—u-—-~ ef ( | tan™* ds)e '

y ' . - T .
_ LtantE8)e TV N g
‘TTO' _lcy ..140'.. O’y : T .o_y . T S y . B _. :

At y o= =0 (66) can. be 1ntegrated from -5 tos byI;
j E to”glve the central yy " density
,\/x +a ' R ' ' :
g Ei dy’ a1 ."SO'GX.'. L L _. o
4 Nk.(O,Q_) . A;I'o R ER 3‘5‘“7 sinh (or o :) o L - 8)
TIf A = /2 oB
= 3,46 X 10 _k%»Hz EEe sy

+.and we can rewrite the y densities at s = 0

7 dN (y) 2B1 dy ef(a,Y)
Ca = A , tan Y = 28
o a
Yy ¥ 2
Y A A
, os 2 (UZH‘UZ)
(68) v, (v = 2BIody‘ = e
Oyt L (76)
.2
1 Y
) 2
(o Ao™)

2 2 d ' .
(73) AN y,y ) =2 BT ﬁéLT ef(a,¥) e
Uy ro

2 _ g d d f . “1 (SOGy I)
(74) d Nk(0,0) =/ - BIO wg;72~ 81nh 5

In the x,x’ plane the central orbit of the electron beam will project

on.the plane s =.0 along the parabola (Fig. 19) .
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Radlatlon from element ds at s W111 Lransiorm to. s = 0 centered. at %!

2

X = 8 /29. The one ¢.contour of % is, using (64), x3 =

since § = px we obLaln Lhe contour

xzsz/z@_i_ﬁ;ﬂ%z < 2 s S

= ci + 5202 and

- 5/93

(78)

which is shown in Fig. 23,
- The contour of (78) is én.apprqxima—
:-tiqn based on the aésumption that the
contours have small curvature in_thé'
iiegion consiéered. Since the radiation
. emitted by a sgingle electron is parallel
- to the x’ axis, a radiation distribu- I
‘tion large compared to the curvature

vs. x would enlarge the contour,

The radiation is distributed
uniformly along the arc so we can

obtain the uniform x density from

(17) multiplied by £ to obtain the

number of || pelarized photons; space

13

Fig. 23 Radial (x,x') phase

Nk“(h)=1°26Xlﬂ kIvG

‘mrad ©

f per sec,

1 (79)

- The probability that a photon from s will be in dx.is

.1 gx—sz/Zgzz
. 2 (oPastety
x X
P == et ———— )

7 1 Z !
o 2T be+s o

and the number of photens in dx dx‘ is the product of (79) and (80)

times dx’., At x = x' = 0 the central x density is

dZNk(O,O) = 1.26 X% 1013 kIVLG, dx dx’

4/2'_n: o

(80)

(81)
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Selection of the source center at a waist, or minimum, or. focus of
‘the electron beam made the derlvatlon of ‘the equaLlons mapageable, ' This
.'type of source center is found at Lhe center of & double-focussing inser- -
tion in a ring and sometimes in the general lattice, However,  the sourpa.'
. center lS often at a locaLlon 8 where the beam phase space ellzpse is
_tlltad and. descrlbed by (28) ' ' '
R 2 N 12 L o
Yy b 200 vy -+.8y L= Ey T R ; 1 {28)
The &, B, v at the desxred s and E are obLalned from the calculations of
. the rlng laLtlce dynamlcs. (See Appendlx B). If:Lhe one ¢ emittance is

chy' then, by_comparlng (28) and (33).
o = JEB cy: = WEy o o e ':  (30

f_' The values at Sl’ relaLed to those at 8 are glven by

Bl =B - 2u(sl—§) + y(slw§)2
¥ 7@ v(sy-8) - (82)
Yi = Y

- {provided there is not magnetic focussing)., Alternatively (33) can be

- transformed by.(32)_with_s_rep1aced by (31-5),_.ﬁowever, from (82)
o(s) = o _-y(s)s

measured from the location of ao. Set ao =0 at ¢ = 0 and the projected

waist will be at

Y(s) = -y(s)s

If we measure from this zero (33) and (34) need only to have s replaced by

S5 and similarly (60) and (62) have s replaced by 59+ The transformation

T to the forms of - (63), (64) and (66) must be done W1Lh .
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and the result is complex expressions and difficult 1ntegrat10n Whlch are
‘beyond the scope of this paper. The .symmetry assumptlon 1ncorporaLed in
"{76) is no longer exact. The modification of the X, %’ pr0cedure is obwvious, -

and is considerab]y simpler.'

The values of the ‘source parameters can be examined and 1£ cy,3<_c,
.sc < cy and 50 -} <cry (preferably less than half) the approx1matlons _'
-given above are reasonably good. for a source not centered at a walst. i
"For extreme cases the source length can be divided into a few s, the

'_flux calculated for each, and the results”summed.

It is important to note that no allowance has been made for spread o£ '
"% by momentum dispersion. Ring éynamlcs calcuiaLlons pIOVlde a momentum '

“compaction function Xp defined by

PP

. where Ap is the semi-momentum spread of the beam. In an insertion the X

can be very small and need not be included. If Ax is appreciable, compared
to Lhe betatren oscillation © X then the o, of (80) and (81) is replaced

by (d + bx ) . The Xp amplltude function usua]ly does not vary rapidly with
5., As a result the modulation of angle x' by dX /ds is small and has only a

emall effect on the assumption that the radlatlon is uniform with 9.

In sum, the synchrotron light source ig characterized by general para-

meters

Yy P (7\.{:/)\)3 ID >

by specific parameters

G,O’,O“,,O,,S,
and -in some configurations also by

o By Y %y e
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I1I. Radiation Beam Power

The power which can be encountered in a syachrotron radiation beam has
an important influence on optical design. Cooling and thevmal distortion
of the first optical element may well limit the flux which can be gathered
from electron storage rings. It is always advantageous, with respect to
beam power, to work near kc. Figure 10 shows the percentage of power at
wavelengths greater than A vs. h/hc, and it will be noted that haif the

power is radiated helow Kco

The total radiated power is current times the volts/turn (Table I)
b
P =88.5 1 I/p kw/amp or w/ma (83)
. . -3
or multiplying by 10 “/2m

P = 0.01409 E4QI/Q w/ma mrad (84)

il

9.61 x 10716 yAors, w0

is the total power intecepted from arc 8.
By combining (84) and (16), E in GeV and A in A, P = 0,0787 E/A _ w/ma mrad 6

The power radiated as a function of the vertical angle ¢ is, from

(9) (24)

P = 1.44 X 10

0,0413 1.5 (85)
= Q3413 ﬁ Fo(y,0) i "

3
-18 % Folyy)  w/ma mrad 9, ¥

Function F(vy{y) is shown in Fig. 12 as well as F7(y¢) defined by (24).
F(yy) can be approximated closely by a normal distribution

: )2
2
o4

W

PO = e (86)

which can be normalized by the total power from {(84)

j Flvpdyy)y = v J Flvg)dd =k (y¥ in rad)

w00

and since the integral of (86) is k,



1-32

15 v 216 y*
so de¢ = 1.44 X 107 XE— =9.61 x 107" %T . k= 0.667

and at 0

k
Flvy)y = /EFPE = 0,4375

G$ = 0,608 rad of iy
2
EARGLD.
%

and (0.608)°

F(yy) = 0.4375 e (y in rad) (87)
It is often convenient to represent the power distribution by a

rectangle of "width"™ ¢ = 2/y. If in (83)

I reman =k iy

o
4 4

2 X 1.44 x 1077 35 k) = 9.61 X 1010 %T (88)

k1 = (0.334 rad of vy
The rectangle is shown in ¥Fig, 12, 1If this approximation is used it is
sometimes necessary to remember that the peak power is larger in the ratio
1.31,

If we assume the beam is very small there is an approximation useful

" . -3
for estimating. At one meter £rom the source one mrad € subtends 10 m

and § = 2/y subtends 2/y m so the radiation falls on 2 X 10”3/y mz. But

the power from one mrad § is (84)
P = 9.61 X 10716 ya/p w/ma mrad 8

and the specific power

13 yS/p w/ma m2 at 1 m

P/A = 4.80 X 10~

If D is the distance from the source in m

5
P/A = 1.38 E /QD2 w/ma cm2 (89)
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If the angular spread of the electron beam is appreciable this power will

be reduced by the approximate ratio (see (93))
-1 -2 2
Uk v (90)

where & is the angular divergence of the beam.

The preceeding relations apply to an electron beam which iz a filament.
Distribution of the beam in y and v’ will reduce the power density, often

by a significant factor. 1In the vertical coordinates the electron bheam is

described (55) by 2 2
_l<,L+L>
2 2 2
2 IO @ ! /
d°1 = L & YooY dy ay (91)

ng o N
yy

and the current in element dy dy’ will radiate power in angle element dy

at ¢, using (85) in radians of ¢ and (87)

1
. 5 k 2 02
3., 2. -15 vy ¥ .
d7F = d71(1.44%10 ; ) e 5 © dy per mrad 9, ma, rad o (92)
' v
at § = 0 I, /25 o, = 0.4375  and o, = 0.608/y
G
)
3 2 -16 " 1 Ty
1 = : . i
§0 d™P = d71(9.61 X 10 ; ) S e (93)
¥
but if the radiation angle is V', ¥ =Y -y’ and the power in element
dy dY’ radiated from current in dy dy’ is
2 2
_1 (Z_ LY > ! (Y;_yf)Z
’ Y 2\ 2 2 2
4 1 dy dy’ dy 3 oy 2o
3 Trn= L6 v* o y y ¥
d°P = (9.61X10 ) @ (94)

P (2”)3/20 ooy

vy vy

If we integrate over all vy’ the power radiated from element dy dY’ of the
source is (assuming one mrad ©® and IO in ma)
_l<
4 Tdy dy’ 2
6 v . "o
0 ) 2m o o
v o

2
v/
+ 2)

o)
O

M

b

a%p = (9.61x10" (95)



and o _ = oy + ci GW = 0.608/y rad

ff the beam height y is small, integrate over y to obtain the angular distri-

bution
1 YIZ
g T3
4 L ay’ o
2 -16 o 0
d°p = (9.61x10" 7 X e
¢ o) /o g, (96)

Units of (94) and (95) are watts per mrad 8 per ma.

Equations (95) and (96) describe the source. The power density can be

transformed to surfaces by using the methods of Sect. IIZ.
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IV. Optical Transformations

The characteristics of sources can be most readily examined with
linear paraxial transformations. These transformations map the elements
of phase space and represent the best conditions that can be achieved,
Aberrations and losses are beyond the scope of this section, but source

properties and comparisons can be examined with idealized assumptions.

1. Nor-Focusing Optics

The optical axis, s, is the central ray of the system. Deviations

from s are, in the horizontal and vertical planes, specified by x, %’

and y, v'. If there is no refraction or change of momentum the s
phase space ( and time) are preserved and can be ignored.* The four
dimensional phase space X, X, v, v" is invariant but, if there is no
®y coupling, the x, x’ and v, v phase spaces are independently
invariant,

A ray at Yo? y; propagating through free space from I} = 0 will

be at h = D], at

D=0 D=D

i

1

Fig. 24 §lit in vertical phase space

= + 4 =
Yy =y, YD,y =y
and the free space transformation ig

y = 1 Dl yo

r F 4
yOlyO

o

“The effects of s are folded into x and Y.
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Suppose a source at D = 0 (Fig. 24) with contour

Z! 2 Z !2
...E......y +._.x.......y -_-EE’
y L Yy

Y
To avoid utter chaos in nomenclature, ¥ will be used as the variance,
or equivalent variance, of the synthesized optical source; ¢ will be
reserved for the variance of the electron beam. The emittance of
this source is Z&X&, and the phase space area is ﬂzyﬁy,. Maxima are
the axial intercepts § = zy, ¥ o= Ey,. If thig source is transformed

by {96) to Dl the contour will be

Ty g 25D 5, I
e ~v-1~—yy’+(:1~+~¥:—~>y = % % . (97)
Zy Ey yl Ly yy

Area and emittance are preserved but the maxime are no longer the

intercepts. They are (Fig. 18)

(98)

and this shows, as expected, that the angular distyibution is

unaltered but the size increases.

One of the most common, and important, optical instruments
is the slit. It will be considered here in vertical dispersion.
Suppose & slit of width 2d at Dl (Fig, 24). We can examine the
properties by transforming the slit back onto the source or by
transforming the source onto the slit. The latter scems preferable.

The intercept of the source contour on ¥ is

DY

v = 0, y’:\frz_—l—_.x—r__z' (99)
. T L ,D
b y

and the minimum angular resolution (semi-angle) as the slit width
goes to O is Eyi%h/ X@-& E@,Dz. Slope of the contour at y = 0 is,
by differentiating (97)
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w

D

et e et

2.2
(>1 /5007 D
y ¥
and the waximum angle through the siit is approximately

}_.Lf Da
2 2

7 2
AT D v /T + D
y Y' ( y )

2

The area cutlined in Fig. 24 is, in most practical situations,

nearly a parallelogram of area
4ds T,

S et p?
b y

and since the em:Ltance area is ¢¥ Zyp the fraction of filux rassed

by the slit is

Lg. 103 assumes uniform density, which may be a poor approximation,

A somewhat better approximation is obtained by the ratio of siit

width to emittance width

JL + f&fD

It is sometimes desirable to integrate (76) over 2d.

{100)

(101

(1023

(103)
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fn the radial or x, % space the radiation beam will be distributed

)C‘ X‘
\\\\ |~
“ i
é +8202 n
b4
x o g X
1
AN
/]
D=0 D= 1 At Apefture I
Fig. 25 §lit in radial phase space

along the length of the slit and will be cut off by the ends of the
glit or by the aperture of the instrument illuminated. There will be
a systematic variation of %/, the horizontal angle, along the slit.
The xx' density (Fig. 25) will vary as gi + 5 02 , transformed to

D =D, (see (78) and Fig. 23). In the vertical direction the

angular distribution is given by de(y') of (76) and, if the slit
width 2d << § of (98) this distribution will be uniform across the
width of the slit, However, the de(y) of (76) has been integrated
over s and represents the sum of the source. Since the yy density
is correlated with the xx’' density through s, the y distribution given
by (69) will vary over the length of the slit. For relatively short
sources and moderate values of the various ¢ the variations are small
and in many, if not most, synchrotron light applications the slit is
rather upiformly illuminated. Extreme cases can be analyzed by
dividing the source length s into a few As and transforming the parts

piecewise in order to maintain the correlation between x and y.
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One important application of the slit occurs with the double
crystal monochromator in the parallel position, now usually a channel
cut crystal. The angular distribution passing the slit determines
the resolution (if the angles are greater than the crystal angular
window) and the resolution is limited by (100) or perhaps (101).

With the extended source the resolution AX/L = cot Gﬂy' {(Bragg angle 8)
is limited by the characteristics of the source and the distance to
the slit, but not by the slit width., The distance to the slit and
crystal are determined by the geometry., Flux is collected from orbit
arc approximately ® = x/D, where x is the usable face width of the
crystal, Flux at the shorter x-ray wavelengths will often be limited

by the power the first elements can tolerate.

The double crystal spectrometer in the anti-parallel position

iz unique in that it is an angular slit in phase space.

y t N 1
4-Ay
i V)
¥
/‘ = * ¥y /i///;// } ¥
\/ by' C/ py!
b=0 D= 1
Fig, 26 Double crystal monochromator angular slit

Assuming vertical dispersion, the acceptance at the crystals is
Ay' (Fig. 26) and this transforms back to the source as Ay{ Angular
acceptance is very small, with good crystals only a few seconds, so

Ay is nearly the same at D = 0 and D Usable Ay is determined by

1"
the projected vertical height of the crystals and this will set one
limit to source length s by (73) or (76). The other limit is given
by the width w of the crystals which limits the source arc to & = w/D = s/p

The smaller of these limits applies. However, the diffraction angle
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to the crystal planes is changed by the off axis angle x’ in the amount
% x'ztan § (this ® is the Bragg angle) which must be less than the
crystal acceptance Ay’ . For this application the source angle

8/2 = x’ will seldom be limiting since it can be a few mradians for

good crystals at Bragg angle of say 20°. Ay is very small so the

exponential in de(y') of (76) is approximately one and

an, (') =7 x 10%

2 19 3
kI YTH.8 A
(¢} 2 ;/c'yzl’-i- O'E y

with © determined by the size of the crystals and the distance Dl'
Diffraction studies such as those using Laue patterns or

topography depend critically upon source size and source brightness.

A specific study will require a specified angular spread across the

sample. The situation is shown in Fig. 27 for two typical synchrotron

light sources which can be used for x-ray diffraction. The slit may

be either a pinhole or the edges of the crystal. If we rewrite (99)

5
’ Y
y = (104)
N /n )% w0t
y' “y

Fig. 27 Two typical sources, from different emittance beams,
transformed to slit in y,y' space
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The maximum semi-angle is roughly Z /D, but Z for short sources

is largely determined by cy. A 51m11ar 51Luat10n obtains in xx’
(see Fig. 25). The Ty and Gy of various synchrotron light sources
will take values in a range of more than an order of magnitude,

and this can force a corresponding range of Di' (One must of course
retreat far enough to illuminate most of the sample and to prevent

thermal decomposition of the material),

The flux passed through the small aperture at Dl’ and the exposure
of the detector, depend upon the central brightness of the source.
The central density functions in x, x and v, v are given by (81)
and (76). These cannot simply be multiplied because we would then be
counting the same photons twice. By the analogy of (65) or (66) to
76), the probability that a photon will lie in element dydy*

{at v = y' = () of the source is, from (74)*

ddf . 00 ¢
P:—-Y—.L._]'._".Sinhl(u—._l>

T o0, r 0,0y (105)
and this times (81) gives the central brightness
dx dx' dy dy’ .1 /59 9 v
daNk(O) = 1.26)(1013 chny1 -wu?n—f—zy 4 sinh Q;~7;XT> (106)
/27 Véx+s o (ooy;) y ¥
For diffraction sources the argument of sinh"1 is less than 1 and
=1
sinh % ® x; sg tends to be small compared to o, - Eq. (108) can
then be approximated as:
a*N =y AxAx’ hyhy' (107)
k 2¥ \gxcyc ) yBy

with k2 4 numerical constant involving k, Io and functions of

(l /k). The phase space area subtended by the diffraction sample wiil
almost always be small so dx . ., . can be replaced by Ax. . . and

we can avoid integrating. Good x-ray sources will have Oy’ &~ o and

this varies as y"l at a fixed (hc/l). The brightness is thus proportional

to yz and inversely to dey’ the electron beam size. Although source

length s is in the numerator, its magnitude is 1limited by the sample
size and distance to g = wo/D, Increasing s and p together has no

influence on flux, which is proportional to 6 = s/p and such increase will
%
Constant A of (74) containg a o
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enlarge ¥, and I .
x ¥

2. Focusing Optics

An optical system can be reduced, in first order, to a focal

length f and the location of two principal planes.

Object plane Principal planes Image plane
i
Focal !
LO length &i U
£
Object space Image space

Fig. 28 Optical system definitions

The transformation from the first to the second principal plane is

<

thi=
(o

and to transform from yo, y; in the object space to Vs y; in the

image space

;
yi 1 &1 Toopt LO y0
’ = ,l ¢
Yy 0 1 y: 1jjo0 1 Yo
or . &i LiLo y
SR
L f Lo f + &o ©
AN L A
71 L x ( - L4 1) 0
£ f
L L
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and for image formation, e.g. conjugate planes in the object and image

spaces
.4
i’o 1 i _1
&o - F + %i 0 or Tt T F
o i
also
. £ } £
o Tt TTE 0 M T T (108)
f -4 L, v,
and linear magnification M = L. £ S - 1
7 £-2, k5.

angular magnification is 1/M and the transformation between

conjugate planes is

yi M 0 yo
A =iy il
i RV § A (109)

2, are usually formulated with historical sign and

. , 1
(Matrix optics
coefficient conventions. I find the above formulation in which distance
proceeds from left to right and the column vectors have position on

top to be more convenient.)

If a source is focused on a y slit the contours transform &s in

Fig. 29, which shows magnification arbitrarily set at 1%,

y! y!

{
\

\ |
I W

Ob ject
3 ' M= 1.5 o Image
“"--...{_ \
X b4
‘--._._. . -/

Fig. 29 Transformation by focussing system
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The x, % figure is transformed to the system aperture stop (Fig. 25)
and the stop then transformed back to the dashed line in Fig. 29.
This determines 6 and s, and the resulting source transforms to the
image as shown in Fig. 29. The vertical, or y, source transforms

as shown in Fig. 29 and it is assumed for this example that all y'
are passed by the system. (See Refs, 12, 13 for transformation of
aperture stops.) Since the radial aperture has determined s the

flux passing the slit is from (76)

d
v, = | oeref(E—, tan”" gﬁ) a (110)
=d y y
Note on the curves of ef(a, Y) in Appendix C that if y/o"y = d
is not larger than 2 or 3, the usual case, we can approximate this

integral by a trapezoid

(111)

(If the magnification is M the d of (110) and (I11) is replaced by
d/M.) On the curve of ef(0,Y) in Appendix C it will be seen that for
tan Y = gs/cy greater than 1 or 2 the proportionate increase of flux
density with increase of ¢ diminishes rapidly, The y' distribution

is given by

gs -k y’z/(ayfz + g%y (76)

R ’
de(y )] ZBIOdy —7—7——-=§ e
AO’yt‘*‘ o

and will be magnified by 1/M. In the example this has all been passed
by the slit; the angular variation is determined by Gy! and ¢. We can
usually make o , < ¢. The radiation angle ¢ is roughly proportional
to (1/v) (R/h )2 from (52) and l = 4ﬂp/3y3. Combining these, at a
given A, o is approximately proportlonal to (Y/p) or to % (this B

is magnetic field). ¥lux constant B is (75) proportional to v /p and

to H2 which is slowly varying from h/hc ranging from say 0.3 to 20,
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In general we need to keep Gy and oy' small (small emittance) and

to work with v and B as high as feasible, without encountering serious
beam power problems. Angular variation in the slice through the slit
of Fig. 29 can be reduced by diaphragming further on in the system,

but this of course reduces the flux.

In the x direction, along the slit, the angular density is
given by (79) multiplied by 1/M. The %’ extent is simply equal to
the orbital arc subtended X 1/M., The size x has a one o width (80)
of (oi + 52 ) 7 x M, and this indicates the desirability of keeping

o and s small.
X

There are many different focusing systems that can precede
or follow the slit, They are all subject to the unfortunate restriction
that we cannot compress phase space; we cannot reduce both size and
angle witnout slicing off flux. Interaction with the numerous source

parameters is complex and analysis is probably best done numerically.
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|
&y " dydy’
R
—t .

Fig, 16 Electron beam cross section in configuration and
phase space

v eenn e

5= 5=8

Fig. 17a. Envelope at waist, s=0, b, Envelope at s.
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2 2
Ellipse gx~ + Zaxy + by" = E

area/m = ¥y(o) = &/ g-a?

tan 291 = 2af(g~-b) (axis)

tan 8, = -a/b {diameter)

Fig. 18 Properties of ellipse

2 2
by -8
2 20
o
8 2
8
2p

/

Fig. 19 Arc in x-s plane
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APPENDIX A

Computation of synchrotron radiation spectra requires the modified
P
Bessel functions Kl/B(X)’ K2/3(x), K5/3(x) and the integral JXK5/3(H) a7,
 .5: the Tomboulian and Hartman G = %3 sz5/3(n) dTl, The most accurate
. tab1es_are probably the "Tables of Bessel Functions of Fractional Order,”
Veol. 11, Computation Lab,, National Bureau of Standards,_éolumbia.Univer—
sity Press, New York, i948.- However, the Kv functions must be computed

from the Iv’ which are tabulated, using;

LN NSl

Kv(x) T sin Ty L -

To obtain K5/3(x) from these tables it would be necessary Lo -use & recurrence

__relation such as

- 4
K 3(0) = Ky () + 50 Ky 5 (%)

‘These tables give xiv ixv(x) for small arguments and since this product
. converges as x + 0 the values of K for arguments less than 0.002 (less than
0.005 for four figure accuracy) can be calculated by

1/3

Ky 50 = 1.81380 (0.930437 <3 0.888823 x17)

x<0,.002

2/3 /3

~-0.697828 xz

KZ/B(X) = 1.81380 (0.592549 x )

Values of Go for arguments less than 0.00l can be obtained by use of

Schwinger's expansion for w << @, - Equating his II16 and 1120

G, = ny5,3<m an = 2,149y [1 - 0.677 o'+ 0y < .00
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The most convenient tables of KI/B’ K2/3, K5/3 and G are in an
unnumbered and undated report8 - H. Ellis and J.,R, Stevenson, "Computer
Calculations and Numerical Tabulations of Some MacDonald Functions,"

School of Physics, Georgia Tech. (There is a misprint on page 3. The
approximation for x >> 1 is Ku(x) =~/§;— e“x).
The short tables and graphs in the report by R.A. Mack4 are convenient

but the report, issued from the late Cambridge Electron Accelerator, is hard

to get. Note that Mack's g(r) is related to G1 by
2/3 .
g(r) = G (r)/0.9 x 2777 (5/3)! = G,(r)/2.150

The following short Table AT of functions has arguments spaced for
(o]
reasonable interpolation. H (y,0) = K2 (y/2) and G (y) = j K., (M) d7
) 2/3 a y 5/3
are tabulated. Hi and Gi can then be obtained by multiplying by yi.

Figure Al is a graph of G(y) e.g. Gs(y) Vs. Y.



y Ky
.0001 36.284
001 16.715
.002 13.192
004 10.376
.006 8.995
.008 8.116
,010 7.486
.020 5,781
,030 4,932
040 4.386
.050 3,991
.060 3.685
.070 3,437
,080 3,231
.090 3,054
.100 2.900
.150 2,343
,200 1,979
.250 1.714
.300 1.509
.350 1.343
400 1.206
450 1.809
.500 9.890-1
.550 9.018-1
600 8,251-1
650 7.571-1
,700 6.965-1
.750 6.422-1
.800 5.932-1
-850 5.489-1
,900 5.086-1

1,00 4.384-1
1.25 3.079-1
1.50 2.202-1
1.75 1.59%-1
2.00 1,165-1
2.25 8.581-2
2.50 6.354-2
2.75 4.727-2

K2£3(y)

498.86
107.46
67.686
42.621
32,509
26,820
23.098
14.498
11.017
9.052
7.762
6.837
6.136
5,581
5.130
4,753
3,513
2.802
2.329
1,987
1.725
1.517
1.347
1.206
1.086
9.828-1
8.933-1
8.148-1
7.455-1
6.839-1
6.288-1
5.794-1
4,945-1
3.406-1
2.402-1
1.722-1
1,248-1
9,132-2
6.726-2
4,981-2
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TABLE Al

K553(y)

,6524+6
LA43304+5
51444
A2244
.23343
47843
.087+3
L 723+2
94642
L06142
11042
55642
L 20342
96,25
79.05
66.27
33.57
20.66
14,14
10.34
.915
.263
082
.205
534
009
589
.249
967
.733
.535

. 367
.098
LT12-1
.337-1
L906-1
.998-1
.399-1
L941-2
L142-2

(R RO - SN SRR S S s sl i =

A O A NP RSN WW RGO

B
o)

= T G e B RO

R W O O oD
oy D O D 0

CQWHNUJUCOHHNNNNU)LQDU‘&O\‘-J\DS

(y,0)

27145
.910+4
L 155+4
58143
LO77+3
.817+43
+ 34843
33542
L096+2
L 10242
55542
L2 1442

.37
.94
.69
.25
.15
.59
.26
.34

.713
850
474
LJAa24
.602
L947
ALk
975
.610
.302
L040
.816
454
L771-1
.557-1
L6421
451
L672-1
L160-1
JA45-2

Go(y

973
213.
133,

e e DN P ON GO
OoONPPo O~ P oW

Lﬂ\d;—d}—*[\}w-l‘-'-o‘xuooxor—*wn—'n—*:—'z——'r—-NMbJu-P*LnOOOO\Q
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APPENDIX B

Outline of Storage Ring Particle Dynamics

Properties of the synchrotron radiation source depend upon the angular
distribution of the radiation process and on the spacial and angular distri-
bution of the electron beam. The radiation angles are a function of R/XC
and y (Section I,2.) and can be controlled to the extent that those para-
meters can be chosen, Electron beam distributions are a function of the
storage ring design and, in an alternating-gradient rine, will vary with
circumferential position. 1In this brief note only the properties of
separated-function alternating gradient st ~age rings will be considered,
The separated function ring has dipoles (negligible fi-1d gradient) which
bend the electron beam a total of 2m and quadrupoles (constant transverse
gradient magnets) which supply the restoring forces that keep the beam
"focussed". A quadrupole has zero field on iis axis and exerts converging,
or focussing, forces in one transverse plaire and diverging, or defocussing,
forces in the normal transverse plane. (Ref, 15, Chap. 6.) A sequance of
quadrupoles is normally arranged with focussing and defocussing directions
alternating. Such a sequence will then be net focussing over a rather wide

range of parameters.

The central orbit of a storage ring is that orbit which will be repeti-
tively traced by a particle of design energy launched precisely on that
orbit. The central orbit is constructed by joining circular arcs in the
bending magnets to segments of straight lines in the gquadrupoles and field
free sections ("straight-sections'.) Solution of the geometrical problem
is done by requiring that the central orbit close on itself. Two examples
of very different magnet lattices are shown in Fig., Bl with the central
orbit indicated by a dashed line.® In order to ensure that particles will
remain indefinitely in the neighborhood of the central orbit when subjected
to disturbances and imperfections, strong restoring forces are applied by

the quadrupoles inserted in the lattice,

The energy of an electron is continually being changed (in small in-

crements) by photon radiation and by the acceleration system of the ring,

*
The examples of this section were selected from a series of orbit studies
done by Renate Chasman.
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An electron with energy differing from that of the central orbit will
then have a different radius of curvature in the bending magnets
p = 33.35 B/B (Hq. 16) and will travel on a larger, or smaller, circum-
ference. A closed equilibrium orbit exists for these off-energy parti-
cles but the field of the gquadrupole is no longer zero off-axis. A
recursion function can be written for the motion of an electron through
the bending magnets and quadrupoles and this function can be solved,
in principle, for the closed equilibrium orbit, Solution is best done
numerically by one of the numercus programs used by accelerator designers.
Lf s is the coordinate along the trajectory a momentum function Xp(s) is

defined by

bx = Xp(s)

Fli

where Ax is the local setover of the equilibrium orbit for energy change
AR from the central orbit energy Eonl6 (The momentum function is also
referred to as ap or M.} 1In Fig. B2 the Xp is always finite. For this
type of FODO lattice the off-axis equilibrium orbit is adjacent to the
central orbit but has "wiggle-motion" which is correlated with the
focussing periodicity., The triplet lattice functions shown in B3 illus-
trate the effects of an achromatic bend design. XP is finite in the
‘bending magnet sectors but is approximately zero in the insertions between

sectors,

The radic frequency accelerating waveform has a phase focussing action
and the radiation damps the longitudinal motion. This results in the elec-
tron beam being compressed into short bunches with energy distribution op
which has a minimum value determined by the quantum fluctuations of the
photon radiation. (The observed wvalue of GP will be increased by intra-
beam scattering and by instabilities.} Thus the ensemble of equilibrium

orbits in a ring will be a band of width

hx(s) = & Xp(s) Up

about the central orbit.
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If an electron is displaced in position and/or angle from its equili-
brium orbit it will execute "betatron" oscillations about that orbit., Let
s be the distance along the equilibrium orbit and x be the radial and y the
vertical displacement from the equilibrium orbit of the electron. A prime
will denote the derivative with respect to s. The transverse motion can

be described by the phagse-amplitude solution

L I
x = A 8° sin ( ds + 6 )

XX N Bx X
% ( j ds )

= i ==+ §
Y AyBy st By y

Constants A and & are determined by the initial conditions. f is an amplitude
function which can be calculated from the transformation matrix of the ring

lattice.16

Figures B2 and B3 show p as a function of s for the two examples,
If B is constant the equations are those of the simple harmonic oscillator
with wavelength given by B = A/2m. 1In an alternating gradient ring the motion
is that of an oscillator in which the amplitude multiplier varies while the
phase advance speeds up and slows down. One wavelength of betatron oscilla-
tion igs completed when
%2
j ds - 2m
g P

i

A very important number is the v value, the number of oscillation cycles per

turn

<
it
|-
c_ﬁ
jn

ds , € = circumference

s B
In order to avoid resonance effects v must not be a small rational fraction.
One can then visualize the transverse motion as a sinusoid precessing around
the ring and superimposed on it a wiggle motion fixed to the magnet lattice
and related to B%. If there is a beam circulating with a large number of
particles distributed in phase and amplitude the envelope of the betatron

1
oscillations is proportional to g% vg s.
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Define two other variables,

R
il

-5 /2

(1 + dz)/ﬁ

<
1t

. 16 .
Then o, B, v are coefficients of the transfer matrices  which can be used
to transform the position and angle of the betatron motion at any azimuth
of the ring to any other azimuth. They are also the coefficients of the

Courant-Snyder invariant

2 2 2 2

o= + (e + ' = 20 LI !

E 5 [x (@ x + 8 x Y] VXt 20 xx B, X
X

(and similarly for y, in uncoupled motion), The right-hand side is the equa-

tion of an ellipse in x and x'. Since &, B, v are functions of s, the shape

and inclination of the ellipse in the phase space x, x' will vary with s but

the area will remain invariant. A particle with displacement and angle K
x! at s, will lie on ellipse

1
2 2
El = v(s,) x) + Zu(so) xlxi + 8(s,) xi
and will transverse the path in phase space defined by El as 1t goes around
the ring. If an ensemble of particles lies within boundary E at s it will
lie within E everywhere around the ring., At any s the maximum x of any

particle will be

1
x = [p(s)E]”
and the maximum angle

L
2 = [y(s)ES*

Enter the ring at a or ,  where @ = 0 and consequently = 1/y. The
& max min Y

ellipse axes lie on x and %' and the area of the ellipse is

mxx! = mEk

E is the emittance of the beam. There is an Ex and an Ey'



1-79

Appendix B

‘Thus the largest beam size will occur at a B

at a 8

and the largest divergence
X
min’

Although the size-angle product of the beam can be congidered crudely
constant.,

this is strictly true only at a R ax OF @ B . . Elsewhere the

min
ellipse containing the beam is inclined and the =u' product will be
larger than E.

The foregoing relations are valid for a conservative system or for

a radiating system in quasi-equilibrium.

16

An electron position xo,xo' at s 1

will be at s
0

*1 A1 212 *o
. ]
* %21 d22 xp

A focussing quadrupole of length 4 and gradient ¢ = dB /dx operating on a

particle with magnetic rigity Bp has transformation matrlx,

cos 4 /K 7%—sin L /K

-/K sin 4 /K cos £ /X

with K = G/Bp
and a defocussing quadrupole has transformation matrix;
cosh 4 /K

7%~ sinh 4 /K

JK sinh 4 /% cosh 4 /K&



1-80 .
Appendix 3
The same transformations apply ¢~ y, y' with focussing and defocussing
interchanged, i.e. a focussiug quadrupole in the x coordinate is defo-
cussing in the y coordinate and vice versa. A non-focussing section of

length £ has transformation matrix:

(Rending magnets have small focussing effects, especially at their ends,
but these effects can be disregarded when examining a source. The axis
s in a bending magnet is curvilinear with radius p.) Transformation

through multiple elements is then a matrix obtained by multiplying the

matrices of the elements in succession.

An ellipse

2 ' 2 _
o+ + =k
Y X Zaoxx Box I

can be transformed from S to s, by
“ 2112221 10%1 “211%21 22899 %
_ ) 2 2
81 |° 28113y a1 1y By
2 2
Yy “23y1%9) #21 ) Yo

in which the aij are the elements of the x,x' transformation matrix from
to . The determinant of this matrix must be 1 so0 a..a - a,.,a,. = 1,

%0 59 %1 N i " " 11%22 7 %2%1

1f there is no focussing this becomes;

oy 1 0 -L @
2

B, -24 1 4 B,

Y, 0 0 1 Y,

or
ai "% T &Yo
= + 2
By 2{a0 bt £ Y,
Yy T Y,
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If initial conditions of «, B, vy are known from design tables or from
curves such as Figs. BZ, B3 then coefficients are readily determined at
distance 4 along s, An important special case beging at the center of
an insertion where BO is a minimum,

o= -p'/2 = 0 and Y, = (1+w2)/50 = 1/60. Then the equations

simplify to

o, = —&yo = -4/p
By =8, * Ly, =B, +1/p
Y1 - Yo © 1/80

The electron beam configuration of a source is determined from the
ring parameters at the azimuth, or s, of the source. It is usually adequate
to assume that the vertical equilibrium orbits lie in the median plane and
that there is zero vertical momentum function. The vertical emittance and
vertical amplitude functions at tne cnosen azimuth then give the vertical size

and angular distribution,

Radial distripution of tne equilibrium orbits is given by OPXP with
UP the variance of energy spread AE/E. Betatron oscillations occur about
these equilibrium orbits with variance OX obtained from the emittance and
horizontal amplitude functions. The energy oscillations are at a low frequency,
the betatron oscillations are at a high frequency, and the two are uncorrelated,

The horizontal width variance is obtained by adding in quadrature

2 2 2
oy = (OPXP) -4 Ux

It is often sufficient to assume that XP is constant at tne value at the center

of the source.
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Fig. Bla. Ring with FODO lattice. Q~quadrupole, B-bending magnet,
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Fig. Bib,

Ring with triplett lattice. Q-quadrupole, B-bending magnet,
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APPENDIX C

Exponential Integrating Function ef(a,¥)

A function of =z 2

ol

f ] 1 L2k 2

s} b+ ¢ =z

dz

in which b, ¢, and y are constants can be transformad by

5 =

[ 2
cog L v pmm—emmeme o fan o= , dz = sec t dt
Z b c

b +e¢c =z

cz 2
{ tan Db 1 h ]2 cos t
to 1 J . e 2b de
C cost =
0] M =
aZ
r-Y 1 - -2-'~ cos t -
a g R = . <
Define ef{a,¥) J o5t e dt Y 5

o

with, for f(z), a=y/b, tan Y = cz]/b

To normalize, Ref. 1l No. 492,

Yy @ - 2 cos’t v
1 2 o o 40

Jj‘coste dea~J2‘! clt,»-ﬂ/2 tan Y

0o 0 0 ¢cos t
or r ef(a,Y) da = /27 tan ¥

te]
At a =0 y

) . dt  _ 1 (1+sin Y) .

ef(o,Y) = JO st~ 2 in Tein Y (Ref. 11. No. 288)
Tf ¥ <0.1 cos t =1
2 2

a
YT g
and ef(a,¥) m=j e dt = Y e
o]



1-87

Appendix C
S
j21.__l“““ﬁ 32 (b2+c222) dz = 1 af(a,y)
A ¢
with a=y/b, tan ¥ = czl/b

Graphs of ef(a,Y) and ef(0,Y) are Figs. Cl and C2. A short table of the
function is included as Table CI. This table was kindly programmed and

run by Kurt Jellett.
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TABLE CI effa,Y)

Mantissa following table entry denotes power of ten multiplier.

tan Y Q\f 0 0.25 0.5 1.0 1.5 2.0 3.0
L10031 0.1 0.1002 0.9710-1 0,8843-1 0.6086-1 0.,3264-1. 0.1365-1 1.130-3
L2027 .2 L2013 0.1952 0.1780 0.,1229 .6636~1 L2799-1 2.378-3
.3093] .3 L3046 L2055 2698 . 1875 0.1023 L4382-1 3.898-3
L5228 4 AR .3991 3652 L2561 L1418 L6210-1 5.921-3
54631 |5 L5222 L5075 L4656 L3302 . 1865 L8411-1 8.839-3
L6841] .5 L6395 L6222 L5728 4119 L2384 0.1L16 1.334°2
.8423] .7 L7654 L7455 .6890 .5035 L3001 L1471 2.069-2
1,030 ; .8 .9022 L8800 ,8170 .6082 .3752 1942 3.314-2
1.260 | .9 1.054 1.030 L9607 L7304 L4683 L2579 5.477-2
1.557 ] 1.0 1.226 1.200 1.126 8759 .5861 L3457 9,277-2
1.965 | 1.1 1.428 1.400 1.321 1.054 L7389 L4690 1.596-1
2.572 | 1.2 1,674 1.645 1.562 1.280 L9430 L6456 2.766-1
3,010 | 1.25 1.821 1.792 1,708 1.420 1.073 L7631 3.649-1
3.602 [ 1.30 1.993 1.964 1.878 1.585 1.229 5082 4,824-1
4,455 | 1.35 2.200 2.169 2,083 1.785 1.422 1,091 6. 406-1
5,798 | 1.40 7.458 2.428 2.340 2.039 1.670 1.331 8.588~1
“8.238 | 1.45 7. 806 2.775 2.687 2.383 2.009 1.665 1.175
14,101 | 1.50 3.341 3.310 3,221 2.915 2.539 2.190 1.689
S 16,428 | 1,51 3,493 3,462 3.373 3,067 2.691 2.341 1.839
T19.670 11 52 3,673 3.642 3.553 3.247 2.870 2520 2 016
Blank indicates value less than 10"6
™ 4.0 .0 6.0 7.0 8.0 10 20
0.1 3,452-5
.7 7.567-5
3 1.327-4  1.744-0
N 2.259-4  3.536-6
.5 3,992-4  8,171-6
6 7.594-4  2.,232-5
7 1.574-3  7.124-5 1,957-6
.8 3.526-3  2.540-4 1.229-5
.9 §.334-3  9.592-4 8.119-5 4.,918-6
1.0 2.019-2  3.643-3 5.261-4 5.944-5 5.190-6
1.1 4.876-2  1.332-2 3, 1423 6.789-4 1.057 -4 1.725-5
1.2 1.149-1  4.529-2 1.646-2 5.432-3 1.615-~3 1.024-4
1.25 1.741-1  8.077-2 3,547 =2 1,456-2 5.545-3 6.319-4
1.30 2.615-1  1.407-1 7.325-2 1,652-2 1.733-2 3.316-3
1.35 3,903-1 2.396-1 1.451-1 8,578-2 4.,929-2 1.475-2 3,336-6
1.40 5.817~1 4.014-1 2.770-1 1.895-1 1,2806-1 5.557-2 2.365-4
1,45 8.760-1 6.695-1 5.162-1 3.988-1 3.076-1 1.804-1 7, 4643
1.50 1.374 1.148 9,724-1 §,297-1 7.111-1 5,2%8~1 1.100-1
1,51 1.521 1.293 1.113 9.668-1 8,439-1 6.487-1 1.745-1
1.52 1.697 1466 1,283 1.133 1.007 8.027-1 7.716-1
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Section 2.
2-1

The Synchrotron Radiation Source

G. K. Green

*
Brookhaven National Laboratory
Accelerator Department
Upton, New York

The synchrotron light source is described by combining the properties
of the radiatjon and the configuration of the electron beam. Most of the
radiation is polarized parallel to the orbital plane and this radiation is
most efficiently transmitted in vertical dispersion. The | component will

be treated in this note in order to simplify the equations.

Radiation functions Hz(y), Gl(y), Yo and { are shown in Fig, 1 vs vy,

The number of photons in interval A\ = ki per second is

1

N () = 1.256 x 1018 KIOYG (A_/\) in all §

Nk(O,K) = 3,461 X 1015

kI@YZHZ(XC/A) per rad | at § = 0

with I in amps, orbit angle 6 in radians and v = 1957 E(GeV).? NR(O,K) is

all | at ¥ = 0 and £ is the fraction of total photons in Ak that are || polarized,
A good approximation up to A = 100 hc of the angular distribution in Y is

“ given by
= 2., 2
N (A = N (0,0) exp (-47/25%) (1)

with

Yo = 1,45 fGl/H2 radians

The electron beam is described by the variance of its size and angular
distributions GX, O radial and oy, Oy' vertical, of which o will include
the spread due to momentum dispersion. These variances are a function of

azimuthal variable s and are given by the ring emittances and amplitude

*
Work performed under the auspices of the U.S. Energy Research and Development
Administration

TDerivation of the relationships is given in Accelerator Department, Brockhaven
Netional Laboratory Internal Report SP76-2, "Spectra and Optics of Synchrotron
Radiation," G.K, Green,
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functions. The electron beam is shown at s = 0 (Fig. 2) in x,x' and y,y’
phase space at a waist or § minimum. As we move to s the beam figure will
transform to the dashed ellipse and the radiation from a ds at s will increase
the angles, but not the size, The radiation figure can then be transformed
back to s = 0, If all the contributions for & s are transformed to s = 0
their sum is a planar optical source which can be transformed into the desired
image space. Using some simplifying approximations the axial distributions in
this source are:

v’

de(y) = 1J ~E—g dy ef(a,Y) , a = yﬁsy , tan ¥ = dsﬁvy (2)

U 1is a numerical factor containing k and I. ef is an integrating function

approximated by ¥ exp (-a2/2) for ¥ less than 0.2 or 0.3.

2
v H
Y 2 ¢ 08 o2 2 L2 2 2
de(y ) Ul “?rm dy oyt exp (~y /ZOY,) s Oy dy, + o
_ dx 202,27, 2 2, 22
dhy (x) = U2 nyl o exp [ (x-s"/2p) /ZUX] 3 Oy =0 + 50 (3)

X

o= 1
de(x ) U, nyl dx

Each of the above distributions contains the integral of the orthogonal
coordinate.

The central phase space density is

2
v H 1] - 800
dsz (0,0) = U3 24y dy sinh 1 _”Eiﬁ>
¥y P Uyr y ¥
(4)
2 - '
d ka(0,0) UAYfGl dx dx /Ox

X-ray sources will usually subtend a small orbit angle 8, To illustrate
the variations three typical examples will be tabulated, a 4 GeV colliding
beam ring bending magnet source, a 2 GeV low emittance ring insertion wiggler
source, and a 2,5 GeV low emittance ring bending magnet source; all for 8 £ 1

mrad and per unit current,
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A B C
4 GeV are 2 GeV insertion 2.5 GeV arc

Wy 7830 3910 4890
AC(A) 1.1 1.1 2,0
s{m) 0.013 0.0017 0.0082 per mrad 8
oy(mm) 0.23 0.006 0.04
cy.(mrad) 0.04 0.025 0.017
ox(mm) 1.4 0.1 0.3
o (mrad) 0.073 0.146 0.117 aty =1
The short source length and Uy' <0 permit further approximations, Gy' =0,
UX = cx and:

de(y) = (U1 vzﬂzdy)(cs/p3y> exp (wy2/23§)

de(y') = (Ulvzﬁzdy')(US/pc) exp (-y'ZIZUz)
{5)

2 - 2 '
d Nky(0,0) (U3y szydy )(S/pUy)

- -1 2, 2
de(x) = (szclydx) o exp (-x /Zcx)

Continuing the table for y = lc/h =1, 8 = £ 1 mrad, unit current:

A B C
» 2
d°n_(0,0) ~XE 2,8 26 6
y pa
Y
N (0,0 / 1.9 38 7
kx* * ~ Y Ux *

These functions omit common multipliers to show proportionality, The x,x'
densities are not a function of s (or ©) but the total flux is, of course,
Proportional to s. Sagittas are small compared to crx and can be neglected

up to at least * 3 mrad. The y densities are proportional to 8 = s/p and

will increase if © is increased, but they will spread over more x', However,
the linear approximation will begin to fail at a few mrad for the low-emittance
low-p example, and at some tens of mrad for the large emittance example. The

three examples are shown as y,y' and x,x' contours in Fig. 3. The source is
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the effective optical source at s =0, and is shown transformed 5 m into

the image space where it can fall on a slit, or crystal.

VUV sources usually subtend as much © as the entrance of the instru-
ment will accept. Examples are a low-field wiggler in a ~ 2 GeV ring
insertion, and the arc and an insertion of a typical 700 MeV ring.
Optiecs of 7.5 cm diameter at 4% m and 1% m regspectively are assumed to
collect £ & mrad and % 25 mrad.

D E F
Low field wiggler 700 MeV arc 700 MeV insertion
Y 2936 (1.5 GeV) 1370 1370
e (A) 32 32 32
p(m} 19 2 2
s(m) +0.153 +0,049 *0.049
cy(mm) 0.006 0,1 0,011
dy,(mrad) 0.025 0,045 0,124
cx(mm) 0.15 0.4 0.29
s2/2 0 (mm) 0.61 0.62 0.62
o {mrad) 0,194 0.416 0.416 y =
" 0.53 1.13 1,13y = 0.1
In these low emittance rings Oy' is small so Oyt > g, The central
densities are, continuing;
D E ¥
2 YZHZS
d Nky(o’o) ~ 16.8 0,69 6.2 y =1
4 6.9 0.28 2.6 y = 0.1
2 viG,

d ka(0,0) ~ 11,2 2.0 2.7 y =1

* 12.7 2.2 3.0 = 0.1

The effective source Uy ig approximately double the beam cy in examples D
and F due to the effect of source length combined with a low 8. (Solution
of Egq. 2 for ¥ > 1.} The small beam size partially compensates for this.
Source length makes only a small increase in example E. The source contours
are shown in Fig.,3 . If the source is imaged by focussing optics the ratio
of size to angle ig changed by the magnification but the product can be re-
duced only by trimming flux with an aperture., Aberrations distort the shape

and can make the apparent size or angle increase. An image of the radial
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source would reproduce the U shaped figure., After a drift space the w,x'
contours straighten out ag shown in example D of Fig.3 and it is in prin-
ciple possible to use non-linear optics to produce a straight image, but
not to reduce its phase space area, However, the apparent x,x" area of
example D (maximum angle times maximum size) is much greater than the

sSQUrce areas,

The most important optical characteristic of a storage ring light
source is small emittance, Very small emittance is undesirable in a
colliding beam ring but, fortunately, can be achieved in the design of

-a single beam ring. The angular emission of the source is the quadrature
sum of the radiation divergence and electron beam divergence. Consequently
the beam size can be reduced until the beam divergence is nearly half that
of the radiation without much increase of source divergence. Extreme reduc-
tion of beam size with very low-B is only useful for short sources due to
the y broadening by source length, (Imperfections of the storage ring also
contribute beam broadening and it is desirable to plan careful fabrication
and correction of the ring.) A small radius of curvature is desirable,
especially in the x,x' plane. The brightest sources for high resolution
worck will always be in insertions because double-focussing (x,y) can be
done in an insertion and the momentum dispersion can be nearly zero, This
consideration indicates as many insertions as the orbit design (and finances)

can tolerate,
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A SHORT PERIOD HELICAL WIGGLER AS AN IMPROVED

GOURCE OFF SYNCHROTRON RADIATION

Brian M. Kinecaig
Bell ILaboratories
Murray Hill, New Jersey 07974

ABSTRACT

A new kind of wiggler is prcposed as an improved
source of synchrotron radiation from nigh energy electron
storage rings. The electrons are made to travel in a
short period helix by a transverse helical magnetic
fleid. The radiation spectrum produced is caleculated
and it is shown that the helical wiggler design can
preduce a total intensity (photons/sec/unit bandwidth)
improvement of several hundred and a brightness (photons/
sec/solid angle/bandwidth) improvement of Axlou over the

present state of the art in synchrotron radiation sources.,
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A SHORT PERICD HELICAL WIGGLER AS AN IMPROVED

SOURCE OF SYNCHRCUTRON RADIATION

Brian M. Kincaid
Bell ILaboratories
Murray Hill, New Jersey O797A4

I. INTRODUCTION

Blectrons travelling in curved orbits in storage
rings emit synchrotron radiation due to the accelerations
produced by the bending magnets. Almost all the radic-
frequency power used to accelerate the electrons ends up
as synchrotron radiation. Until recently this waste
radiation has bheen merely an annoyance for accelerator
designers, but it is now becoming an important research
tool. The radiastion emitted by an electron beam passing
through a bending magnet has two major advantages over
conventional X-vay and UV sources: broad bandwidth and
much higher apparent brightness (power or photons/scc
produced per unit bandwidth per unit sclid angle of detector).
In X~ray diffraction experiments or in high resclution
spectroscopy, the highly collimated photon beam from a
storage ring can result in many orders of magnitude increase
in signal over conventional X-ray tube sources.

t present, however, it is possible to produce

more intensity (total photons/second per unit bandwidth )
by collecting radiation from a conventional source over a

large solid angle using a focusing arrangement than can 0e
EJ {.D t g
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obtained from synchrotron radiation sources. In some
experiments, such as inelastic X-ray scattering or some
kKinds of biological X-ray diffraction work, where source
brightness is not very 1important, a conventional X-ray
tube can, in fact, be greatly superior to present storage
ring sources.

Periodic magnetic field devices, or "wigglers",
have been proposed as a method of increasing the
total output power of synchrotron socurces. In the
wiggler designs proposed to date, large magnetic field
of about 30 Kgauss or more are applied in an alternating
periodic array, usually with a periocd of several inches,
imposed by magnet design-limitations.l In a wiggler of
this kind the electrons feel more violent accelerations
than in a normal steorage ring bending magnet, and thus
radiate more total power. Since the accelerations alfernate
in direction, the total angular deviation of the beam is
smaller than in a normal bending magnet, so the radiated
power is confined to a smaller solid angle, producing an
increased intensity. Such a wiggler produces & normal
synchrotron radiation spectrum with a critical energy,
Be, determined by the radius of curvaturc of the clectron's
orbit in each section of the wiggler and the electron's
energy.g

This paper describes the properties ol a special

wiggler with a helical magnetic fileld design permitting
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mach shorter magnet periods, and, &z 2 resuit, the radiation
produced has not ounly a higher brightness and intensity
than can be achieved using & conventional wisgler, but
alsc a different power spectrum, with the radiation
concentrated 'in a relatively narrow bandwidth. Such a
wiggler installed at the SPIAR storape ring could produce
& brightness improvement of about MxlOiL and a total
intensity improvement (photons/sec per unit bandwidth) of
several hundred over present SPRAR performance. This
lmprovement would remove the advantage of even the most
powerful conventional X-ray sources and would make possible
experiments which are currently not being done because
of source limitations.

Helical magnet design, the relative performance
of helical wigglers, normal wigglers, and bending masnets
as syncirotron radiation sources, and the nossible effecte

of & helli

@]

al wigeler on the operation of the storage ring
are discussed in the next sections. It should be noted that
the terms brightness and intensity used in this paper refer
to the radiation produced by a single electron. In an actual
sterage ring, however, the source brightness and intensity are
determined by the angular divergence and the transverse dimensions
of the radiating electron beam as well as the single electron
properties discussed here. Some of the other effects of beamn
divergence on the radiation from the helical wigglers will also
be discussed,.
I1l. HELICAL MAGNETIC FIELDS AND SYNCHROTRON RADIATION FROM

A HELICAL ELECTRON ORBIT

A transverse periodic helical magnetic field

wlth constant magnitude ig produced on the axis of a
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double hellx wound bifllar magnet (Figure 1). Madey3
has-used such a magnet in a study of stimulated emission
of radiation by an electron beam in a pericdic field. It
can be shownlJr that the transverse field on axis due to a
single pailr of current carrying wires wound in a bifilar

helix 1Is

—
Foudd
~—

el 2ma 2ra 2ma
51 7 Toxg [%o % (R ) S| (h )}

Here Bi is in gauss, 1 is the current in amps, AO is the

magnet period and a is the radius of the helix, both 1n cm.

0 and Kl are modified Bessel fumctions. As %Ei increases
' O
for larger magnet bore diameters with fixed period, the

K

on axis transverse field therefore decreases exponentially,
making it necessary that the bore diameter and the periocd
be roughly equal. Using superconducting technology, 1t
should be possible to make a magnet producing 10 Kpauss

on axis with a period of about 1 cm and a bore diameter

of about 1 cm.

The orbit of a relativistic electron in a helical
magnetic field is also a helix, with the same period, Agys
and a radius determined by the centripetal acceleration
produced by the magnetic field, given by

(R )2
O
2Up

r

Helix ~

where o is the cycelotron radius
f 3
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The pitch angle of the helix 0 is given by

pitch
A
2w 70
Ypitenh = o - Bip (4)

For relativistic electrons, 8 ~ 1, and & is given by

piteh

reB
] -
S = W (

2T yme

Ui

8pitch

synchrotron radiation is emitted along the
direction of motion of the electrons with a small opening
angle 6 = 1/y. Hence, for K ¢ 1 (weak field case), the
pltch angle of the helical orbit is smaller than 1/y and
the radiation is emitted into an angle of 1/y. For K > 1
(strong field case), the radiation is emitted into a cone
of nalf angle K/v. See Figure 2.

Since the total power emitted is proportional

to Bg, one can see that in the weak field case the power

per unit solid angle increases with B2 until one reaches
the strong field limit, where the power and the solid angle
both increase as BE.

Using a trick of Purce112 we can view the
electron's motion from an inertial frame moving in the

+z direction at the average speed of the electron,

#*
v = 3 ¢, where



In this frame an electron in fthe wealk field limit is
traveling in a circular orbit with nonrelativistic velocity.
It therefore emits a ncrmal dipole pattern of circularly
poiarized single frequency radiation. See Figure 3a.

This radiaticn will also look monoctiromatic in the lab

frame, but its freguency and intensity will vary with the
viewing angle due to the deppler effect. Dee [Flgure 3b.

This 1g derived in detall in the appendix. In the strong
field case, however, the electron actually has a relativistic
orbital velocity in the moving frame, and 1t therefore

emits synchrotron radilation in this frame, with a different
angular distribution and a freguency spectrum containing
harmonics. BSee Flgure 3c. Back in the lab frame, an
obsarver sees a spectrum of harmonlcs, each one of which

has a frequency and amplitude which varies with viewing
angle, shown in Figure 3d. The intrinsic angular divergence
of an electron beam in a storage ring smears out the

spectrum intc a normal synchrotron radiaticn spectrum2

having a critical energy, I glven hy

3

he 3 ,
5 o, (7)

=
i
POfL

with p being the cyclotren radius of the electronts orbit.
In order to compare helical wiggler synchrotron

radiation sources with normal wigglers and bending magnets,
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the radiation distribution in frequency and angle for an
electron moving in a helical orbit must be derived.
The energy radiated per unit bandwidth by one electron

intc a solid angle do (brightness per electron), Qii_l s

o)
is given b§5
+00 m- 7 2
2 2 ~ i [t - “
di(w) _ ew jﬁ nx{nxp) e ¢ at (8)
0 4o .

Here Fa(t},isﬁthe vector describing the path of
the electron, E}(t) is iiékl , and n is a unit vector
pointing from the origin to the observer. See Figure 4,
If the cbserver is at an angle 8 in the y-z plane, and ir

the radius of the helical orbit is denoted by a, then we

have
D=2cos @+ 5 sin 6 ,
—3 k3 —~ . ~ ~
r (t) = p ctz + a sin wnty + a cos Watx , and
— % a -~ 8l ~
(t) =p z + TGOS Opty - == sin w tX . (9)
‘ B
As previously, g = 8 L= (%) and
(—~) P
a = -—__m/_.,....._____
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*
Here Wy is ggowﬁ , the circular frequency of thc electron's
helical orbit.

It is interesting to note that one need not make
any approximatlions to evaluate this integral. However, no
real validity is lost if several simplifying asswaptions
are made. Filrst, » is assumed to be large, so that K/y
is small for all reasonable cholces of K. In addition,
since it is known that the radiation pattern is peaked
sharply for angles near € = /v, we may approximate sin @
and cos @ by their small angle forms. The number of
periods or wiggles in the magnet 1s assumed to be reascnably
large, (N = 100), enabling the final expressions to be
further simplified. Using these approximations the

Al {w

expression for == becomes {see Appendix):

al(w) _ ?wpK? }j I b e Jg(x)
acr w - K X n
O7 n=1
c;jn‘}N“n'(m - n)
.l
X — (10)
&)
1
Ko
I‘I re wR mmenmmee g
y Uads)
2,
Wy - a2 W

3 - 3
L-p cos 0  L4K"4ye°
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and Jn and J; are the nth order Bessel function and its
derivative. Thus the spectrum consists of a series of
harmonics of the fundamental frequency Wy, with the
intensity of the nth harmonic given by the nth term in
the series. For & = O (on axis) all the higher harmcnics
are seen to vanish, and we are left wlith a spectrum

consisting of a single narrow peak at

W = W, = . (12)

In terms of wavelength, the spectrum has a peak at

A = i% (1482 ) . (13)
2
I o
For X = 1, » = 10, and AO = 1 cm, A then is 1 A,
The fractional linewidth (FWHM) is about 1/N,
or 1% for a 100 period wiggler. This corresponds to a
120 eV bandwidth for the 1 R case above. Of course, the
oniy way to actually realize such a small bandwidth is
to make sure that the other factors contributing to the
bandwidth are all smaller than 1/, including energy
purity of the electron beam (typlcally .1% in a storapge
ring), the magnetic field homogeneity in the wiggler {this
changes the value of K seen by different parts of the

electron beam), the angular size of the detector (1t must
1
SNy

be smaller than 8 =

}, and finally, the angular
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divergence of the electron beam, which again must be
smaller than & = wwlmu-for the 72@2 term in Wy to be less
than 1/N. This 1as§ gondition is probably the most
stringent requirement on the design of a storage ring tor
use wlth a helical wiggler. It does seem possible, however,
to achieve the small angular divergence using special
focusing imserts.6 The effect of electron beam divergence
on the spectral purity of the radiation will be investigated
later. 'The effect of magnetic field homogeneity 1is
minimized by the requirement that the electron beam be
small compared to the diameter of the beam pipe through
the center of the magnet. This is necessary to achieve
a long lifetime for a stored beam in a storage ring.?

With these caveats we may now examine the on
axis brightness function, equation (10}, in more detail. For

w = w,, {10) becomes

lj

aT(w _ oWfeyfKe 4
, - e K (14)
W=y c(l+K2)

=0

K=1 maximizes this expression, yielding

f)(
d1(w) I (15)
4O s 2c i
=
6=0

Ke=]
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Dividing by NAy to get brightness/cm, and

converting to more practical units, we have

ﬁé%ﬁl / = 2.9ux10"8-hv RS TS
N ev ma

¢

watts/ev of bandwidth

/ma/(milliradian)®/cm,
or,

1.8&x109-hve ‘i

Y maN

photons/sec/1% bandwidth

/ma/ (mrad)°/cm, (16)

where hvev 18 the photon energy in eV corresponding to

W, and ima is the electron beam current in miliiamps.

IIZ. COMPARISON WITH BENDING MAGNET AND NORMAL WIGGLER
The brightness function for a normal bending

magnet socurce has been derived5 and is given by:

"
dI{w 3e”

d0) 6=0 inrg I

rgngg/B(r/Q) (17)

where r = hv/EC and I, is the critical energy of the
spectrum given by (7).

In the case of a normal strong lleld wiggler,
as described previously, one has the freedom to adjust the
magnetic field and hence E, in each section of the wiggler
SO as to maximize rQKg/s(r/Q). This cccurs at r=1 with
a maximum value of approximately 1.5. Under these

conditions, the brightness is:
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. 2.2
i(%ﬂﬁl_ =pN - 382 . [r I{P/B(r/? , (18)
‘ Lp“e max
with N being the number of periods. The numerical values

of these brightness formulas for the three cases are compared
in Figure 5. The units of brightness used are watts/ev

of bandwidth/ma of electron beam/(milliradian)2 of detector
solid angle. To get photons/second/1% bandwidth instead

of watts/ev, multiply by 6.2&x1016. The brightness
functions are plotted for electron beam energles of .5,

1.0, 2.0 and 4,0 Gev. For the helical device, brightness
per cm of wiggler is plotted for a wiggler with 200 periods
and K=1, conditions one might actually encounter in a
practical application. The peak helical wiggler brightness io
independent of y, so there 1s only one curve vs four curves
for each of the other two methods. The vertical bars on the
vrightness curves represent technological or design limits.
For the helical wiggler, the output photon energy depends

on %O’ and therefore 1if ko > 1 cm, there ls a maximumn
pnoton energy for each electron energy. Similarly, 1F

one places a limit of 50 Kgauss on normal wipggler magnets,
there is a maximum critical energy for each value of 7.

The brightness curve for the normal wiggier is nlotted as
brightness/wiggle (1 period = 2 wiggles), and, as expected,
i+ touches the curve for the bending magnet at 1ts maximum

value. A field of 10 Kgauss is assumed for the bending
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magnet case. In a practical helical wiggler application,
one would choose RO as small as possible to maximize N

for a given length of wiggler, NRO, then adjust the magnetic
field to get K=1, and tune the output photon energy by
varying y. For a fixed electron energy it is, of course,
pessible to tune the photon energy by varying K slightly,

at the expense of reduced brightness and spectral purity

as K increases beyond Ks=1. Referring again to Figure 5,

one can see that & helical wiggler with A. = 1 cm and

0
N = 260 has a potential brightness advantage of about 10&
over a bending magnet, assuming that the desired phnoton
energy 1s within the 1imits of the helical wiggler., The
sericus practical limit on the brightness of the helical
wiggler output is the angular divergence of the electron
beam due to the intrinsic properties of storage rings.7

Since the output frequency of the radiation is
a function of 8 according te (11), & distribution of
electron beam angles will spread the radiation at a given
frequency over a range of angles and hence reduce the
brightness. 1In addition, since the amplitudes of harmonics
depend on 8, there will be some degradation of spectral
purity.

If one assumes a normalized gaussian distribution

of angles,
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0
1 20
P(Q) = 3 e 3 (19)
2mUQg
and considers cases where
@ > 5, (20)
Ny

then the electron beam divergence will be the dominant
factor in the brightness formula. One is then entitled

to replace

- e 5 by (21)
&
NTe B (i%-— n) (e2)

and to convolve (10) with the gaussian distribution (19),

yielding, for 8 = O (on axis), (see appendix for details)

] 00 2 O ,2
ding % P(G) _ 2Ne KQZ r I (x ) 4
dn 2 n n
G=0 oo —
a n=1
2
o P
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= =4 Bwur}...... ...2 Y -
where Ua = y0, o = Y0, Ay = 5 1 K=, Kn = £Kran, and

r o= w/zygmo. Q(Qi) is the unit step function.

This formula is valid for ci by %. for

oi << %—, (10) holds. From (23) one can see that the

brightness at the peak of the spectrum at

272wo

1+K

D =

(2lh)

has been reduced by a factor of 2N oi, as expected.

Figure & shows expression (23) plotted for 0 = 0, K= 1
and two values of Oa’ and shows not only the reduced peak
nelght and increased width of the spectrum, but also the
larger percentage of harmonics for large Oa. The charp
edge in the gpectrum is a consequence of the approximation
that N 1s large and that

sinevi

€

2

may be treated as Nw 6(x). If the expressions were

evaluated without this approximation, the sharp edges

would be rounded, with a step width of =~ % .

Expression (10) may be integrated over all

positive frequencies, yielding a formula for the angular

distribution of radiated power:
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8Ne2m 04 = 2 2

dw 0 N2 . 6 n\* 2

a6 5 o 3 LB (Jn (xn) * (%T "_§~) Jn(xn)) !
c(1+K2+7 8<) n=1

2EnyH . .
where X, = 5 This is plotted as a function of
14+K° 426

a = y8 for several values of K in Figure 7. The decrease
in intensity at g = 0 with large K due to increasing helix
pitch angie is clearly seen.

Bxpression (10) may also be integrated over all

angles to produce an expression for the freguency spectrum:

I{w) = Jq o A

thegng N re Oh 11)2 o 2
= c E: (Jn (Xn) * (T? T ox Jn(xn))e(an) s
n=1 n
(26)
with ai = % - 1 - KQ, Xy = 2Kran, and r = g , 4s before.
27 Wy

Figure 8 shows a plot of the peak values of the spectra

for a helical wiggler, a normal wiggler, compared with the
spaectrum for a bending magnetB under the same condition

as in the brightness comparison. Jhe units are power/ev/ma/cm
of beam vliewed by the detector. Interestingly enough, the
curves for the helical wiggler and normal wiggler coincide.
The same design limits of Xy > 1 cm and

B wiggler < 50 Kgauss

are indicated. It should be realized, tancugh, that a
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focusing arrangement is required in order to collect
radiation over more than just a few cm of arc asing a
normal wiggler or a bending magnet, where the eloctron
orbit suffers a large deflection in the magnetic field,

In the helical wiggler, deflections are small, and a single
noen~focusing detector still can collect radiation produced
over the entire length of the wiggler. This gives =
practical advantage of a factor of N or about 100 for the
helical wiggler.

The actual shape of the power spectrum for the
helical wiggler is shown in Figure 9 for several values
of KI The shift of the peak with increasing X predicted
by (26) is clearly visible.

As a practlcal comparison, Figure 10 shows the
actual power spectra for the three devices under some
typical conditions. Here the comparison assumes that the
detector accepts all vertical angles and accepts one milliradian
of horizontal angle, a reasonable choice, since the
radiation from the bending magnet and normal wiggler will
have a small vertical extent. A field of 10 Kgauss is
assumed for the bending magnet, 6 poles of strength 50 Kgauss
for the normal wiggler, and 200 1 em periods for the helical
wiggler. The y-axis is a compressed log scale covering

fourteen orders of magnitude. Interestingly enough, on



3=20

this scale, the quasi-monochromatic character of the
helical wiggler spectrum has been reduced to some small
bumps riding on what looks like an ordinary synchrotron
radiaticn spectrum.

The helical magnetic field produced by a double
helix solenold has focusing properties that as yet have

9 has observed the effect of

not been worked out. Madey
this focusing on the 25 MeV electron beam in his experiment.
The focusing effect is apparently explained by the net
average force produced on the electron dus to its motion
through the rapidly varying field gradient off axis in

the helical magnetvlo This results in a radial restoring
forece, F{r), roughly proportional to the distance from

the orblt center to the axis of the mapnet. Such a force
will mix transverse betatron oscillations in a storage
ring by some amount, thus altering the beam size and
dynamics in the ring.

Another side effect of all wigglers is increased
radiation damping. This can affect the damping for
transverse betatron oscillation and hence may affect the
stability of the stored beam.? One sheculd be failrly safe,
however, if the total power radiated by the beam over the
entire storage ring is much greater than the power
radiated in the wiggler section and if the wiggler is

properly placed in the ring magnet lattice.
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SUMMARY AND CONCLUSIONS

The radiation from an electron beam in a short
period helical wiggler has been shown to have several
lmportant qualitative differences from that produced in
& more conventional way. It igs guasi-monochromatic, with
& fractional linewidth determined by electron beam divergence
and by the number of periods in the helix. On axis the
spectral purity is very good, an advantage over conventional
methods in some experiments. The frequency of radiation
is tunable over & large range by varying the electron beam
energy and over a smaller range for fixed energy vy varying
the magnetic field. The radiation pattern produced is
sharply peaked in the forward direction with an overall
angular size of about Vy. In addition, the radiation at

the peak of the power spectrum Is emitted into an even
1.
VI

improvement of at least 10" over a conventlional bending

smaller angle of © ~ ,» thus producing a brightness

magnet synchrotron source. On axis the radiation is
circularly polarized. The short period helical field
produces less angular deviation of the electron beam than
other methods, thus reducing or eliminating the necessity
for focusing to achieve a high power spectral denzity, and
yielding a power per unit bandwidth improvement of about
100 over conventional methods.

In conclusion, it should be pointed out that
the limits imposed on the helical wiggler design, i.e. magnet

technology and present electron storage ring design, may at
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some point in the future be overcome, elther through
advances in superconducting magnet technology or through
improvements in permanent magnets, and it therefore may
be possible to use a short period wiggler to generate
large amounts of UV or X-ray power using relatively low
energy storage rings of on the order of 1 to 2 GeV, thus
making synchrotron radiation a much more generally
avallable resource.

Helpful conversations with P. Eisenberger on the
concept of source brightness and with J. Madey about his

work are gratefully acknowledged.
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APPINDIX

L. Derivation of Equation (10)

Starting from (8),

2

dI{w) _ ew?

ao - 4?20

~ =
400 . ner (t
j -~ ~ =3 1w t(_ C )

~00

(A1)

and the definitions,

N=2cos 6+3 sin 6,
T (t) = a*ct z + a sin Wt ¥y + a cos Wt X,
B (t) =82 + ffg cos w t § - iﬁg sin w t X
o 0 C o] !

» (radius of helical orbit)

W = ==, and
o A
me®
p = @Zgﬁ" s (eyclotron radius)
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and defining the magnetic fileld parameter, K, by

ah I3
o)

2'rrmc2

K=

we may write

) =

W)

'.3)

X X

=

% (~ £in®0 sin w t + % sin w_t cos 6)

~

+ § (ﬁ*sin 8 cos 8 - % cosgﬁ cos8 wot)

+ z ( -8 sin 29 4 % cos 6 sin 9 cos W t)

Also,

~ = t
it rc B tcos 6 + — &ln W T,
as long as éﬁm <t NT  for a helical orbit with ¥
0 0
periods. For |t] gﬂ , a = 0 (no magnetic field), and
0

Ax(Axp ) = F(p sin 0 cos 6)
+ E(~B*sin26) s

and

*
=3 t cos 8
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We may break up (Al) into three pieces, yielding

+§E + JI}?[
e . o 400 o
J\ ( ) = J ( ) + J’\ (a:O) - J\ (a:O)
- N =00 . N
- _ L
o o
The second term is
+00 )
J1 (2(-5*Sin29)+§6*sin 8 cos 0) elmt(l"ﬁ cos 8) at
00

and the third term is

c
- f (same) .

The second term then becomes

b

(E(ug*singe) + §(5*Sin 6 cos 9)) . u_gggﬁﬁlu
1-B cos ©
and its contribution to (Al) will vanish due to the =

term in front of {Al). The third term is

. W *
2 sin N7T — (1-5 cos §)

[2(—B*Sin28) + §(6*sin 6 cos 6)] -
w(i-p cos )
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This function has a maximum value of

. 2N

w
]

(E(ua*singe) + §(5*sin e cos 8))

at w = 0. In addition, since 6 is small (= %), the entire
term will have only a small contribution to {Al).

Now, neglecting terms second order or nigher in

1/y in the expression for Ax(AxE ), we get

N
+ o
o
2.2 ‘
dff{w) e"w ~ (K _ofa*s UK
R = 5 x (7 sin wot) y(a o 5 cos wot b
Lr~e
LS
)
0
. * . 2
iwt(1-p cos 8) _ 1Wa _ip o gin o ¢
e ¢ © at
Writing %ﬁ'as %%- , we get, squaring each vector compocnent
0
separately,
N : 2
5 p‘ ® iwt(l—B*cos 8) - 1 gin 6 sin w t l
dI{w) = &2 J K sin w t e © dt]
a0 *’—HTQC N 7 © ;
tor |
- = |
a
A
+ N -
=0 X . P
- “o A iwt(l~g*cos 6) - %%E sin 6 sin @ t
+ & (5*9— K cos o tie © dt,
2 7 o |
e e - i
. N |
60]
Q
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Changing variables to t @~wot, we get

N %?E-(lms*cos 6)-ix sin t

J‘ ;%m sin ¢ e © dt
- Nmr ©

92(.{)2

A =
4W2c

where x = &ﬁw sin 4.
%DO

Using the generating function for the Bessel

. funections,

z/E(t - %) ) iﬁ thn(Z) ’

Nz —oo

e

and substituting ele for t, we get

+1z sin 8 _\' ing
e _sze g, (z)
n
and
-iz sin @ ' n _ing
- ) (1) 7. (2)

5[

Substituting into A , we get

h o +N %ﬁ& (1m6*cos g) +oo
4 . _ePwiE o i(nsl)t _i(n-1)t
= s e /. {e -e )
Lém cwoy ~ N N=-

2
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Rearranging the summation variables gives

iwt * int n ,
e2 2[{2 +N1T C—B—_— (l"'a COS 6) +oe (—].) (Jrl_l(X)_Jn+l(X)) 'Q
w O 3l
b= =557 e ® at
l6Tr woy __N'Ir = =~00
Using the recursion relations for Jn(X), namely
2n
Jn_‘l(}{) + Jn"{-]_(x) = *}?- JI’I(X)
? 4 x
and Jn“l(x) - Jn+1\x) = 2J,(x), and noting that
n
J_n(x) = (-1) Jn(x), we have
5 L A8t (lnﬁ*cos 8) +w 2
22 w_ - . p
e K 0 ~-int
A = I———é—"‘“‘-—é—mé- J‘ e > e Jn(x)dt
e
hr-ewyy - =00

The integral over t now may be done to yleld

. i\ * )
22,2 .9 ' sin N (5w-(l~a cos 9)—n)
e“w 0
A= 553 Z In (%) @ *
TECwT Y o, QE; (L-B cos e)—n)

This expression may be evaluated numerically as is, or it
may be further simplified by noting that for larpgc values
cf N, the E&QQEEE functions will have only a small overlap,

allowing us to drop the cross product terms and get
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+oo _2 a‘j-u__.
2,22 =~ ,2 Sin NWmiw, (1-g¥cos 8) - m
ek o]
Wecw272 n
07 n=-m L. (1-prcos 0) - m)
Dy
If we write Wy = m-¥9—m»— s and, noting that ﬁr = 1 = —4%5
1-B cos @ 2y
2

and that cos 6 = 1 - %?-, wy becomes

'27*2mo

1+7*292

Slnce B* =B /i - 52., from the definition of K, we then
Y

get, to the same order of approximation,

[40] =

2
2y ®

I L —
SRR P

Golng through a similar series of' steps for part B s the

final result for iégﬁl emerges as

T = A+ B =
.2 W
+ . sin~ Nmr (__ nxﬂ
s ol §j (J'g(X) + (28 _ny 32 (x) 2
vgcwg 2 n K n ) @2 ’
07 neo (ml )

where sin 6 has been replaced by € and ﬁ* has been taken

. 2w 2
to be 1. Also, x = E%Q s, and Wy o= mu9—~m§—§-. This is
7 L+ 978

the same as Eg. (10) in the text.
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To get the angular distribution of power as a function

of solid angle, we must integrate over all frequencies.

{2

To make this easier, we substitute Nweﬁ(x) for §$§§Bﬁf s
and get

o
dW _ al(w
) ”J o

0

o0 2, we

Ne“w K 4 - 2
8y "Cx 26 _ 1 2
:J) dw ; c 3 Ei (Jn S ( K~ f;) UNEN
0 1+ Ko 0 )

Here X = __EEHZQ__ . We therefore have

n 1+K2+7292

2 2 oo

Ne*w K 2

aw _ 7 o &' Z x )+ (22 - n) 2y .

Q) c *n K X n\v'n
l+K?+7 n=1

This is expression (25) in the text. One may also integrate
over all solid angle rather than over all freguencles to

get the power spectrum of the radiation. Defining two

new variables r = g and ug = 7282, and agaln making
277w
0

SiﬂQNWX

vl

the substitution of Nvga(x} for the delta functiocons

become
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quwl);ﬁGwcur-

2
2y w,r
n 2
= 5 (a-as )
2y2w2r2 n'’
0
n
where ai = - 1~K2 . So,
g 2
dI{w)  ANe®KZyCr §; J'Q(x ) - (Eﬁ . £L) (x)
an h C n n K xn n' n
n=1
2 2
X B(a —an)

Here X, = 2Kran.
We may now integrate over all solid angle at

fixed w to produce
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Y c a0
L hNeQKezer - e X (Gn n ¢ 2

= E-J‘ c E: G&l( n) AR T Eg) Jn(xnv
4 n=1

X ﬁ(agwai)dug

_ 4re®ePr ji (J'g(xn) + (3ﬁ - ii)z J2 (X ))@(ag).

¢ n
n=1
Here 9(a§) Ls the usual step functiocn, T % - 1=K~

and X = 2Kru,. This is the same as expression (2¢) in
the text.

By a similar series of substitutions we can also
convolve (Al)} with a normalized Gaussian distribution of
viewing angles, which is equivalent to allowing the electron
beam to have some angular divergence. The Gaussian

convolved brightness function then would look like

6/ °

] Tr —

L dl{w) 20 gin 6 a8’
o° O lg.gr ©
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Making the change of variables g == »0 and cxpanding the

b-function, the Gaussian smeared brightness function

becomes
% 2 2
2 a
L Tx no_n 20X
7z E: (Jn { n) + (??"'x ) Tnl n))
o n
q n=1
(a~an)2 (ara, )2
a=Q, 202 ata, ?o?
X e O(a-a, ) + e O (oo ))
Q n
n n
2
X Q(QH)

Here Oa = 0y and the é~functions are step functions as

before. With o = O (on axis) expression (23) of the text

results,
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Filgure 2.

Figure 3.
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FFLGURE CAPTIONS

Schematic of double helix bifilar wound mapnet
showing alternate wires with opposite currents.
Polar plot of power versus angle for synchrotron
radiation emitted by electron in helical orbit
for various values of the magnhetic f'ield
parameter, K. The K = .5 case shows the
pehavior for small magnetic fields and the K = 2

case shows the strong field case.

Schematic representation of radiation produced
in strong and weak field cases viewed both in
the lab and In the moving frame.

Hellical orbit of electron in helical magnetic
field, showing angles and other parameters used
in the calculation in the text.

Comparison of the peak spectral brightness of

& helical and a conventional wiggler with the
brightness spectrum of =a bending magnet source
for electron energies of .5, 1.0, 2.0, and

4.0 ceV. BL.0 means that the line on the curve
represents a bending magnet for 4.0 GeV electron
energy. The rest of the figure is explained

in the text.



Figure 6.

Figure 7.

Figure 8.

Figure 9,

Figure 10.
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Comparison of on axls brightness spectrum for
helical wiggler as a function of frequency for
two different electron beam divergences. lere

r = w/272wo is the nermalized frequency and o

is the standard deviation of the electron beam's
angular distribution in units of 1/y.

Angular distribution of power (integrated over
all frequencies) for several values of the
magnetic field parameter K. The horizontal

axis is the polar angle o = 0.

Comparison of peak values of power spectrum
(integrated over all angles) for helical and
normal wigglers with power spectra for bending
magnet for electron energies of .5, 1.0, 2.0,
and 4.0 GeV. The vertical scale units are
watts/ev/ma/cm of electron beam. The same
limits and labeling are used as in Fig. 5.
Comparison of power spectra for helical wiggler
for several values of K. The vertical scale

is linear and the horizontal scale is the

same normalized frequency variable as in Fig. 6.
Comparison of power spectra for the three devices
assuming reascnable parameter values for electron
energies of 1.0 (GeV and 4.0 GeV. The parameters

used are discussed in the text.
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Section 4.

Submitted to the Journal of Applied Physics

*
ORBITS AND FIELDS IN THE HELICAL WIGGLER
John P. Blewett and R. Chasman

Brookhaven National Laboratory, Upton, N.Y. 11973

ABSTRACT

The "helical wiggler' is a device in which relativistic
electrons pass through a transverse magnetic field whose direction
revolves with distance along the beam axis. 1In this paper we
discuss the electron orbits in this device. The field
patterns and necessary current distributions are established.
Finally, the question is treated as to whether this device can be
incorporated into a storage ring without destroying the circulating
beam. It is concluded that there is reason to expect satisfactory

performance from helical wigglers in storage rings.

*
Work performed under the auspices of the Energy Research and Development
Administration.
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Introduction

In a recent publicaticon in Physical Review Letters Elias et al.l of
Stanford describe the "Observation of Stimulated Emission of Radiation by
Relativistic Electrons in a Spatially Periodic Transverse Magnetic Field."
The observed radiation is a phenomenon predicted several years ago by Motz,r
and analyzed by E.M. Purcell (in unpublished reports) and by Madey.3 The
‘earlier papers considered only radiation induced on passage of electrons
through a magnetic field whose divection is periodically reversed. Madey's
paper and the latest Stanford letter describe radiation induced in a transverse
magnetic field whose direction revolves around the beam axis. The experiment
descyibed in Ref. 1 used a linear accelerator beam which made a single passage
through the device. The possibility of incorporation of a spiralling trans-
verse magnetic field in a storage ring to yield a radiation spectrum more
sharply peaked than the usual synchrotron radiation spectrum has recently
been recognized by Kincaid.a His paper "4 Short Period Helical Wiggler as an
Improved Source of Synchrotron Radiation” appears as a companion paper to
this one.

The radiation under discussion is essentially synchrotron radiation
emitted when electrons travel on a helical path through a spiralling trans-
verse magnetic field, When the electron orbit makes many turns in the
spiralling field the radiation spectrum, heavily affected by Lorentz trans-
formations, peaks at a wavelength roughly Y,z Limes the period of the
spiralling magnetic field. In the Stanford study the period of the spiral-
ling field was 3.2 cm. Electrons of energy 24 MeV passed through the field
pattern which was applied over a distance of 5.2 m along the electron orbit.
The transverse field on axis was 2300 ¢. Radiation was observed at the

predicted frequency of 10.6 .
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Since the radiation in this system is much more nearly monochromatic
than the radiation from electrons in a storage ring or synchrotron, it is of
considerable interest to consider inclusion of a spiralling transverse field
system in a storage ring built as a dedicated source of synchrotron radiation.
In this paper the field patterns and electron orbits in the spiralling field
system are explored and the implications for incorporating it in a storage
ring are derived.

At Stanford, the device is referred to as a "free electron laser."

Synchrotron radiation specialists describe it as a "helical wiggler.,m

Description of Magnet System

The spiralling field pattern is produced by a double helix bifilar magnet
which can be visualized if one assumes that, on the outside of a bore tube an
open helix is wound and then a second helix is wound in the spaces between
turns of the first helix. When currents in opposite directions are passead
through the two helices the central, axial magnetic field is cancelled and
the spiralling transverse field pattern appears.

If the helices consist of wires of infinitesimal cross section, the field
pattern on axis can be derived as a function of current in the helices. The
result for a single, open helix is given by Smythe5 and is derived for the

double helix by Kinecaid.

Field and Current Distributions

It will be assumed that the field pattern has a sinusoidal variation in

the axial direction and that no higher harmonics are present.
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The magnetic field patterns and current distributions in the magnet
system are derived in the Appendix. The fields to be traversed by the electron

beam are given by:

i ‘o (6 -
Br = ZBO(IO(kr) " e Il(kr)) sin (8 - kz)
2B0
=2 . - 1
Be e Il(kr) cos (& - kz) (1)
Bz = - 230 Il(kr) cos (B - kz) ,

where Bo is the transverse field amplitude at the axis of the system,
T and Il are Bessel functions,
)

k = Zﬁ/KO, where Ao is the pitch of the helical winding.

Near the axis the Bessel functicons can be approximated by expressions
given in the Appendix.

The current in the helical winding required to produce a transverse field
BO on the axis of a helix of pitch AO is plotted as a function of the ratio

of helix radius te pitech in Fig. 1.

Electron Orbits

The analysis which follows has been guided by computer runs which have
indicated the character of the orbits. The computer runs have traced electrons
under various conditions through the fields describad by Eqgs. (1). Tt has thus
been established that the orbit includes oscillations at three main frequencies.
The primary motion is helical with an orbit radius of a small fraction of a
millimeter. The period of the motion is the same as that of the transverse
field and its axis oscillates around the physical axis of the helix with a
much lower frequency. At a still lower frequency the x and y components of the

intermediate frequency cscillation couple to each other and exchange energy.
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The reasons for this behavior and the important parameters can be established
by an approximate solution of the equations of motion,

An important simplification is possible when it is realized that excursions
from the axis are small and that the major velocity component is the paraxial
one. Since all applications will use highly relativistic electrons it is
legitimate to set z = ¢ and z = ct, This reduces to two the number of equations
of motion which must be solved.

| First, we shall establish the radius T of the helical orbit. .The field

patterns (1), for the regions close to the axis can be approximated by

B, = B sin (6 - kct)
BO = Bo cos (8 ~ kct) (2)
B =0

It is easy to show that the helical orbit through these fields has

6 = ke
2
roEor 1/(k"p) ,
m_ycC
where p ( = ) ig the cyclotron radius in the field BO.
8]

when the lower frequency oscillation has carried the helical orbit some
distance from the axis, the amplitudes of Br and BG’ given by (1), are no
longer equal and the projection of the helical orbit on the r,6 plane is no
longer exactly circular. TIts average value will, however, be given by solution
of the following equation (expressed in a coordinate system having its origin

on the instantaneous axis of the helix)

2 _ : :
mr §° = - er 8 B, + ezB s (3

whare Bt represents the transverse field which will alternate between Br and Be

{of the original coordinate system). From (1) its average value will be
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BOIO(kR), where R 1s the displacement of the instantancous axis of the helix
from the central axis of the wiggler. Now, setting 0 again a2qual to k¢ and

neglecting the small contribution of the Bz term in (3}, we obtain

r = IO(kR)/(kzp) . (4)

Using the parameters of the Stanford experiment (k = 196 mnl, ol

#

0.348 m),

-we find for R = 0, ro = (0,075 mm. As will be shown later, the Stanford para-

. meters with no initial correction lead to a "betatron oscillation" with an

“amplitude of about 6 mm. At the maximum excursion in this oscillation the
value of r, is about 0.10 mm. These figures are in good agrecment with those
obtained from the computer runs,

To derive the characteristics of the lower frequency oscillations it is

necessary to solve the equations of motion

]

K = (e/m)(yB, - cB)

(3)

§ = (e/m)(cB, - %B,) .

We substitute for Bx’ By and Bz the expressions (A3) and we make the following

substitution for x and y:

x o= rO cos ket + u

(6)

i

v T sin ket + v

In making the substitution we note the fact that kro is of the ovder of (.01
when the Stanford parameters are used and is even smaller for higher energy

. . o 22 .
electrons. Accordingly, it is legitimate to neglect k L with respect to unity.
Assuming that u and v are slowly varying compared to cos ket, one can write

from (5) and (6):



4+ 280 + wiu

=0
. . 2 )
v -2u+wv=0 s
ker 2
_ 0 k2 2
where_& 55 (1 + (v + v ))
(8)
kzczr 2
2 0 ( k2 2 )
w TR 1+ g (u + v) .

- "Solving Eqs. (7), taking into account the fact that § is small compared with w,
we find that u and v are combinations of trigonometric functions of (w + §).
The coefficients of the functions will be determined by initial conditions,.

The values of u and v are:

= - - + L - . ) .
u (xo ro) cos @t cos §t w \éxo Vy + ry (ke &) sin wt sin &t

+ ” (5y0 + vX) sin wt cos &t - ¥, cos wt sin Bt (9)
v = L (v - & -~ r (ke - 6)) sin wt cos &t + {(x - r ) cos wt sin &t
w\y o o o o
1 ; \
+ y, cos wt cos &t + " (6y0 + Vx) sin wt sin §&t , (10)

where Xy Voo Y and vy are the initial values of %, vy, x and y. Using the
Stanford parameters we find that & is of the order of 1% of w which, in turn,
is of the order of 1% of ke, Neglecting small terms and setting all of the

initial parameters equal to zero we obtaing
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x = ro(t) cos ket + (kcro(t=0)/w> sin wt sin 6t (1)
- . . A
y = ro(t) sin ket - (kcro(t—O)/w/ sin wt cos §t . (12)

For zero initial conditions, there will be a '"betatron oscillation" with
an amplitude of the order of one hundred times LI the radius of the basic
helical motion and with a frequency of the order of 1% of that of the basic

helical motion,
‘We .turn now to establishing the wvalues of the lower oscillation frequencies.
First we use (4) to establish an average value of L From (6), (9) and (10)

R2 e u2 + v2 {(assuming v and/or v is much larger than ro)

2 .2
= R0 sin™ (wt + o) s

where RO is the maximum excursion at the intermediate frequency. Ro and ¢ are
determined by the initial conditions.

From (4):

kKR sin® (wt + ) )

Applying the same procedures to (10):

2 sz2 szZ

2 _ ¢ o) o
W = 2(1+ 8)(1+ 16
2p
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and
3R,
w=2:007¢c (0 o )
p 32
o
b= —S5 (14 —72)
2kp? “

Inserting the Stanford parameters, after a few algebraic manipulations the

parameters prove to be

R, = 6.0 x1077 m
w = 7.4 X 108 secul
5 = 1.0 x 107 sec”!
For comparison ke = 5.9 x 1010 sec_1 = 80 w.

The results of the computer runs using the correct field expressions (1)
are shown in Figs. 2 and 3 for the case of zero initial conditions. Figure 2
shows the first 100 periods of the helical oscillation; Fig. 3 shows the
behavior of u and v over an impractically long wiggler having over 700 periods.
The results are in good agreement with the approximate theory outlined above.
The value of w is 7.6 X 108 to be compared with the predicted value of
7.4 x 108. The predicted value for the oscillation amplitude was 6.0 mm, to
be compared with the correct value of 6.2 mm. The hypothetical computed wiggler
was not long enough to establish the value of § but evidently the predicted

value is of the right order of magnitude.

Effect of a Superposed Axial Field

In the Stanford experiment a 1000-G axial field was superposed on the
wiggler field pattern by additionm of a scolenoid which enclosed the wiggler.
Such a field can have marked effects both on the helical motion and on the

betatron oscillation frequency and amplitude.



4-10

The wavelength of the helical motion will remain the same ag the axial
period of the helical winding. But the value of L obtained from (3), will
change if the axial field is strong enough that the first terw on the right of

(3) no longer can be neglected. Equation {3) then yields

Io(kr)
s T 2 ( 1 ) ! ' (13)
kp 1:&:1{——'
P
Vﬁhere Pl (= E%— ) is the cyclotron radius in the added axial field Bl' In a
i

field of 10 %G the added term will make a change of about 6% in the value of X
Whether r, is increased or decreased depends con the direction of the applied
field.

To £ind the effect of the applied field on the betatron oscillations we
re-examine Eqs. (7) and (8). Equation (7) will have the sawme form but it

will be found that the expression for & is changed to

ker 2
_ 0 k 2 2 )
6 = 55 (1 + W (u” 4+ v) ) % EE; . (14)

Here, as before, the choice of plus or minus sign depends on the direction of

the applied field., If the applied field B, is of the same order as Bo’ then,

1
-2
since kro is small (of the order of 10 ") the new term is the only significant
2 . .
one. The expression for w 1is unchanged but now & is of the same order as w

and terms in &/w no longer can be neglected. Equations (7) now yield for the

frequency of the betatron oscillation the quantity

\/w?‘ +26 w26 AVt + 6 . (15)

2.2
For small amplitude betatron oscillations where k2u2 and X"v~ are negligible

compared with unity, (15) becomes
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1 2k7p

r T
1(%0, 1 1\ﬁ/_9_ 1)
ke z(p*zz)iﬁ“ 2\P 22 (16)
1

For applied axial fields of 1, 5 and 10 k¢ the two frequencies f. and f2

1
given by (16) are (using the Stanford parameters):

-1 -1
Bl(kG) fl(sec ) fgfsec )
1 8.2 x 10° 4.5 x 10°

3 20.5 x 108 1.8 X 108

8 8

10 38.4 x 10 1.0 x 10

The oscillation no longer has the same charvacter as that produced only by the
wiggler but is the sum of sines and cosines of the two frequencies with amplitudes
determined by initial conditions. The overall oscillation amplitudes are smaller
than before and can be reduced to negligible levels by suitable choices of

initial conditions.

Practical Considerations

Several practical problems remain to be solved before the helical wiggler
can be incorporated into a storage ring.

First, a reasonable end configuration must be designed and the end field
pattern studied. During our computer studies we have intreduced a tapered field
pattern at the end, maintaining the same pericd of the helical field pattern.
Orbits through this pattern were not notably different from the corbits in the
wiggler with discontinuous ends. It appears impractical to taper the end fields

so slowly that the entry and exit behavior can be considered adiabatic.
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Second, such large oscillations as those predicted for zero initial
conditions cannot be tolerated. Magnetic kicks must be introduced at the entrance
to reduce the betatron oscillations to negligible amplitudes and at the exit to
restore the electrons to the equilibrium orbit of the storage ring. Such kicks
have been Introduced in the computer program; as predicted by Eq. (12) an
initial vy of approximately kcr0 is required., This is entirely effective in
reducing the radial excursions to fractions of a millimeter. The initial
deflection required for the parameters considered was about 20 mrad. Figure 4
shows the computed orbits with such a kick. The kick given was that predicted
by the approximate theory presented above. 1In the orbits shown in Fig. 4 a
small betatron oscillation vemains in the y plane. Exact cancellation in both
planes can be achieved by trial and error.

Third, wiggler parameters should be established for use at the higher
electron energies contemplated for use in synchrotron radiation facilities. To
obtain X-rays of the highest possible energy it will be necessary to use a helix
with as short a pitch as possible. But the graph of Fig. 1 iadicates that, for
a pitch less than about twice the wiggler diameter, the current demands are
becoming excessive. Methods for studying this problem are included in the
Appendix. 1In particular, Eq. (A10) can be applied to establish performance on
physically realizable wigglers. In practice windings probably will be chosen
of sufficient thickness that the second exponential term is of the order of
about one-tenth of the first. To establish limits, however, we shall assume
that the coil ig infinitely thick and the second exponential vanishes. Two
assumptions will be tested about achievable current density in the superconducting
coil. The fields at the coil windings will be high — of the order of 50 kG for

10 kG transverse fields at the axis — and this will limit current densities for
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the currently available niobfum~titanium wires to the order of 50,000 A/cm2
We will then assume that developments now in progress on stranded Nb38n will
result soon in current densities of 100 QOO A/cmz. As a reasonable minimum
value for wiggler radius we choose 0.5 cm For these parameters, we derive

from (Al0) the data given in Table I.

Kincaida has presented reasons for preferring to keep his parameter K
close to unity. K is a dimensionless parameter which, for BO in gauss and
Ko in centimeters, has the value 9.3 x 10_5 BOAO. From Table T
achievable parameters will be a pitch of about 2 cm and a transverse field of
about 5000 G.

The cyclotron radius for 2-GeV electrons in a fileld of 5000 G is 11 m,
The radius of the helical orbit will be about one micron. Tha peak in the
emission spectrum will be at about 13 angstrom units.

Finally, it must be shown that the effect of the wiggler is not to destroy

the circulating beam in a storage ring into which it is introduced. That

subject is discussed in the next section.

The Helical Wiggler in a Storage Ring

The helical wiggler must be matched optically if it is to be incorporated
into a storage ring. This is necessary to maintain orbit stability in the ring.
Equations (9) and (10) show that for a helical wiggler of practical length

(8t << 1) one can approximate the "smooth' transverse motion by
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v
X .

u~= (x =-1r) cos wt+ ~>= sin wt

o o w
v~ rokc
.y e - .
v = sin wt + y_cos wt
W o

Assuming that the wiggler is displaced horizontally by the amount r,

beam is kicked in and out to give vy = g rokc the equilibrium orbit of the

(17)

(18)

and that the

storage ring will be preserved. Using the nomenclature of Courant and Snyder6

the effect of the wiggler on the betatron motion can be described by simple

transfer matrices:

cos gin
p'w Bw uh
- sin cos

Yw LJ'w uw

where w = wl = ok /c,
W W w
T 1is the passage time through the wiggler,
L is the length of the wiggler,

Bw = Lw/p,w = c/w,

1/Bw.

~
il

If the helical wiggler is inserted in a storage ring between two points

1 and 2, then, for proper matching, it is required that

o MM, MM, MMy M,
2
g = |- 2, ()

Y§ - 2”?2“)51 ( M)z(l )

(19)

{20a)
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and
F‘l}z’ MMy, M - M) - MM, ! %
2 2
B | = |- agp, (M:ﬁ ) (yz ) By (20b)
2 2
Y | - ) (@1 > (Mzz ) et

where the o's, B's and y's are the horizontal and vertical orbit parameters
of the storage ring at points 1 and 2.

Using Eqs. (19) one obtains

I—X— F 1 1 4
P51 - gin 2
a, cos ZMW ZBW sin 2MW 5 Bw gin uw al

b . 2 2 2 X
Bz Bw gin Zuw cos b Bw sin e Bl
v 1 sin 2p L sin2 1L cos2 1 yx

: 5 .
_2,_ L % v A, Y v i _14
and
- - _ - - -
L 1. |
az cos Zuw QBW sin 2uw 5 B sin Zuw a{

y - _ 2 z 2 v
82 Bw sin 2uw cos M B sin b 81
Yy -— sin 2y L sin” W cos2 ) ¥

2 B W 52 W 1

I N I . 4oL

A reasonable location in a storage ring for a helical wiggler will be in
a matched insertion. If the insertion is symunetrical (which is usually the case)

and the wiggler is placed symmetrically around the insertion center, then

X X X X X _ X - .y ¥ o ogY b A
oy oy s 82 Bl s Yy Yl . ag o s 82 Bl s Yy Yl and one can solve

for all of the o's, B's and y's.
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For electron energies in the GeV region and a wiggler length of a few

meters, o << 1 and one can approximate the three by three matrix by:

1 an/Bw - L,
- 2L 1 0
W
Zuw/Bw 0 1
leading to
X X = = =
@) <oy =0 “p{ 092’ 0
X = X = y = y -
= * = y = y i~
Y1 = Yy = LB, vy = ¥y = /B,

1t should be noted that Bw = /2p. Tor 2-GeV electrons and Bo = 5.5 kG,

p = 12.1 m and Bw = 17.1 m. The rms radial emittances of 2-GeV electron beams
can be as low as 1.3 X 10"8 # m-rad if special care is taken in the design of
the storage ring.7 One then gets an rms beam width of about 0.5 mm in the
helical wiggler and a l-cm bore will yield adequately long quantum lifetime.
Furthermore, the horizontal angular divergence er will be 3.0 X 10_5 radians.
This easily satisfies the conch'u;icnrx4 that 8 must be less than 1/(/Ny) to
maintain spectral purity. Here N ig the number of wiggler periods (of the order
of 102).

Computer runs fcllowing orbits for 100 revolutions in a storage ring
containing an optically matched helical wiggler confirm that stability can be
achieved, provided the proper kicks are given to the beam at the input and
output of the wiggler.

The radius of the helical path of off-momentum particles is shifted by only
a very small amount, rOAp/p. This makes it necessary for the local value of the

momentum dispersion function of the storage ring to be zero at both ends of the
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wiggler. With such a configuration it can easily be shown that the effect of
a helical wiggler on the relative amount of longitudinal and radial damping

is negligible,

Conclusion

An analysis has been given which yields approximate orbits of electrons
in helical wigglers. There secems to be reason to expect that satisfactory
performance can be achieved when the helical wiggler is incorporated in an
electron storage ring., However, strong coupling between the horizontal and
vertical motion in the storage ring is to be expected resulting in increased
vertical beam size, Further investigation is essential of the nonlinear effect

due to helical wigglers,
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APPENDIX

Magnetic Field Patterns and Current Distribution

It will be assumed that the field has a sinuscidal distribution in the
axial direction, the distribution having the same period as the helical winding.
It will be assumed further that no higher harmonics are present. The field

pattern can then be represented by

B
T

By

F(r) sin (& ~ kz)

W

G{r) cos (& - kz)

where 21/k 1s the axial distance in which the field makes a complete revolution.
Substitution of these expressions in Maxwell's egquations and elimination of BZ
by second differentiation reveals the fact that rG is proportional to I1(kr),

a first order Bessel function of imaginary argument. TFinally we cobtain:

B = ZBO {io(kr) - i; I1 (kr)} sin (B - kz)

T

ZBO
BG = Il(kr) cos (& - kz) {(Al)
BZ = —ZBO Il(kr) cos (8 - kz) ,

where BO is the transverse field amplitude at the axis of the helical winding.
Near the axis the fields can be represented by approximate expressions

using the leading terms in the series representing the Bessel functions, For

kr less than about 0.8 the field compeonents can be represented with erreors less

than 1% by

B, = B (1+ 3k%r2/8) sin (8 ~ kz)
22
Be = Bo(l + kr /8) cos (B ~ kz) (A2)
2 2
B? = - kBor(l + k7 /8) cos (B - kz)
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In rectangular coordinates the field components are:

- B0 {(1 + k2(3x2 + yz)/8) sin kz - (kzxy/4) cos kz}

B =

X
2,2 o2 2 .

By = BO {(l + kT (x + 3y ) /8) cos kz - (k"xy/4) sin kz} (A3)
2 2 2 .

Bz = - Bo(l + kK (x" + v )/8)(x cos kz + v sin kz)

Outside of the helical winding the field expressions will be similar but,
in order that the fields vanish at infinity, it will be necessary to replace the

I functions with K functions. The field amplitude outside will be

obtained by matching the radial compenent of B, This will introduce into all

components a factor

1
Io(ka) " Ta Il(ka) (44

g
4
g e

1
Ko(ka) + i Kl(ka)

where a is the radius of the winding which, for the moment, we assume to be
infinitesimal in thickness.

The current distribution can be derived from the discontinuity in Be and Bz

2B

o) 2A
= = 6 - kz
g 4”“0 {ﬁ Kl(ka) + Il(ka)] cos ( z)
AS
2B0 2 (A5)
P~ S - Ay . -k
IZ anpoka {ﬂ Kl(kd) t Il(ka)] cos {9 z)
The total current is, with the Wronskian relation,
s, (L4 1/ ka2
I= . cos (B - kz) . (AB)

(kK (ka) + K, (xa))
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Here I is given in amperes per centimeter (axial) and Bo is in gauss. The total

current in one turn of the helix will be given by setting 8 = 0 and by integrating

(46) from kz = = /2 to + 11/2 to obtain
. O3B 1/ (2a?yy 2 7
total TT2 (kaKo(ka) o+ K1<ka>

where AO (= 2n/k) is the pitch of each helix id centimeters.

Equation (A7) is to be compared with Xincaid's BEq. (1). The two expressions
differ by a factor (4/ﬁ)<1 + 1/(k232))%; this small difference is attributable
to the fact that this treatment relates to a distributed winding whereas
Kincaid's helices are single wires of infinitesimal cross section.

Equation (A7) is plotted in a semilog plot in Fig. 1. It is evident from

the plot that, above a/ko = 0.2, the expression for [ /)\OB0 can be represented

total

by an exponential;

E§9%33 = 0.246 o> 58 /%o amperes/cm. gauss (48)
oo

Using expression (A8) it is possible to analyze windings of finite thickness.
We assume that the axially simusoidal current distribution is replaced by a
block of current of uniform demsity, I A/cm2 and of axial widcth R0/3. Near
the axis, this will give fields which are to a good approximation the same as
those provided by the sinusoidal distribution.

The total current in a block of infinitesimal thickness da at radius a
will be IO(RO/B)da; it will provide a transverse field dBO on the axis given
by (A8)

-5.68 a/k, da

dB_ = 1.355 1 e (A9)
o (o}

For a coil of finite thickness, having inner and outer radii a and a, we

integrate (A9) to obtain
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. . -5.68 aj/\ ~5.68 a5/
BO = 0,2385 Ioko (e O - e 2770y gauss (A10)

For coils having al/ko greater than 0.2, Eq. (A10) can be used to establish the
current density IO in amperes per square centimeter required to produce a trans-
verse magnetic flux density of BO gauss in a helix of given pitch and inner and

outer dimensions.
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TABLE I

Magnetic Fields Achievable in Wigglers

ko(cm) BO(IO=50,OOO A/cmz)G BO(IO=100,OOO A/cmZ)G
1 700 1400
1.5 2700 5400
2 5800 11,530

2.5 9600 19,300
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Fipure Captions

Fig. 1.

Fig., 2.

Fig. 3.

Fig. 4.

Current Itotal per turn required to produce an axial transverse
field B0 in a helix of pitch Ao as a function of the ratio of

helix radius to pitch,.

Orbit in a helical wiggler with zero initial coordinates and

transverse velocities.
The functions u and v in a very long wiggler.

Orbits with almost complete correction of the y motion.
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