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Ultradense Quark Stars from Perturbative QCD*
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The equation of state for cold quark matter is studied in perturbative quantum chromodynamics
up to second order in the strong coupling constant ;. The equation of state allows for a new class
of solution at high density besides the one for ordinary neutron stars which is formed by deconfined
matter. The resulting mass-radius relation exhibits extremely dense stars with maximum masses of
about 0.3Mg and radii below 2 km.
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I. INTRODUCTION AND MOTIVATION

The history of neutron stars dates back to the year of 1932, when Chadwick discovered the neutron {1]. During
the very same year, Landau predicted the existence of neutron stars. A couple of years later, Baade and Zwicky
suggested the connection betweern neutron stars and the phenomenon of supernovae explosions. However, it was
not until 1939 that the first neutron star theoretical calculations were performed by Tolman and Oppenheimer, and
by Volkoff [2]. Nowadays, the equations derived in this calculation are known as the Tolman-Oppenheimer-Volkoff
(TOV) equations, and are at the basis of stellar structure calculations. The hypothesis of neutron stars formation
in supernovae explosions was strengthened by the discovery of radio pulsars by Hewish et al. [3]. Nevertheless, new
possibilities for compact stars came also from the quark model Gell-Mann and Zweig proposed for hadrons and its
. future consequences [4]. Perhaps the first proposal of superdense quark stars appeared in the work of Ivanenko and
Kurdgelaidze [5], in 1965. But it was the discovery of asymptotic freedom that opened the way for the hypothesis
that matter at the high densities found in neutron star cores coild be a quark soup due to hadrons overlap. This
ponderation, together with a discussion on the possibility of superfluidity and superconductivity effects, was done in
a remarkable paper by Collins and Perry 6] ten years after the idea of quark stars appeared for the first time. At
this time, the subject attracted some attention and motivated many papers on the quark-hadron phase transition,
the high-density regime of QCD, and the study of neutron stars, culminating with the first systematic gquark star
phenomenology based on high-density perturbative QCD results presented by Freedman and McLerran (see [7] and
references therein). The next major development in this field cams when Witten proposed the idea of strange matter,
i.e., that quark matter rather than nuclear matter might be the ground state of QCD at finite baryon number [8]. This
assumption lead Farhi and Jaffe to the study of the stability of strange matter [9] and stimulated the investigation of
self-bound strange stars [10]. From this point on, an entire zoo of possibilities arose: strange stars, different families
of neutron stars, hybrid stars, etc [1].

In order to test all those possibilities, one has to compare theoretical predictions to actual astronomical observables.
For the sake of simplicity we will focus on two of them: the total mass and the total radius of the star. The way
to calculate these quantities in a given model is by solving the TOV equations, which are derived from Einstein’s
field equations assuming a static and spherically symmetric star (see, e.g., Ref. [11]}). The TOV equations have the
following form:

dp  GM(r)e(r) p(7) 473 p(r) 2GM(r)1 !
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where pis the pressure, e 1s the energy dersity, » is the radial coordinate, and G is Newton’s gravitational constant,.
The total radins is represented by I and the total mass by A/, The quantity M(r) gives the mass of the star up
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to a radius r. Given M(0) = 0, €(0) = e, the energy density at the center of the star, and the equation of state
(EoS) p = p(e), one can integrate the TOV equations from the origin until the pressure p(r) becomes zero at r = R.
Given p = p(e), M(e.) defines a family of stars. Extrema in M (e.) signal gravitational instability and this defines a
maximum mass (see [11] for details). Different types of stars have different EoS and, therefore, different astronomical
output.

The usual approach to quark stars relies on the MIT bag model for the EoS and provides results that depend
strongly on the bag parameter B. In this work, we present calculations of the equation of state of cold and dense
quark matter using the perturbative expansion up to second order in the strong coupling constant a; = g%/ (4m),
which is allowed to run according to the renormalization group equation. The typical densities found inside quark
stars allow for a sensible use of perturbation theory [12]. Following this procedure, we find significant deviations from
the equation of state obtained from the MIT bag model. Nevertheless, we can also reproduce the results obtained
from the usual approach in a particular limit of this more fundamental model.

It is not our aim to provide a realistic and accurate description of the phenomenology related to quark stars by
studying higher order corrections to the thermodynamic potential. We intend to highlight the essential difference
between the usual approach, which uses the MIT bag model to obtain the EoS, and one which is solely based on
perturbative QCD as a guideline to what might happen at very high densities. The perturbative approach provides
phenomenological results that depend on fundamental quantities, the beta function, instead of some phenomenological
bag parameter {13].

II. USUAL APPROACH TO STRANGE STARS

The basic physical picture adopted in the usual approach [1,10] to strange stars is that of strange matter described
by a Fermi gas of up, down and strange quarks, and electrons, where the region the quarks live in is characterized by
a constant energy density B, the bag parameter. Since the stellar temperature, in the case of neutron stars and quark
stars, is much smaller than the typical chemical potentials, one can assume zero temperature from the beginning.
Moreover, one assumes chemical equilibrium, so that
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which implies pg = prs = g and g, + e =y, as p,, = 0. Overall charge neutrality implies
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where the particle density is n; = — (99, /8u;), so that there is only one independent chemical potential. Here, €,

is the thermodynamic potential, usually the one for a free gas plus eventual O(a,) corrections with a, taken to be
constant.

For the simple case mn, = mg = mg =0, as = 0, and p, = 0 (n,./n, = 0). the EoS simplifies to

ple) = (e —d4B) . (5)
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It is remarkable that. for intermediate values of myg, the correction to the result above is less than 4%. The EoS

is dominated essentially by B. The global properties of strange stars one obtains with such an EoS are the following
(for BYY = 145 Mel7) [10]:
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€sury = 4B~ 4 x 10" g/em® = 2¢ (9)

Ei:\;f'_f = €solidFe = 1.8 g/cm3 . (10)

Here ¢y =~ 2.5 % 1014g/cm is the energy density of normal nuclear matter and €soi4r. is the density of solid iron,
found in the surface of neutron stars. One can see the strong dependence of the results on B and the very different
patterns that arise for strange stars as compared to neutron stars. However, for M = 1.4M the range of possibilities
for the total mass and the total radius in each case is aimost the same.

III. QUARK STARS FROM PERTURBATIVE QCD

We consider the case of three ﬂavor massless quarks at zero temperature. Matter in compact stars is in $-equilibrium
nd depends +ha PN 1 ~1 +ln als cho sotential. The electrochemical
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potentlal vanishes for massless three-flavor quark matter as it is charge neutral by itself. Then, the chemical potentials
of the up, down, and strange quarks must be equal so that one has equal Fermi momenta and equal abundances of
all three hght quarks in matter. So, we have only one independent chemlcal potential as before.

The thermodynamic potential of a plasma of massless quarks and gluons was calculated perturbatively up to
O(a?), in a momentum-space subtraction scheme (MOM) with a dimension dependent Landau gauge by Freedman
and McLerran [7]. Baluni [14] did a similar calculation using the MOM scheme in Feynman gauge. The results of
these works are consistent with each other and can be transformed into the MS subtraction scheme [15], resulting in
the following transformation of the coupling constant:

p>
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where A = 151/48 — (5/18) Ny with N, being the number of flavors. The translation netween schemes up to this

order corresponds to a shift in the constant of the second-order term of the original (MOM) potential. Then, the final
form for the thermodynamic potential is given by
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where in the MS scheme G = 10.374 — 0.536 N + NyIn Ny and [i is the renormalization subtraction point. The scale
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where 8p = 11 — 2Ny /3, 8, = 51 — 19N, /3. and 3, = 2857 — 5033N,/9 + 3251\2/27

There is some freedom in the actual choice of fi, provided that it ;minimizes the ((mhl}mh(m generated by logarithmic

corrections to the thermodynamic potential of th(‘. form (In(f2?/12))™ [7,14]. The only scale in the problem is the Fermi
momentum of the quarks which equals the quark chemical potential for massless particles. A natural choice is to set
it =y Laters we will discuss the sensitivity of our result with respect to the choice of jro We fix the scale Agg by
requiring that ey = 0.3089 at ji = 2 GeVoas taken from the fit of the Particle Data Group to the experimental data
{16]. This gives Mgz = 0.365 GeV for Ny == 3.

From the knowledge of the thermodyinamic potential we can irnnediately obtain the pressure, p(p) = —Q(u). the
quark number density n = (Op/dp). and the cnergy density € = = p 4+ pn. Therefore, we have all the ingredients that




are necessary to solve the TOV equations with this new EoS and, then, obtain the relevant astrophysical features
solely in terms of a, and the beta function.

The pressure, in units of the pressure of a free gas, is shown in Figure 1 as a function of the quark chemical potential.
There, we show the results up to first order in a; and the one which includes the O(a?) contribution. It is clear from
this plot that the interactions between quarks can not be ignored, even in this large-y region. Moreover, contrary
to the case of finite-temperature perturbation theory [17], the series is reasonably well-behaved. Then, perturbation
theory seems to be applicable for the pressure in the range of i considered, but it does not imply that it works well
for other observables as pointed out recently by Rajagopal and Shuster [18]. The remarkable feature in this figure is
the fact that the pressure vanishes for = 0.767 GeV, so that the star is self-bound and represents a new class of
solution at ultrahigh densities. This fact is emphasized in Figure 2. There one can see that the result for the case

fi = p represents a new branch in the EoS and can not be matched with hadronic equations of state [19]. In fact,
there is a big gap separating the two regions.
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FIG. 1. Total pressure (in units of the free gas pressure) as a function of the chemical potential for the case p = . We show
the result up to first order in «; and the one which includes the second-order contribution.
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FIG. 2. Equation of state for the case i = . The free gas and a hadronic equation of state are displaved for comparison.

Figire 3 shows rhe total mass as a function of the central energy density for the i = p case. As mentioned before,
extrena in such a plot signal gravitational instability and define @ maximum allowed total mass for a stable stav. For
the case under constderation. the maximum mass is of the order of 0.3531. and the central energy density can reach
vahies almost o hundred times greater than e, These results should be compared to the ones obtained by using the



MIT bag model equation of state, namely Mo, = 2Mg and €7*** = 8¢.
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FIG. 3. Total mass (in solar mass units) as a function of the central energy density, for the case ji = p.

Figure 4 displays the mass-radius relation for the cases i = u, 2 = 2 and @ = 3. They should be compared to
the usual results for the maximum mass, quoted above, and for the um radius, Fpe; & 11km. One can see
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the strong dependence on the choice of the scale . In fact, for higher values of i, one can reach the region that
reproduces the results obtained by using the usual approach. '
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FIG. 4. Mass-radius relation for the cases o=y, o = 2 and 1 = 3.

IV. CONCLUSION AND FUTURE WORK

Although the patterns of the curves for the mass-radius relation presented in Figure 4 resemble those obtained
for strange stars within the MIT bag model approach, the phenomenology encountered in our treatment is very
different. The quark stars which result from perturbative QCD are roughly five times smaller, they are less massive
(M =~ 0.3 - 0.9 My as compared to M ~ 2 AL, for strange stars), and much denser. Theyv represent an entively new
class of ultradense stars. The strong dependence on the choice of the scale fz, which must be chosen in o wayv that
minimizes the contribution of higher-order logarithmic corrections [7], is of course unpleasent and is under current
investigation [13]. However, it does not ditninish the spectrim of exciting: possibilities onencened by the results provided
by perturbative QCD. The possible existence of quark stars could also have considerable impact on the study of cold
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In fact, the MACHO project has reported micro-lensing events for the Large Magellanic Cloud [21}, interestingly with
mass ranges close to our calculated quark star masses of M = 0.15-0.9M¢.

It is a pleasure to thank Larry McLerran, Tony Rebhan, Robert Harlander, Jonathan Lenaghan and André Peshier
for fruitful discussions and illuminating remarks. This work was partially supported by the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 and by CNPq (Brazil) through a post-doctoral fellowship.

[1] The reader is referred to N. K. Glendenning, Compact Stars — Nuclear Physics, Particle Physics, and General Relativity
(Springer, New York, 2000) for a more detailed account and a more complete list of references.

{2] R. C. Tolman, Phys. Rev. 55, 364 (1939); J. R. Oppenheimer and G. M. Volkoff, ibid., p. 374.

[3] A. Hewish et al., Nature 217, 709 (1968).

[4] M. Gell-Mann and Y. Neeman, The Eightfold Way (Benjamin, New York, 1964).

[5] D. D. Ivanenko and D. F. Kurdgelaidze, Astrophysics 1, 251 (1965).

(6] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).

[7] B. Freedman and L. McLerran, Phys. Rev. D 17, 1109 (1978).

(8] E. Witten, Phys. Rev. D 30, 272 (1984). See also A. R. Bodmer, Phys. Rev. D 4, 1601 (1971).

[9] E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984).

[10] P. Haensel, J. L. Zdunik, and R. Schaeffer, Astron. Astrophys. 160, 121 (1986). C. Alcock, E. Farhi, and A. Olinto.
Astrophys. J. 310, 261 (1986).

[11} S. Weinberg, Gravitation and Cosmology — Principles and Applications of the General Theory of Relativity (Wiley, New
York, 1972)

[12] R. D. Pisarski and D. H. Rischke, Phys. Rev. D 61, 051501(R) (2000).

[13] E. S. Fraga, R. D. Pisarski and J. Schaffner-Bielich, work in progress.

[14} V. Baluni, Phys. Rev. D 17, 2092 (1978).

[15] J. P. Blaizot, E. Iancu, and A. Rebhan, hep-ph/0005003 (2000).

[16] D. Groom et al., Eur. Phys. J. C15, 1 (2000).

[17] C.-X. Zhai and B. Kastening, Phys. Rev. D 52, (1995). E. Braaten and A. Nieto, Phys. Rev. Lett. 76, 1417 (1996). J. O.
Andersen, E. Braaten, and M. Strickland, Phys. Rev. Lett. 83, 2139 (1999).

(18] K. Rajagopal and E. Shuster, hep-ph/0004074 (2000).

[19] J. Schaffner and I. N. Mishustin, Phys. Rev. C 53, 1416 (1996).

[20] M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B 422, 247 (1998); Nucl. Phys. B 537, 443 (1999). R. Rapp. T.
Schifer, E. V. Shuryak, and M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998). D. Page, M. Prakash, J. M. Lattimer, and A.
Steiner, Phys. Rev. Lett. 85, 2048 (2000). M. Alford, J. Berges, and K. Rajagopal, Nucl. Phys. B 571. 269 (2000). M.
Alford, J. A. Bowers and K. Rajagopal, hep-ph/0008208. R. Rapp, E. Shuryak and I. Zahed, hep-ph/0003207.

[21] C. Alcock et al., astro-ph /0001272 (2000).

O



