Soybean Lipoxygenase L1: Comparison of the Fe11 (active) FeII (resting) Forms of the Enzyme

M. Faig, M. Bianchet, L. M. Amzel (Johns Hopkins U.) and B. Gaffney+, and L. M. Amzel (Florida State U.)

Abstract No; faig4998

Beamline(s) X25

Introduction: Lipoxygenases are non-heme iron enzymes that catalyze the dioxygenation of unsaturated fatty acid to hydroperoxides. Lipoxygenase activities are important in plants as well as in mammalian organisms. In plants, the preferred substrate is linoleic acid. In mammals, lipoxygenases convert arachidonic acid into hydroperoxides, precursors of lipoxins and leukotrienes. These compounds are associated with a range of inflammatory diseases such as asthma and inflammatory bowel disease. Lipoxygenases can exist in two oxidation states: an FeII and an FeIII state. All structures reported to-date are those of the FeII resting state (1-3) In the FeII structures the iron has octahedral coordination. Four of the ligands, HIS-499, HIS-504, HIS-690 and the terminal carboxyl of Ile839, are direct iron ligands (distance 2.0 - 2.2 Å). The other two coordination positions are occupied by Asn694 and a water molecule that are at longer, non-ligand distances (~3.0 Å).

Results: FeIII soybean lipoxygenase crystals belong to space group P2$_1$2$_1$2$_1$ with cell dimension a = 68.9 Å, b = 120.3 Å and c = 119.1 Å. The structure was refined to and R value of 21%. The binding site of this form resembles that of the FeII form, but shows significant changes especially in the coordination of the iron.

References: