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Abstract 
We study the influence of space charge on the crossing 

of the second-order resonance and the associated space- 
charge limit in high-intensity rings. Two-dimensional sim- 
ulation studies are compared and found to agree with the 
envelope models in the finding of an increased intensity 
limit due to the coherent frequency shift. We also discuss 
application of this effect to bunched beams and multi-turn 
injection painting, and the effect of high-order resonances 
and issues of the envelope instability. 

1 INTRODUCTION 

A correct treatment of resonance crossing in the pres- 
ence of space charge must take into account the coherent 
behavior of the beam [l]. Recently, we applied coherent 
resonance theory to the space-charge limit studies in the 
SNS [2]. First, we confirmed collective resonance response 
of an unbunched beam for various beam distributions. We 
then extended our studies to a bunched beam as well as to 
the process of beam accumulation. 

In general, the coherent resonance condition has the 
form: 

n =. R, E mu0 - AR,, (1) 
where R, is the frequency of the m&order coherent beam 
mode, AR, is the coherent space-charge tune shift of the 
mth-order mode from its zero-current value (mva), and n 
stands for the error Fourier harmonic. In this paper we con- 
sider the m = 2 case which is associated with the space 
charge limit imposed by the half-integer resonance. 

2 IMPERFECTION RESONANCE 

2.1 Coherent space-charge limit 

We start with exact numerical solutions of the envelope 
equations. First, we consider the l/2 resonance near the 
unsplit-tune working point u~,~,~ = 4.6. We assume equal 
emittances in z and 2/ and solve the envelope equations with 
error Fourier harmonics of 1. 10m3 units (relative to the un- 
perturbed focusing constant), driving the n = 9 harmonic. 
The maximum envelope excursion grows with increasing 
beam intensity, which brings the coherent mode frequency 
closer to the resonance. Figure 1 shows the maximum en- 
velopes for this case as the function of depressed incoher- 
ent tune vZ,V for both the symmetric and anti-symmetric 
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errors. The envelope increases noticeably only with the 
coherent frequency crossing the integer, which occurs at 
Y s,V = 4.467 (beam intensity equal to $Av& for the out- 
of-phase mode, and at v~,~ = 4.4 (beam intensity equal to 
2Avi,,) for the in-phase mode. Due to the dependence of 
the envelope eigenfrequency on amplitude the maximum 
growth happens for higher beam intensities at v~,~ = 4.44 
for the out-of-phase and u~,~ = 4.37 for the in-phase mode. 
A zero-current envelope response to this l/2 resonance is 
obtained by varying the working point u~,~,~. 
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Figure 1: Response curves for the unsplit-tune working 
point (numerical solution of envelope equations). 

The size of the maximum envelope excursion, as well 
as the width of the response curve, is a function of the 
strength of the imperfection resonance. Figure 2 shows 
the maximum y-envelopes for (~0%~ Q) = (6.45,4.6) and 
three different magnitudes of error. The intensity parameter 
I = Au,,/Aui,, (abscissa) is expressed as space-charge 
tune shift normalized to the distance from the bare tune to 
the half-integer (Au,,,). The strongly asymmetric shape 
of the envelope response curves is a result of the nonlinear 
nature of the envelope equation, in particular the increase 
of envelope frequency with amplitude. 

We now proceed to the realistic SNS lattice with the 
working point at (van, UQ) = (6.45,4.6). The gradient 
error is introduced in a single quadmpole with the normal- 
ized strength of an error Ale = 2.5 . 10m3 units. Simula- 
tions were done using the Particle-In-Cell (PIC) code OR- 
BIT [3]. The results of simulations are presented in Fig. 3, 
which co& the envelope response expected based on 
the envelope equations (Fig. 2). In Figs. 3-4, the maxi- 
mum beam envelope for each intensity is plotted with blue 
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Figure 2: Response curves for various strengths of reso- 
nance driving error ( solution of envelope equation). In- 
coherent space-charge limit corresponds to I = 1, while 
the coherent resonance condition in this case corresponds 
to I = 1.635. 

3.1 Unbunched beams 

Simulations are done without errors so that only the lat- 
tice harmonics are present, with n = 12 being the struc- 
ture harmonic due the SNS superperiodicity of 4. A single- 
particle dynamics approach would not allow the incoherent 
tune to approach an integer because of beam envelope beat- 
ing, starting at intensities for which the incoherent tunes 
are still well above the integer (similar to the zero-current 
envelope response in Fig. 1) due to the finite bandwidth 
of the resonance. The space-charge limit for this working 
point corresponds to 4Auinc/3 (b = a), but the beam enve- 
lope response to this coherent l/2 resonance starts at lower 
intensities, similar to the response curves in Fig. 2. Sim- 
ulations with both uniform and non-uniform distributions 
[2] confirmed the resonance response corresponding to co- 
herent resonance intensities. An example of the response 
diagram is shown in Fig. 4. 
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Figure 3: Response curve for the split-tune working point 
(PIC simulation, WB distribution, SNS lattice). 

dots, the green (short dash) vertical line indicates the inco- 
herent space-charge limit for a WB beam, the pink (long 
dash) line - the incoherent limit for uniform density beam, 
while red (solid) line - the coherent resonance condition 
[2]. These features of an envelope response were recently 
demonstrated for the LANL PSR [4] and the FNAL booster 
[5]. An important feature of coherent non-linear resonant 
response is different beam behavior depending on whether 
the resonance is crossed in the direction of increasing or 
decreasing space-charge effect. Recently, an experimental 
study of this effect was performed by Uesugi et al. [6]. 

3 STRUCTURE RESONANCE 

One of the SNS working points (~a%, UQ,) = 
(6.23,6.20) lies very close to the half-integer structure res- 
onance with harmonic n = 12. It is thus extremely impor- 
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Figure 4: Response curve near the structure resonance (PIC 
simulations, WB distribution, SNS lattice). 

3.2 Bunched beams and multi-turn injection 

In the SNS, the full injection process takes about one 
synchrotron oscillation. It thus seems reasonable to expect 
that the impact of synchrotron motion will not be impor- 
tant. Simulations are performed with 1052-turn injection 
for a beam with momentum spread of dp/p = 0.7%. The 
tune foot-prints of a final full intensity beam are plotted at 
the end of accumulation process. Figure 5 shows the foot- 
prints for three beam intensities: N = 2. 1014 protons (red 
color), N = 3 . 1014 (pink color), N = 4. 1014 (green 
color). Note that a dp/p spread was present in the simu- 
lation but its effect on the tune spread was excluded from 
the pictorial representation. A modification of the space- 
charge foot-print by the dp/p spread is discussed elsewhere 
[7]. For example, the combined tune spread (space charge 

tant to understand associated intensity limitation. and dp/p) extends down to the incoherent tune of 6.0 for 
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Figure 5: Tune footprints at the end of accumulation for 
three intensities of the beam. 

the first case of N = 2 . 1014. The time evolution of the 
vertical rms emittances, corresponding to Fig. 5, is shown 
in Fig. 6. No resonant effect is observed until the beam gets 
into the bandwidth of the coherent resonance [2]. 
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Figure 6: Vertical rms emittance during multiturn injection 
process for three intensities of the beam. 

4 HIGH-ORDER RESONANCES 

The coherent resonance condition for the high-order res- 
onances is very close to the incoherent one. In some cases, 
the space-charge limit may be restricted by these high- 
order resonances. This, for example, is true when one has a 
split-tune working point with weak space charge coupling, 
as in the case of (6.3,5.8) of the SNS. As aresult, the beam 
responds first to a fourth-order coherent sum resonance 
driven by the fringe fields with strong intensity limitation. 
On the other hand, for the (6.23,6.20) working point with 
strong space-charge coupling it was found that the space- 
charge limit is not significantly altered by the presence of 
the high-order resonance of realistic strength, which allows 
the beam intensity to increase slightly beyond N = 2. 1014 
for this working point [S]. The tolerable intensity limits 
is determined by allowed beam losses at restricting accep- 
tance. 

The envelope instability occurs if the zero-current phase 
advance per focusing cell is above a quarter-integer, i.e. for 
~a > 90°. Space charge then leads to an extended stop- 
band starting slightly below (T = 90°. Several cases of the 
envelope instability were explored [2]: 1) “superstructure” 
resonance, which is a direct analogy with the envelope in- 
stability in the transport channel [9], 2) envelope instability 
driven by the imperfection errors near the quarter-integer 
tunes, 3) envelope instability driven by the imperfection er- 
rors near the l/2 tunes. In these studies we have used the 
KVXYG [IO] code, which matches KV-envelopes and de- 
termines the eigenvalues (growth factors) of envelope per- 
turbations. For example, for the case of the envelope insta- 
bility near the l/4 tunes we concluded that the imperfec- 
tion driven envelope instability for working points above 
the fractional tune of 0.25 (likewise 0.75) is ignorable [2]. 

6 SUMMARY 

Application of the coherent resonance condition both 
to the imperfection and structure resonances is discussed. 
We explore the applicability of such an effect to the SNS 
bunched beam and multi-turn injection process. In addi- 
tion, we address the issue of the envelope instability in a 
circular machine. 
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