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ABSTRACT 

This report investigates the possibility that energy losses due to air leakage from ducts in 
small buildings might be reduced if the leaked air is constrained to flow within the 
insulation to a point upstream or downstream of the initial leakage point. The idea is that 
the leakage air might warm (or, in the air-conditioning mode, cool) the insulation and 
thereby retard heat conduction from (or to) the duct. Any such reduction in conductive 
losses could be credited against the lost energy from the leak itself Theoretical 
calculations carried out in this work indicate that such a “thermal regain” effect could 
recover, in the heating mode, up to half the heat contained in the leaking air, and En the 
cooling mode, up to 75% of the sensible cooling in the leak. In most actual cases,, a 
smaller amount of regain would be expected. 
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EXECUTrVE SUMMARY 

In the course of a duct efficiency retrofit, additional insulation may be added to a 
duct system that is already insulated. For example, a layer of R-4 insulation is added to a 
duct system that already has R-4 installed. It might happen, either by chance or lby 
design, that the add-on layer, while not stopping duct leaks, causes the leakage air to flow 
longitudinally for a distance, parallel to the duct, before it finds a way out of the newly 
added outer layer. 

It is plausible that this leakage air might serve a useful hnction in keeping the 
insulation layer warmer (or, in the air-conditioning mode, cooler) than it would be in the 
absence of the leakage. By being held close to the ducts for a while, it might establish an 
artificially warmer (or cooler, in air conditioning) zone around the ducts. To the extent 
that this effect would reduce conductive heat transfer through the duct wall, the leakage 
should be credited with a “thermal regain” in the same way that leakage into the zones 
containing the ducts is credited with thermal regain when the leakage air warms (or 
cools) such “buffer zones,” thereby reducing the heating (or cooling) load. 

It is suggested that a double layer of insulation that causes leakage air to lfollow an 
indirect path may in effect form its own buffer zone. This report investigates whether 
and to what extent such thermal regain exists. A general equation is derived for ithe 
thermal regain fraction (the fraction of heat or cooling effect lost by the leak that is 
effectively regained by virtue of displacement of the leak within the duct insulation). 

The results for typical cases can be simply stated. In the heating mode, the 
benchmark case sets the temperature of the zone surrounding the ducts 30 ”F colder than 
the house while the air in the ducts is 50 OF warmer than the house if the equipment is a 
furnace or 30 ”F warmer than the house if it uses a heat pump. An upper bound for the 
thermal regain fraction is 0.40 for the hrnace and 0.50 for the heat pump. 

In the cooling mode, the benchmark case sets the temperature of the zone 
surrounding the ducts air in the ducts 10 ”F warmer than the house if it is a crawlspace 
and 40 O F  warmer than the house if it is an attic. The air in the ducts is assumed to be 
20 ”F colder than the house. The upper bound for the thermal regain fraction is 01.37 for 
crawlspace ducts and 0.75 for attic ducts. These regain fractions apply to the sensible 
portion of the cooling load only. 

Regain fractions that would be obtained in actual practice would usually be lower 
than these upper bounds, the shortfall depending on the distance between the point where 
the leak leaves the duct and where it escapes the outer layer of insulation. 

It would appear, then, that the strategy outlined above might be especially useful 
for attic ducts in climates with high cooling loads. This conclusion is strengthened by the 
consideration that the regain fraction will be higher at design conditions where thle attic is 
hotter. Also, the fraction of the load that is sensible (as opposed to latent) is generally 
highest at design conditions. 
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INTRODUCTION 

In one type of duct efficiency retrofit, additional insulation is added to a (duct 
system that is already insulated. For example, a layer of R-4 insulation might be: added to 
a duct system that already has R-4 installed. It is possible that -- either by chance or by 
design -- the add-on layer, while not stopping duct leaks, might cause the leakage air to 
flow longitudinally for a distance, parallel to the duct, before it finds a way out of the 
newly added outer layer. This could happen by chance if the outer and inner layers of 
insulation have seams at different locations. Perhaps more usefully, if such longitudinal 
displacement of the leakage air turned out to be useful, it might be designed into the 
makeup of the outer insulation layer intended to be used in the retrofit. 

It is plausible that this leakage air might serve a useful function in keeping the 
insulation layer warmer (or, in the air-conditioning mode, cooler) than it would be in the 
absence of the leakage. By being held close to the ducts for a while, it might establish an 
artificially warmer (or cooler, in air conditioning) zone around the ducts. To the extent 
that this effect would reduce the heat losses from the ducts, the leakage should be 
credited with a “thermal regain’’ in the same way that leakage into buffer zones is 
credited with thermal regain when the leakage air warms (or cools) the buffer zoine 
relative to the temperature it would have in the absence of such duct leakage. Tlhe 
purpose of this report is to investigate whether and to what extent such thermal regain 
exists. 

The model developed below applies to a situation where there are two dis’tinct 
layers of insulation around the duct, with leakage air moving between them in a 
longitudinal direction for a distance before it finds its way out from the outer insulation 
layer. It may also apply approximately where there is a single insulation layer with an air 
barrier on the outside. Leakage air may pass into the insulation itself and thence 
longitudinally through the insulation material until it finds an opening in the air barrier 
through which it can escape. 

DISPLACED LEAKAGE MODEL 

A simple model’ of the displaced leakage situation is illustrated in Figure 1. 
Heated air passing through a duct reaches a point where a small fraction of this air leaks 
from the duct. Under the usual assumption, such leakage would pass immediately 
through any insulation and exit to the space surrounding the duct, at a point immediately 
adjacent to the leak itself. In the model considered here, the leak passes through a portion 
of the insulation but is then constrained to move downstream2 through an annular region 
separating an inner and an outer layer of insulation. The leaked air is assumed to pervade 
the entire annulus, i.e., the flow is radially symmetric about the center line of the duct. 

The description that follows is in terms of a heating application, but the derivatilon goes 
through for sensible cooling as well as long as the latent portion of the cooling fhction 
can be considered as decoupled from the sensible portion. 
The leaked air can also move upstream. This possibility is considered later on. 
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After traveling thus for a certain distance, the leaked air finds an exit pathway in the outer 
insulation layer and dissipates into the surrounding space. 

Using this model, the question of whether such longitudinal flow of leakage air 
within the insulation could have a beneficial effect in reducing the net heat losses from 
the duct is now investigated. 

NOMENCLATURE 

Referring to Figure 1, the following parameters are defined: 

Symbol 

QD 
QL 
L 

rl 
r2 
R1 
R2 
TO 

Units 

R3/h 
ft3/h 
R 

R 
R 
R2-F-h/13tu 
R2-F-h/13tu 
OF 

Definition 

Airflow rate in the duct, in the domain 0 < x < L 
Leakage airflow rate 
Distance of longitudinal displacement of the leak, between 

Effective radius of inner insulation layer 
Effective radius of outer insulation layer 
R-value of inner insulation layer 
R-value of outer insulation layer 
Temperature of air in the duct that is entering the rlegion 
through which the leak is displaced, i.e., the region between 
where the leak leaves the duct and where it leaves ithe outer 
layer of insulation 
Air temperature in space surrounding the duct 
Air temperature indoors, in the house 
Volume specific heat of air 

exiting the duct and exiting the outer insulation la.yer 

TS OF 
Tin OF 
PCP Btu/R3-F 

These parameters are taken to be constants in the analysis. (In particular, changes 
in air density are ignored.) The values of rl and 1-2 should strictly speaking be tlhe log- 
mean radii using the inner and outer surfaces of the inner and outer insulation layers, 
respectively. As a practical matter, the arithmetic average radius of the inner and outer 
insulation layers should be sufficiently accurate. 

In addition, two variables define the temperature of the air in the duct and. of the 
leakage air at any distance x from the leakage site, which is taken as x = 0. That is, the 
domain ofx in the analysis from 0 to L. 

TD@) "F Temperature of the air in the duct at point x 
TL6) "F Temperature of the leakage air flowing through the 

insulation at point x 

Finally, the fbnctional form of the air temperature in the duct for the case where 
the leak exits the duct directly, with no longitudinal flow, needs to be evaluated. 
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TD,dir(X) "F Temperature of the air in the duct at point x for the case 
where the leak exits the duct and the insulation at the 
same point (x=O). 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The approach will be to develop the two simultaneous differential equations that 
govern the heat flow and then to apply the boundary conditions. This permits TD(x) and 
TL(x) to be evaluated over the entire range of x. Using these results, the heat flow due to 
the leak is compared with the reduction in conductive losses caused by the 1ongit:udinal 
flow of the leak. 

First, two control volumes are defined, a duct control volume comprising the 
portion of the duct between positions x and x+dx, and a leakage control volume 
comprising the portion of the annulus in which the leakage air flows between the two 
layers of insulation, also between the positions x and x+dx. Next, the heat flow rates are 
written in terms of the above fhctions and parameters, as follows: 

Heat loss rate via conduction from the air in the duct: 

2 n r l /  R1 [TD(x) - TL(x)] dx 

Net heat loss rate from leakage air in the annular region within the insulation: 

2 n r2 / R2 [TL(x) - Ts] dx - 2 n rl / R1 [TD(x) - TL(x)] dx 

Heat rate of duct air entering the duct control volume: 

Heat rate of duct air leaving the duct control volume: 

QD PCP TD(X + dx) 

Heat rate of leakage air entering the leakage control volume: 

Heat rate of leakage air leaving the leakage control volume: 

QL PCP T L ( x + ~ x )  

Because this is a steady-state model, no buildup or depletion of heat occurs within 
the control volumes. Therefore, the net heat rate of air flowing into and out of each 
control volume can be set equal to the net conductive heat loss rate from the control 
volume: 
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Duct control volume: 

QD ~ C P  [TD(x) - T~(x+dx)] = 2 n r l /  R1 [TD(x) - TL(x)] dx (1) 

Leakage control volume: 

QL ~ C P  [TL(x)-TL(x+~x)] = 2n r2E2 [TL(x)-Ts] dx - 2nrlE1 [TD(x)-TL(x)] dx (2) 

Converting differences to derivatives in the usual manner yields the following 
linked differential equations: 

Duct control volume: 

Leakage control volume: 

dTL(x)/dx = - 2n r2/(R2 QL pCp) [TL(x)-Ts] + 2nrl/(R1Q~ pCp) [TD(x)-TL(x)] (4) 

It is now convenient to rescale the temperatures using Ts as a base, that is, we let 
UD(X) = TD(x) - Ts and UL(X) = TL(x) - Ts, noting that dUD/dx = dTD/dx and 
dUL(x)/dx = dTL(x)/dx. Equations 3 and 4 then become: 

where ko = 27~ rd(R1 QD ~CP) ,  kl = 27d(R1Q~ ~ C P ) ,  k2 = 2n rd(R2 QL ~ C P ) ,  and 
k3 = kl + k2. In later equations, the definition l~ = ko k2 /k3 will also be used. 

Equations 5 and 6 must be solved simultaneously, using appropriate boundary 
conditions. There are two such boundary conditions in this problem. The first states the 
temperature of the duct air entering the duct control volume, i.e., that TD(O) = TO. The 
second boundary condition states that the leakage air temperature at x = 0 is the same as 
that of the duct air, i.e., TL(O) = TO also. 

SOLUTION OF TEE EQUATIONS 

Equations 5 and 6 are simultaneous linear differential equations in two unknowns. 
The solutions to equations like this involve two exponential functions of x. Each of these 
exponentials is defined by two constants. A leading coefficient gives a weight to the 
function as a whole, while a coefficient of x within the argument of the exponential 
specifies a characteristic distance over which the exponential decays. The derivation of 
the equations is given in the Appendix. The solutions themselves are displayed below. 
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UL(X) = UO [ k2/k3 exp (-k3 x) + kl/k3 exp (-h x) ] (8) 

Now we’ll go back from the U’s to the T’s, by adding back Ts: 

TL(x) = (TO - Ts) [ kdk3 exp (-k3 x) + kdk3 exp (-k4 x) ] + Ts (10) 

The one additional piece of information needed is what happens to the 
temperature profile of the air in the duct if the leak goes directly out of the duct and the 
insulation at the same point. That is, what is the hnctional form of TD,dU(x)? This can 
be obtained from the above equations by letting QL approach zero. This will make kl and 
kz (and hence k3 as well) go to infinity, so care is required. 

The first thing to note is that as k3 approaches infinity, the first terms in Equations 
7 and 8 approach zero for all x > 0. However, kl / k2 remains constant at r1R2/(RLlr2) even 
though its numerator and denominator “blow up.” This makes k4 independent of QL also, 
which hrther implies that h / k3 + 0. Putting all these things into the equation for 
TD(x) gives the hnctional form of T ~ d ~ ( x ) :  

We now have the tools we need to calculate the heat flow rates and determine the 
magnitude of the thermal regain. 

HEAT FLOWS AND THERMAL REGAIN FRACTION 

The strategy for evaluating thermal regain due to longitudinal flow of leakage air 
within the duct insulation will be to define a control volume surrounding the duct and its 
insulation, and running from the point where the leak leaves the duct (x=O) to where it 
leaves the outer layer of insulation (x=L). Note that this is a different control volume 
from the ones used above to derive Equations 9 and 10. 

The next step will be to calculate the relevant heat flow rates, as follows: 

Into the control volume from upstream of x=O (Hm): 

Hin = (QD + QL) pCp (To - Tin) 

From the control volume to downstream of x=L (HOut): 

Initial leakage loss from the duct (€€lek): 

= QL PCP (TO - Tin) 
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Conductive loss from the duct (Hcond): 

E o n d  = QD PCP [TO - TD@)] 

Note that Hi, = &ut f HleA -I- E o n d .  

We also need the heat flow rate from the control volume to downstream of x=L 
under the condition that the leak passes directly out of the insulation as well as the duct at 
x=O. This we will call Hout,d+: 

The thermal regain is defined as any benefit, in terms of either recovered heat or 
heat that is caused not to be lost by virtue of interactions between the leakage air and 
either the ducts or the building. In this case, the thermal regain, symbol Hregah, is just the 
difference between the heat outflow rate if the leak leaves the system directly and the 
heat outflow rate when the leak travels longitudinally between the insulation layers: 

Hregain = H o u t  - Hout ,d i  (17) 

The thermal regain fraction qregain is defined here as the ratio of regained lheat due 
to the specific path of the leak to the heat lost initially by the leak itself. The Greek phi is 
used here rather than the Latin F because in ASHRAE Standard 152P (ASHRAE 2001), 
the thermal regain factor Fregain is defined differently, i.e., as the fraction of overall 
conductive plus leakage heat loss from the supply duct or conductive loss from the return 
duct that is effectively regained. That is, Fregain is based on everything that goes on in the 
entire supply or return duct whereas qregain considers only what happens to a single leak at 
a particular point in the duct and only as a result of its displacement within the duct 
insulation. What the leakage does to the buffer zone surrounding the duct is not 
considered. The regain fraction used here could, however, be incorporated into a. broader 
calculation of Fregain for use in Standard 152. With this as preamble, then, (Pregain is given 
by: 

qregnin = Hregain / H1ek (18) 

The next step is to substitute the hnctions for Hregain and Hle& into Equation 17 
This is done as follows: and derive as simple an expression as possible for their ratio. 

qregain = Hregain / HIeak 

= (Hout - Hout,dir)/Hleak 

QL (To - Tin) 
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We now substitute L for x in the fbnctions TD(x) and TD,dir(X) in Equations 7 and 
9, respectively, and then insert these into Equation 19. M e r  a bit of algebra, this 
simplifies somewhat to: 

Next, using the definitions of k4 and k3 as given earlier, one can derive: 

which when substituted into Equation 20 yields: 

Equation 22 may look somewhat complicated, but by breaking the right-hand side 
into three parts and looking at each one separately, one can get an intuitive feel for what 
it predicts. Let us first consider the last section of this expression, namely the two 
exponentials in square brackets: 

Of the two “decay constants” k4 and k3, k3 is a “fast decay” while k4 is a “slow 
decay.” The constant k4 reflects the relaxation of temperature in the duct when the leak 
goes directly out from the duct and the insulation. It gives the “baseline” behavior of the 
system, a relatively gradual drop in temperature within the duct. The constant k3, in 
contrast, is governed by the characteristics of the leak. As long as the leak rate QL is a 
small fraction of the total airflow QD, then k3 >> l~ (cf Equation 21) and hence the 
fbnction exp(-k3 x) will decay at much smaller values of x than will exp(-k x). 

From the standpoint of evaluating [exp(-b L) - exp(-k3 L)], values of L ciin be 
divided into three ranges. For values of L that are small enough that k3L << 1, both of 
these exponentials will be very close to unity and hence will nearly cancel, causing the 
regain fraction nearly to vanish. As L increases, exp(-k3 L) will start to decrease while 
exp(-b L) remains close to 1.0. In the middle range of values for L such that k3 L >> 1 
while k4 L << 1, [exp(-b L) - exp(-k3 L)] approaches its maximum possible value of 1.0. 
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The third part of the range that is theoretically possible would have k3 L and L 
both much greater than one, but we wouldn't expect this in a practical duct system 
because this would mean that the duct was losing most of its heat through condulction 
regardless of whether there was any leakage. Poorly performing as some duct systems 
are, they usually aren't that bad. In the limiting case where the leak is displaced the 
entire length of the duct, one would expect exp(-b L) to be some number reasonably 
close to 1.0, say in the 0.8 to 1.0 range reflecting commonly found conduction losses, 
while exp(-k3 L) would have decayed nearly all the way to zero. 

The middle portion of Equation 20, 

contains ratios of the effective radii and R-values of the two layers of insulation. Here 
one can notice that if either R-value is zero, this expression also goes to zero. This makes 
intuitive sense, in that if R1 = 0 the leakage air is in intimate thermal contact with. the air 
in the duct, and it is as if the leak is just moved down the duct a distance L. On tlhe other 
hand, if Rz = 0, then the leakage air is in intimate thermal contact with the surrounding 
space, and it is as if the leak exited the duct directly at L = 0. Only when there are finite 
amounts of insulation on both sides of the path along which the leak is displaced is there 
a regain effect. The expression is maximized when RI& = rlh2 . Since the values of rl 
and r2 will usually be comparable (with rz slightly greater), this means that we would like 
to have the R values of the insulation layers nearly equal also. 

The front-end portion of Equation 20 is: 

This ratio of temperature differences points toward two conclusions: 

1. The regain fraction will be largest when the space surrounding the ducts is colldest, 
because as T, decreases, To - T, becomes a larger multiple of To - Ti". It is theoretically 
possible to have a regain fraction greater than 1 .O if T, is low enough, although if realistic 
values for the duct parameters are inserted, one quickly finds that this doesn't occur 
unless T, is in the cryogenic range. So this regain effect may be most important for ducts 
in unprotected spaces such as vented attics and crawl spaces in cold climates. 

2. As long as T, < Th, the regain fraction will be largest when the delivered air 
temperature is the lowest, because as To decreases, To - Ti, becomes a smaller fraction of 
TO - Ts. This suggests that the regain effect will be greater for heat pumps than for 
furnaces, since heat pumps usually deliver lower-temperature air than do furnaces. 
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Putting all of this together, one can derive'a simple upper limit for the thermal 
regain fiaction, based on the following: 

The upper limit of possible values of [exp(-h L) - exp(-k3 L)] is 1 .O. 
The value of (1-111-2 )(R&)/(rl/r2 + R I / R ~ ) ~  can be expressed as p /( 1+ p)2 with 
p=(rl/r2)/(RdR2). The maximum value of this expression is 1/4, which occurs 
when p=l, i.e., when rl/r2 = R1&. 

This yields an upper limit value, which we designate qregainmz,  equal to: 

0.25 (TO - Ts) / (To - Tin) 

In a heating application, an appropriate benchmark value for this might be 
obtained using Ti, = 70 "F as a typical indoor temperature and T, = 40 "F , the latter being 
within the range of seasonal average crawlspace temperatures in winter across much of 
the northern U.S. Let us further assume that a furnace delivers air at -120 "F while the 
delivered air temperature in a heat-pump system is likely to be -100 O F .  

That is, the buffer zone in which the ducts are located is 30 "F colder than the 
house and the air in the ducts is 50 "F warmer than the house for a krnace and 30 O F  
warmer than the house for a heat pump. Benchmark values for qregain,max would be 0.40 
for a furnace system and 0.50 for a heat-pump system. 

For cooling, any regain from the mechanisms considered here will encompass 
only the sensible part of the leak. Any latent cooling content will be lost, since it will not 
affect the temperature distribution surrounding the ducts. Therefore, any regain fiaction 
calculated using these formulas must be multiplied by the sensible heat ratio, or ratio of 
sensible cooling to the sum of sensible and latent. The value of qregai,,ma,Will depend 
strongly on whether the ducts are in an attic or in a crawlspace. 

Let us assume that the air in the ducts is 20 O F  colder than the air in the house, 
while the buffer zone is 10 "F warmer than the house (crawlspace) or 40 "F warmer than 
the house (attic). These conditions are close to the ASHRAE Standard 152P seas,onal 
values for Orlando, Florida. Under these conditions, the benchmark values for qregainmm 
will be 0.38 for crawlspace ducts and 0.75 for attic ducts. 

It may be worth noting that for an extreme attic-duct case with 70 OF indoors, 55 
OF air in the ducts, and 130 "F air temperature in the attic, qregain,max can actually exceed 
unity, coming in at 1.25. That is, it is possible for leaky ducts to perform better than non- 
leaky ones. We hasten to point out, however, that this would be a most unusual situation. 
The actual regain will usually be much less than one. However, this does illustrate that 
the proposed strategy may be at its best with attic ducts in the cooling mode. Also, it will 
be at its best under design conditions when the attic is hottest. It is precisely at such 
times that duct systems - especially attic ducts in the cooling mode - are generally least 
eficient. 
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The exact fhctional form for qregain can be written as: 

Leak, ft  
Value of “Difference of 
Exponentials” 

(!‘regain = [P /(I+ P )~]  [(To - Ts) / (To - Tin)] [exp(-b L) - exp(-k3 L)] 

0 2 4 8 16 

0 0.34 0.57 0.81 0.93 

The expression p /(l+ has a broad maximum around p = 1, where it equals 
0.25. I f p  deviates from unity by a factor of two, i.e., if one insulation layer has twice the 
R-value of the other, the value of p /(l+ drops by only lo%, to 0.22, So as lolng as the 
two insulation layers are even roughly comparable, their relative R-values do not 
influence the thermal regain fraction very much. Moreover, it doesn’t matter whether the 
thicker layer is the inner or outer of the two insulation sheets. 

The “difference of exponentials” expression [exp(-b L) - exp(-k3 L)] car1 fall 
significantly below its maximum value of 1.0. Obviously, if L is very small one would 
expect this. A benchmark case had two layers of R-4 insulation wrapped around a 7-inch 
diameter duct in which 100 cfm of air was flowing. The leak was 5% (or 5 cfm). In this 
case the value of the difference of exponentials had the following values depending on 
the linear distance L over which the leak was displaced: 

1 Linear Displacement of I 

A table like this indicates that if leaks can be displaced relatively long distances, 
say 8 ft or more, than most of the theoretical maximum regain might be obtained. If the 
displacement is very short, say 2 ft, only a small fraction would be garnered. The actual 
amount of regain will, of course depend in detail on the factors that go into the difference 
of exponentials (especially the leakage fraction QJQD), as well as the extent to which the 
leakage air actually surrounds the duct, as is assumed in the theoretical calculation. 

UPSTREAM DISPLACEMENT OF LEAKAGE FLOW 

So far, it has been assumed that the leak, once it leaves the duct and enters the 
space between the inner and outer layers of insulation, is displaced in the same direction 
as the flow in the duct itself. It is also possible, of course, that the displacement would be 
in the opposite direction, against the flow in the duct. The question arises, therefore, 
whether the direction in which the leakage is displaced would have a significant impact 
on the thermal regain fi-action. 

To investigate this case, we set up the problem as shown in Figure 2. The 
position x=O is still defined as the place where the leak leaves the duct, but now the 
region where the leak is influencing the outcome is to the left of x=O, that is, negative 
values of x between zero and -L. 

The heat rates for this case are the same as those given prior to Equation 1 in the 
section “Governing Equations and Boundary Conditions,” with the exception that the 
heat rates of the leakage air entering and leaving the control volume are reversed. That 
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is, the heat rate of leakage air entering the leakage control volume is QL pCp TL(X + dx) 
and the heat rate of leakage air leaving the leakage control volume is QL pCp TL(x). This 
leaves Equation 1 unchanged, but reverses the sign of the left-hand side of Equation 2, 
relative to the right-hand side. The governing equations for the upstream leak 
displacement case are then: 

QD ~ C P  [TD(x) - T~(x+dx)] = 2 '~t rl / R 1 [TD(x) - TL(x)] dx (25) 

QL pCp [T~(x)-T~(x+dx)] = - 2n rdR2 [TL(x)-Ts] dx + 2nrdR1 [TD(x)-TL(x)] dx (26) 

This leads to equations that are the same as Equations 5 and 6, except for relative 
minus signs introduced into the latter. That is, we now have: 

with the U's and k's defined in the same way as before. 

The solution goes along similar lines to the previous case. The location where the 
leak leaves the duct is still called x=O, but now the region of interest ranges from x=-L to 
PO. The solutions to Equations 27 and 28, obtained in similar manner as in the ]previous 
case, are: 

UD(X) = UO [ Wk3 exp (k3 x) + (1 - Wk3 ) exp (-b x) ] (29) 

UL(X) = UO [ kdk3 exp (k3 x) + kdk3 exp (-b x) ] (30) 

Notice that the sign of the argument of the first exponential function is positive. 
This is caused by the fact that the leakage flow is moving opposite to the direction of the 
flow in the duct. 

The one thing here that is quite different is the value of Uo . The boundary 
condition in this case must be applied at x = -L, namely that UD(-L) = TO - TS , since TO is 
defined as the temperature of air in the duct that is entering the region over which1 the 
leak is displaced. Equation 29 then implies: 

fTom which UO is easily obtained: 

The expression in square brackets will be close to unity as long as k4 << k3 and 
k4L << 1 as will normally be the case (the first inequality insured by small leakage, the 
second by reasonable amounts of insulation). The derivation of the thermal regain 
fraction will proceed along the same lines is in the forward displacement case considered 
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earlier. Although there will be slight differences in the calculated results, these will 
generally be small. The analysis of this case will not be pursued hrther here. 
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APPENDIX. SOLUTION OF EQUATIONS 5 AND 6 

Equations 5 and 6 in the main text (repeated here as Equations A-1 and A-2) are 
simultaneous linear differential equations: 

dUD/dX= - ko UD + ko UL 
dUr/dx = ki UD - k3 UL 

The solutions will in general contain two exponentials with different constants, so 
that one will be more rapidly varying (as a function of x) than the other. We write these 
as: 

UD = UI exp (-CI x) + (UO - Ul) exp (-c2 x) 
UL = (UO - U2) exp (-GI x) + U2 exp (-c2 x) 

(A-3) 
(A-4) 

where UO = TO - Ts, and U1, U2, c1, and c2 are constants to be determined. (The rninus 
signs in front of c1 and cz are included because decaying exponentials are expected. If 
that assumption were wrong, the c’s would come out negative in the solution.) The value 
of UO in these equations is fixed by the boundary conditions, which require that ait x=O, 
UD and UL both equal TO - Ts. 

The values of the other four constants are found by differentiating Equations A-3 
and A-4, substituting the resulting functions into Equations A-1 and A-2, and noting that 
the coefficients of the individual exponentials must separately equate in order for these 
equations to hold for all values of x in the domain of interest. The substitution process 
yields the equations: 

- c1 UI exp (-c1 x) - cz (UO - Ul) exp (-cz x) = - ko U1 exp (-c1 x) - ko (UO - U1) exp (-cz x) 
+ ko (UO - U2) exp (-c1 x) + ko U2 exp (-c2 x) (A-5) 

- ci (UO - U2) exp (-GI x) - c2 U2 exp (-c2 x) = kl U1 exp (-c1 x) + kl (Uo - Ul) exp (-c2 X) 
- k3 (UO - U2) exp (-c1 x) - k3u2 exp (-c2 x) (A-6) 

Separating out the leading coefficients of terms with the same constant in the 
argument of the exponential (c1 or c2) leads to: 

(A-7) 
(A-8) 
(A-9) 
(A-10) 

We have four equations in four unknowns, so we may hope to find a solution. 
The equations are not linear in these variables, so the process is not entirely straight- 
forward, but it is possible. The first step is to eliminate c1 from Equations A-7 arid A-9, 
and c2 from A-8 and A-10. This yields: 
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0 =ki  U? + (ko -k3) (Uo -U2) U1- ko (Uo  -Ud2 
0 = ko Uz2 - (ko - k3) (Uo - Ui) U2 - ki (UO - U I ) ~  

(A-1 1) 
(A-12) 

Equation A-1 1 is quadratic in U1. Its solution in terms of the other variables is: 

U1= (Uo - U2) { k3 - ko f [(k3 - ko)2 + 4 kl k ~ ] ” ~  } I (2 kl) (A- 13) 

One now has to make the decision whether to take the plus or the minus sign in 
this equation. What should happen is that one sign gives the same set of solutions as the 
other, with the roles of U1 and c1 as opposed to U2 and c2 reversed. However, the minus 
sign provides an easier path, because kO << k l<  k3. The first inequality holds as long as 
the leakage is much smaller than the total duct flow, because ko/kl= QJQD. The second 
inequality holds because kl = k3 - k2 and all the k’s are positive numbers. 

This permits us to use the approximations (k3 - kO)2 >> 4 kl ko and (k3 - =: 

k32 , which when applied to Equation A-13 lead to: 

In view of ko << k3, this implies that U1<< UO, as long as U2 isn’t too close to UO,. 
Let us make this assumption, calculate U2 from Equation A-12, and then check whether 
what we have assumed is valid. Equation A-12, then, yields the approximation: 

which produces U2 =: UO kl/k3. Checking our assumption that UO - U2 is not close to zero, 
we calculate UO - UZ =: UO (1 - kl/k3) = UO k2/(k1+ k2), which will generally be on the 
order of one-half UO as long as the radii and R values for the two layers of insulation are 
not an order of magnitude different. 

The other two coefficients are (UO - Ul) and (UO - U2). These can be calculated 
as UO - U2 z UO k2/k3 and UO - U1z UO (1 + kO kdk?), to the same order of accuracy. 

It now remains to solve for the c’s. Equation A-7 can be written as: 

c1= ko 11 - ( U o  -U2)/U1] 
ko (1 + k3/ko) 

zk3 . (A- 16) 

Similarly, Equation A-8 can be written: 

(A- 17) 

Inserting these constants into Equations A-3 and A-4 leads to Equations 5‘ and 8. 
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Figure 1. Duct Leakage Displacement Model 
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Figure 2. Leakage Displacement for Upstream Flow 
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