Abstract No.: Ding0491

Quasiparticle lineshape of Sr2RuO4 by ARPES

H.B. Yang, S.C. Wang, A. Kumar P.S., H. Ding (Boston College), P. Johnson, T. Valla (BNL)

Beamline(s): U13UB

Introduction: The single layered ruthenate, Sr$_2$RuO$_4$ (Sr214), has generated new interest since the discovery of superconductivity with ($T_c \sim 1$K) [1]. It is the only non-cuprate perovskite superconductor that is isostructural to the high-T_c cuprate La$_{2-x}$Sr$_x$CuO$_4$. However, Sr214 has different electronic and magnetic properties from cuprates. The superconducting state of Sr214 is believed to have p-wave symmetry with possible enhanced ferromagnetic correlations. In contrast, cuprates have a d-wave order parameter with proximity to antiferromagnetic ordering. The normal state of Sr214 is also interesting. While the in-plane resistivity ρ_{ab} is always metallic, the c-axis resistivity ρ_c is non-metallic above $T_M \sim 130$K, and becomes metallic below T_M [2]. Below 25K, both ρ_{ab} and ρ_c have Fermi liquid (FL) T^2 behavior, although with a large anisotropy of ~ 600 [2]. In comparison, most cuprates have non-FL transport. Moreover, ρ_c in cuprates remains incoherent down to T_c in most cases, implying that the cuprates are two dimensional in terms of coherent single-particle transport [3]. Therefore, the 2D-3D crossover in Sr214 may shed light on the influence of two-dimensionality on superconductivity. It is well known that charge transport is closely related to the quasiparticle (QP) scattering rate (inverse lifetime), and angle-resolved photoelectron spectroscopy (ARPES) is an ideal technique to probe the QP lifetime in 2D anisotropic electron systems. Therefore, we have proposed and performed high-resolution ARPES on single crystal Sr214 at NSLS.

Methods and Materials: ARPES on single crystal Sr214

References:

