Abstract No. li0012

Structure of the liquid-vapor interface of a dilute ternary alloy: Pb and In in Ga
B. Yang, D. Li, and S. A. Rice (U. Chicago)
Beamline(s): X19C

Introduction: We report the results of experimental studies of how the competition between two solutes to segregate in the liquid-vapor interface of a dilute ternary alloy influences the composition and structure of that interface.

Methods and Materials: Two Ga alloy samples contained 0.039 atom % of Pb and 6.31 atom % of In, 0.039 atom% of Pb, and 12.2 atom % of In, respectively. X-ray Reflectivity was carried out at wavelength 0.0700 nm, and Grazing Incidence X-ray Diffraction was carried out at wavelength 0.0850 nm.

Results: For a ternary PbInGa alloy that contains 0.039 atom % Pb and 6.31 atom % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional hexagonal crystal phase that undergoes a first order transition to a disordered phase at $T = 29.0 \pm 0.1 ^\circ C$. For a ternary PbInGa alloy that contains 0.039 atom % Pb and 12.2 atom% In, Pb that segregates in the liquid-vapor interface forms a two-dimensional liquid down to 26.0 $^\circ C$, the lowest temperature at which data were taken. The two-dimensional crystalline Pb, which forms about 0.6 of a full monolayer, and the two-dimensional liquid In fills the remainder of the monolayer without mixing. For temperatures in excess of 29.0$^\circ C$ two-dimensional liquid Pb and two-dimensional liquid In coexist in the interface, with the fractional occupation of the monolayer by In exceeding the fractional occupation by Pb.

References:

Fig. 1, a typical GID diffraction pattern

Fig. 2, a typical reflectivity pattern and model fit