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New techniques developed in connection with the NNLO corrections to the Higgs production 
rate at hadron colliders and some recent applications are reviewed. 

1 Introduction 

The NLO corrections for the dominant Higgs production mechanism at hadron colliders, g g  -+ H ,  
amount to about 70% and suffer from rather large scale uncertain tie^.'-^>^ The need for the 
evaluation of the NNLO cross section has resulted in promising new calculational techniques. 
The first part of this talk will briefly review these techniques. In the second part, we will discuss 
a recent application, namely the NNLO cross section for MSSM Higgs production in bottom 
quark fusion. 

2 Techniques for Higgs production at NNLO 

The first calculation of the NNLO prediction for the cross section g ( p p  + H + X) used the 
classic approach of computing the amplitudes for virtual and real corrections, squaring them, 
and integrating over the final state phase space. The two-loop virtual amplitude for g g  -+ H 
was evaluated4 using the method of Baikov and Smirnov5 that maps the occuring integrals to 
the well-known class of three-loop propagator-type integrals! The phase space integration for 
the two-loop virtual terms is trivial, resulting in 6(1 -z), where z = M$/2 and S is the partonic 
center of mass (c.m.) energy. 

The one-loop amplitude for the radiation of a single massless parton has to be interfered 
with the corresponding tree-level expression,. and integrated over the two-particle phase space. 
Both loop and phase space integration can be performed analytically. 

This leaves us with the tree-level contributions for the radiation of two massless partons. 
The squared amplitude can be obtained straightforwardly with the help of FORM? In the first 
approach that we are going to describe, the phase space integrals were evaluated in terms of 
an expansion in (1 - z). The leading term is called the soft ~ p p ~ - 0 x i m ~ t i o n ~ 9 ~  and is formally 
of order (1 - z)-', where the associated divergence as z -+ 1 is parameterized in terms of the 
distributions 6(1 - z) and [lnn(l - z)/(l - .)I+. The higher orders in (1 - z) can be obtained 
by a systematic expansion of the squared amplitude and the phase space measure;' The crucial 
point is that, independent of the degree of this expansion, one always ends up with the same 
type of integrals. This classifies the procedure as an algorithm, which can be fully automated. 



Integrating the resulting expansion of the partonic cross section over the parton densities, 
one observes that higher orders in (1 - z) are numerically irrelevant, and the resulting hadronic 
cross section is phenomenologically equivalent to the result derived from the exact partonic cross 
section!' On the other hand, one can make an ansatz of a sum of polylogarithms with unknown 
coefficients, expand it in (1 - z), and compare the result with the expansion obtained for the 
partonic cross section!' Given that this expansion is known to sufficiently high (but finite!) 
orders, this determines the coefficients of the polylogarithms and thus the exact result for the 
partonic cross section.11J2 

Clearly, the method of phase-space expansion is a bottom-up approach: starting at the 
soft approximation, one can successively improve the accuracy of the result by including higher 
orders in (1 - x), until a sufficient number of terms is known to invert the series and arrive at 
the exact result. 

A second method to obtain the NNLO result for the Higgs production rate has been developed 
by Anastasiou and Melnik~v'~. According to the Cutkosky rules, one can write, for example, 

SdPS I 
where the initial and final states of the diagram on the r.h.s. are identical. Without cuts, this 
diagram would be a double-box diagram with two external scales, s  ̂ and MH. Such diagrams 
can be evaluated with the help of the general algorithms that have been developed within 
the last few years in the context of 2 + 2 scattering amplitudes at NNLO (see, e.g., a recent 
review14). The crucial observation of Anastasiou and Melnikov13 was that these algorithms are 
directly applicable to cut diagrams of the kind shown on the r.h.s. of Eq. (1): In this way, 
the partonic cross section for Higgs production was derived in closed form13. Needless to  say 
that a re-expansion of this closed expression recovered the expressions derived through phase- 
space expansion1'. In turn, the result obtained by inverting the expansion1'>l2 confirmed the 
closed expression. The NNLO results for the production of a pseudo-scalar Higgs were obtained 
independently and simultaneously in both approa~hesl~7~'. Meanwhile, the NNLO results for 
both scalar and pseudo-scalar Higgs production have been re-confirmed using the analoguous 
approach that was applied to the NNLO Drell-Yan cal~ulation!~ 

The phenomenological implications of the NNLO are significant and have been discussed 
extensively in the l i t e r a t ~ r e ! ~ > l ~ > ~ ~  They shall not be repeated here due to space limitations. 

3 Higgs production in bottom quark fusion 

The production rate for a S M  Higgs boson being under good theoretical control, one may ask 
to which extent these results are applicable also for Higgs boson production in supersymmetric 
models. For simplicity, we will restrict ourselves to the Minimal Supersymmetric Standard 
Model (MSSM) in this talk. 

The answer is that the NNLO production rate of a neutral scalar Higgs boson in the MSSM 
can be inferred directly from the known MSSM prediction in only a rather restricted parameter 
space, in particular for small tanp and large squark masses. Also the production of a pseudo- 
scalar Higgs boson has been evaluated at NNL012,1',17 within these restrictions. 

In other regions of parameter space, virtual contributions of sypersymmetric particles such as 
squarks may become important.18 On the other hand, large values of tanP enhance the Yukawa 

aLet us remark that the meaning of "cut" in this context is not restricted to Cutkosky-cuts. For example, the 
cut lines can be initial rather than final states (which leads to the method used to originally derive the virtual 
terms5i4), or they can be restricted to a particular kinematic c~nfiguration:~ b 
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coupling of bottom quarks. Thus, the ggq5 coupling may have a significant contribution from 
virtual bottom quarks (q5 denotes any of the neutral Higgs bosons in the k1SSM). In this case, 
the NNLO corrections are much harder to evaluate, because the effective-Lagrangian approach 
of the top quark case is not expected to work. 

The main focus here shall be another effect of an enhanced bottom Yukawa coupling, 
namely the increased rate of associated production of a Higgs boson with a bottom-anti-bottom 
quark pair. There has been an on-going discussion concerning the proper description of this 
p r 0 ~ e s s ? ~ ~ ~ ~ 7 ~ ~ ~ ~ ~  A priori, the leading order contribution is, of course, the tree-level process 
gg -+ #bb, where q5 denotes any of the MSSM Higgs bosons h, H ,  A. However, when evaluating 
the total rate for this process, the integration over small bottom-pT leads to collinear logarithms 
of the form l b  E 1n(mi/M2), where M is a scale of the order of the Higgs boson mass. Since 
mb << M4 - M ,  these logarithms should be resummed. This is achieved by introducing bottom 
quark densities and making the process bb -+ q5 the leading order contribution. Schematically, 
one can write the total cross section in the bottom density approach as follows: 

This equation is to be understood as follows: First of all, one should note that the cni and dni are 
not obtained individually for each n, because the sum over n is implicit in the parton densities. 
Including only the leading order process bb -+ q5, one obtains the contribution from the cn0. The 
NLO diagrams contribute terms of order l/lb (e.g., gb -+ bq5) and of order as (bb -+ q5 at l-loop) 
with respect to the leading term. Both are contained in the cnl. At N"L0, for n ._> 2, we have, 
terms of order w.r.t. LO, where k = 0,1,2. The reason why there can be only two 
inverse powers of l b  comes from the fact that there are only two initial state partons. Looking at 
Eq. (2), it becomes clear why the NNLO plays an exceptional role in this process: It comprises 
all terms at leading order in as. 

The calculation of the processb pp -+ (bb)q5 in the bottom density approach proceeds in 
complete analogy to, say, Drell-Yan production of virtual photons. Technical details of the 
calculation can be found el~ewhere.2~ 

Fig. 1 (u) shows the factorization scale dependence of the cross section at LO, NLO, and 
NNLO at the LHC, for a Higgs mass of M H  = 120 GeV at the LHC. We notice several intriguing 
features: First, in contrast to the LO and NLO result, the NNLO curve has a clearly distinguished 
point where the derivative is zero, i.e. where the sensitivity to ,UF is minimal. Second, the NNLO 
corrections are zero at a point where the NLO corrections are small. Third, this point is close 
to the point of least sensitivity. And fourth, all these points are compatible with a previous 
estimate20322121 of the "natural" factorization scale for this process of around ,UP = MH/4. For 
the Tevatron, the overall picture is essentially the same23. These features nicely demonstrate 
the self-consistency of the bottom density approach and support the general considerations 
concerning the proper choice of the factorization scale for heavy quark partons?0j22121 

Fig. 1 (b)  shows the total cross section for p p  + (bb )H + X as a function of the Higgs boson 
mass up to NNLO, for two different values of the factorization scale, indicating the theoretical 
uncertainty (the renormalization scale dependence can be neglected). 

Conclusions. Recent progress in the evaluation of radiative corrections has led to NNLO 
predictions for Higgs production at hadron colliders, both in the SM and the M S S M .  The results 
are very stable with respect to scale variations and indicate a well-behaved perturbative series. 

bWe adopt the notation (b@#~ in order to indicate that the bottom quarks may be produced at small transverse 
momenta and thus escape detection. 
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Figure 1: 
(u) Factorization scale dependence of the cross section forpp + (bb)H+X ( tanp  = 1); (b) Total 
cross section for p p  + (bb)H + X - upper/lower line: p~ = 0 . 7 M ~ / p ~  = 0 . 1 M ~  [ p ~  = M H ] .  
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