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Abstract. A spin-orbital function formalism is described. The formalism was realized in 
ASPIRRIN code that does beam polarization calculations at the first order. The code has been 
used for calculating equlibrium polarization and polarization time in electron rings with the complex 
geometry of applied magnetic fields as well for resonance strength analysis for proton accelerators. 

INTRODUCTION 

The ASPIRRIN (Analysis of SPIn Resonances in RINgs) is a code designed to calculate 
beam polarization related quantities for a charged particle beam circulating into an 
accelerator or storage ring. The code was written some years ago and have been used for 
polarization calculations for different accelerators. The paper desribes the underlying 
formalism used by the code, called the spin-orbital function formalism. 

The code, and underlying formalism, involves polarization calculation at the first 
order, thus revealing effect of fist-order spin resonances. Therefore results produced 
by the code have to agree with results obtained by other first order codes, like SLIM 
and SLICK [l]. The various calculations done for different accelerator lattices have 
demonstrated a good agreement between the ASPIRRIN and SLIM codes. 

SPIN-ORBITAL FUNCTIONS 

The ASPIRRIN algorithm is based on the calculation of a special set of functions, named 
spin-orbital functions. These functions are complex functions and connect the motion of 
individual particle in a circular accelerator with the motion of particle spin. 

For description of the transverse and longitudinal orbital motion one can use the set 
of canonical variables (x,px,z,pz, C F , ~ ~ ) ,  which forms the orbital vector X. In linear 
approximation, the orbital 6-D dynamic is governed by the equation: 

X‘ = SHX+ Q (1) 

where H is symmetrical hamiltonian matrix and S is the fundamental symplectic matrix. 
The vector Q includes effects from bending field errors. 

The description of spin motion in circular accelerators are based on two important 
quantities , the periodical spin field 5 and the spin tune v,. 
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The periodicity of the fi can be expressed as: 

fi(X,PX,Z,PZ, O,P,, 8 + 2 4  = fi(X,P,,Z,PZ, O,Po, 8) (2) 

which means that at the given azimuth 8 the fi is function of orbital phase space point. 
The large variations of fi over orbital motion phase space in spin resonance zones lead to 
possible beam depolarization during the resonance crossing. The spin-orbital function 
formalism aims at the spin field fi calculation, t a h g  first-order approximation both in 
orbital and spin motion, Having it calculated, the analysis can be done for depolarization 
effects. 

The suitable reference system to do the spin calculations is the system foimed by 
fio,q1 , q 2  unit vectors [2]. 30 is the periodical spin solution on the reference beam orbit 
in an accelerator (without magnet errors and mislaignments). 41 and 4 2  vectors are 
spin solutions on the reference orbit, that are orthogonal to BO and to each other. In this 
reference frame any spin solution, including the vector fi, can be described by a complex 
variable C as: fi=d----- 1 - IC1 no +Re(iCfj*) (3) 

where f j  = 41 - ifj2. The differential equation for C variable can be derived from 
the equation of spin rotation in an external field. In the first-order approximation the 
equation for C simplifies to: 

with wl = wfj, where the spin precession vector w describes the precession due to 
betatron and synchrotron oscillations and field errors: 

c’ = w_L (4) 

a 
w, = (1 + vo)~’’ + (vo + -)K& + (1 + a)Kyx’ 

Yo 

Since, according to (2), fi is the function of the orbital phase space point, it can be 
expanded in a power set of orbit variables. In the first-order approximation, one should 
leave just the linear part of the expansion, which we present in the form: 

where F is 6-D vector, vo = ya and a is the anomalous magnetic moment of the particle. 
The components of this vector, 4 (i = 1 ..6) are functions of the ring azimuth 8. Together 
with the scalar function fo(0) they form the set of functions which we call spin-orbital 
functions. 

To derive the equation which describes the spin-orbital function evolution along 0 one 
can substitute the expression (5)  into the spin equation (4). After some transformations 
it leads to following equations: 
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The function fo is generated by field errors Mi on the reference orbit. 
The equation for the vector F is quite similar to the equation (1) governing the 

orbital motion. The linear parts of the equations (6) and (1) are exactly the same. The 
components of vector P are present only in dipole or solenoidal magnets: 

1 
p3 = (vo2+a)Kz?I,-(vo-a)Ky77z; P4= (vo-a)Zkj217.~-(1+a)K~17y 

p5 = ( V O + ~ ) ( ~ ~ ~ ~ + K z 1 7 z ) - l + a ) K y ~ y ;  p 6 = 0  

where Ki = Bi/ < Bz > describes normalized magnetic field. 
The similarity of linear terms of the equations of (6) and (1) leads to the important 

conclusion. The well-known transfer matrices for accelerator elements, routinely used 
for calculation of the linear orbital motion, can be applied for the calculation of spin- 
orbital functions too. The transformation of vector F trough an accelerator element can 
be written as: 

Fout = M 4 z  + Y 
where M is the transfer matrix for given element and the transfer vector Y ,  generated by 
the vector P, exists at the bending and solenoidal magnets. Making element-by-element 
transformation one comes to the one turn transformation in the form: 

(8) 

F(27~)  = M,,F(O) + &m (9) 

The periodicity conditions for the vector fi lead to the following conditions for spin- 
orbital functions: 

1j;(e+2n) = e i Z K v ~ ( e ) ,  f o ( s+27~)  =22nvfo(e) (10) 

Then, from expressions (9) and.(lO) one can find the solution for vector F at 8 = 0 

The value of vector F at any other element of a ring can be found then by doing again 
element-by-element transformation (8). Because eigen values of M, matrix are enKVi, 
where Vi are tunes of the orbital motion, the resonance denominator in (1 1) shows the 
first order spin resonances when v = rn f Vi. 

Another consequence of the linear parts identity of (6) and (1 j is that the spin-orbital 
functions can be related through integral transformations to characteristic functions of 
the orbital motion (p-functions and orbital motion phases). 

In an accelerator with only vertical guiding field on the particle reference orbit 
and without field errors the spin motion is coupled only with vertical orbital motion, 
thus only F3 and F4 functions have not zero values. An introduction of horizontal or 
solenoidal fields, for example as a part of a spin rotator insertion, leads to exciting a 
whole set of the spin-orbital functions. 
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FIGURF, 1. The examples of the ASPIRRIN calculations. On the left plot: IF5 I for the Bates S H R  with 
Siberian snake and wigglers. On the right plot: equilibrium polarization at proposed EIC electron ring. 

APPLICATION OF THE SPIN-ORBITAL FUNCTIONS 

The set of functions F can be used for calculating of various polarization characteristics 
of polarized beams in accelerators. 

Calculation of equilibrium polarization and depolarization time 

For electron rings, very important quantity is the partial derivative of 3 over longitu- 
dinal momentum variable, d = dii/dpo, which defines the equilibrium polarization and 
depolarization time due to synchrotron radiation process. In the spin-orbital function 
formalism the vector d is connected with F5 component of the vector F:  d = Re (iF54*) 

Let us note that: [dl = 161 and that 161 is periodical function of 0. Thus, with F5 
calculated one can calculate also the equilibrium polarization and depolarization time 
according to Derbenev-Kondratenko formula [2]. 

Some examples of the polarization calculation by ASPIRRIN code are shown in 
Figure 1. Left figure demonstrates the calculated IF51 for South Hall Ring at MIT- 
Bates with the solenoidal Siberian snake and polarizing wigglers. On the right plot the 
polarization degree is shown for the electron ring of electron-ion collider project [3], 
with the spin depolarizing resonance pattern present. 

Like F5 function (or /dl vector) is used to calculate depolarizing effect of spin d i f i -  
sion caused by sudden particle energy changes due to synchrotron radiation, the F3 and 
F1 spin-orbital function can be applied to calculate the spin diffusion caused by particle 
transverse momentum changes in scattering processes. 

Calculation of resonance strength 

Another possible application of spin-orbital functions is for the spin resonance 
strength analysis. We show this on the example of calculation of imperfection resonance 
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strength. 

this function should describe imperfection resonances. Indeed, the solution for fo is: 
As seen from (7) the fo function is generated by the magnetic field errors. Therefore 

fo = ei2nv 1 - 1 yzpwl - + (1 + a)Myqy) de 
e 

And for an imperfection resonance strength one can get: 

where F1 , F3 and qy are calculated at the resonance condition v = m. Thus, the contri- 
butions to the resonance strength from horizontal, vertical and solenoidal field errors are 
described by the functions F3, F1 and q,, respectively. Let us note that in this approach it 
is not required to calculate the contribution to the resonance strength coming from closed 
orbit distortions produced by the field errors. It is taken into account automatically. 

The similar approach can be used to calculate the resonance strength generated by 
coupling or gradient errors in an accelerator [4]. 

CONCLUSION 

The set of spin-orbital function F was introduced and was shown to be useful for 
polarization calculation for particle beams in circular accelerators with complex magnet 
field configuration. The spin-orbital function formalism was put in the base of the 
ASPIRRIN code, which calculates the equilibrium polarization and depolarization 
time for electron rings as well as strength of spin resonances. 
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