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We simulate quenched QCD with the overlap Dirac operator. We work with the Wilson gauge action at = 6 
on an 183 x 64 lattice. We calculate quark propagators for a single source point and quark mass ranging from 
urnq = 0.03 to 0.75. We present here preliminary results based on the  propagators for 60 gauge field configurations. 

1. Introduction 
The closely related domain wall [1,2] and over- 

lap [3-51 formulations of lattice fermions, with 
their ability to preserve chiral symmetry even at 
finite lattice spacing [6,7], offer an almost ideal 
tool for lattice QCD calculations. Still overlap or 
domain wall fermions can only be implemented 
at a high computational cost. Thus it is im- 
portant to perform exploratory calculations on 
large lattices in order to validate the applicabil- 
ity of these novel formulations. At the same time, 
large scale QCD simulations with overlap or do- 
main wall fermions, because of the benefits of chi- 
ral symmetry, can produce valuable cross-checks 
of observables calculated with more traditional 
quark discretizations, or even permit the evalu- 
ation of observables otherwise out of the reach 
of practical calculations. In earlier studies we 
simulated quenched QCD with overlap fermions 
on a 163 x 32 lattice, obtaining results for the 
pseudoscalar spectrum,, strange quark mass and 
quark condensate [8,9], for the kaon B parame- 
ter [10,11] and for non-perturbative renormaliza- 
tion constants [9-111. Although the results of this 
earlier work turned out to  be quite satisfactory, 
the size of the lattice, especially its extent in time, 
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were found insufficient for the calculation of some 
observables. For example, the plateaus needed to 
isolate the K mesons in the calculation of BK ex- 
tended for only two lattice spacings and we could 
not reliably evaluate vector meson masses and de- 
cay constants or baryon masses. This prompted 
us to extend our overlap calculations to a larger 
system. It is important to  observe that increasing 
the size of the lattice in simulations with overlap 
fermions does not only entail an augmentation of 
the (already quite heavy) computational cost. In- 
deed, since the calculation of the overlap operator 
requires the use of some suitable approximation 
to the inverse square root of a very large sparse 
matrix, the increase of the size of the matrix may 
produce serious problems of convergence. For 
these reasons, and also in consideration of the 
computational resources available to us, we de- 
cided to  use a lattice of size 1S3 x 64, with double 
the extent in time, but only a moderate increase 
in the spatial extent with respect to our former 
calculation. Thus we generated and archived 100 
183 x 64 pure gauge field configurations with the 
Wilson gauge action at = 6.  We used a 6-hit 
Metropolis algorithm, tuning the acceptance to 
x 0.5, performed 11,000 initial equilibrating it- 
erations, after which 10,000 iterations were done 
between each pair of subsequent configurations. 
From a measurement of Wilson loops we deter- 
mined ro/u = 5.36 f 0.11 for the Sommer scale 
defined by rZF(r0) = 1.65. With 1-0 = 0.5fm we 
get u-l = 2.11 f 0.04GeV. 

For each of the above configurations we cal- 
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culated quark propagators with the overlap 
Dira,c operator, with p = 1.4, for a single 
point source and all 12 color-spin combinations, 
for amq = 0.03,0.04,0.06,0.08.0.1,0.25,0.5,0.75. 
For brevity we do not reproduce here the for- 
mula for the overlap Dirac operator: we refer 
to [8,9] for the relevant equations and selected 
citations. The results we present here are based 
on the analysis of 60 configurations. For the cal- 
culation of the overlap operator (more properly, 
of its action on a given vector) for the first 55 con- 
figurations we used the Zolotarev approximation 
with 12 poles, after Ritz projection of the lowest 
12 eigenvectors of H2.  We found, however, the 
Chebyshev approximation to be computationally 
less costly (by approximately 20%) and therefore 
we are now using this approximation. With both 
approximations we impose I D ~ D $  - xI2 < 10-7 
as convergence criterion. We project out the low- 
est 12 eigenvectors of H 2  also with the Cheby- 
shev approximation and use the evaluation of the 
next highest eigenvalue to set the required de- 
gree of the expansion, which typically varies be- 
tween 100 and 500. Our code has been written 
in F90 with OMP directives and we have been 
running in shared memory mode on 16 and 32 
processor IBM-P690 nodes at Boston University 
and NCSA. 

To conclude this section, we would like to men- 
tion that other large scale quenched QCD calcu- 
lations with overlap fermions have been presented 
in [12-151. 

2. Light hadron spectrum and quark con- 

Our first concern has been to verify that the re- 
sults with the new, larger lattice are compatible 
with the values found for the observables in our 
former calculations [8,9] and that the measure- 
ment of the observables can be extended to the 
much larger temporal extent with reliable statis- 
tics. We present here a sample of these checks. 

In Fig. 1 we report the new results for the ratio 

densate 

p ( t )  = G v ~ A ~ P ( ~ ) / G P P ( ~ )  (1) 

where G I J ( t ) ,  I J  = VoAoP, P P ,  are non-singlet 
zero-momentum, 2-point functions made from the 
bilinears I and J .  On account of the axial Ward 

identity, p(t)  should be constant in time. The 
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Figure 1. Results for the axial Ward identity. 

figure shows that p( t )  can be reliably measured 
over the entire extent of the lattice for all quark 
mass values and is indeed constant in time. The 

a(m,+9)/2 

Figure 2. The ratio p of Eq. 1 as function of quark 
mass. 

fit p = A+a(m~+mz) /Z~+C(am~+am2)~ (see 
Fig. 2) gives A = -(0.96 f 3.35) x 1 0 - 5 , Z ~  = 
1.554f0.001 [1.55&0.04], C = (6.87f0.18) x ~ O - ~ .  
The numbers in square brackets, here and in the 
following, indicate results we found in [8,9]. 

Figure 3 illustrates the value of the effective 
mass from the (0-momentum component of the) 
correlation functions of the pseudoscalar density, 
of the pseudoscalar minus sca1a.r densities and of 
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the temporal component of the left-handed cur- 
rents, for amq = 0.06. We see that the sig- 
nal for the correlation functions extends through 
the whole lattice. These three correlation func- 

o'OO'm OO 0.02 0.04 amq 0.06 0.08 0.1 

Figure 5. Determination of the chiral condensate. 

Figure 5 shows the results for the scalar con- 
densate from the Gell-Mann, Oakes and Renner 
relation, for degenerate quark masses, together 
with the linear fit x = A + Bumq, which gives 

PP : A = (1.66 f 0.18) x 
B = (1.03f0.15) x 

PP - SS : A = (1.67 f 0.24) x 
B = (1.04 f 0.21) x 

[PP - SS : A = (1.17% 0.27) x 

0.15 

0.1 , , I ,  1 , 1 / , 1 , 1 , ,  

dm,+nq)iZ 

Figure 4. Pseudoscalar mass squared as function 
of the total quark mass. 

tions, symmetrized with respect to t + 64u - t ,  
have been fit in the range 12 I t / u  5 32, and 
Fig. 4 displays the values thus found for the pseu- 
doscalar mass as well as the linear fit ( u M ~ ) ~  = 
A + Ba(rn1 + m2)/2 which gives 

PP : A = (6.69 f 1.76) x 
PP - SS : A = (7.27 f 2.44) x 

J t ,  JE : A = (5.31 f 2.58) x 

B = 1.38 f 0.02 
B = 1.37 f 0.02 
B = 1.38 f 0.04 

[PP : B = 1.39 f 0.03; PP - SS : B = 1.43 f 0.071 

/ I ,  I ,  I ,  I ,  I ,  I 
0.03 0.06 0.09 0.12 0.15 0.18 
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Figure 6. Determination of a. 

Finally, we reproduce in Fig. 6 the determi- 
nation of a with the method of lattice physical 
planes: the red line corresponds to the physi- 
cal ratio F K / h l K  with MK = 0.495GeV FK = 
0.16 GeV. We find u-' = 2.238 f 0.083 GeV from 
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the PP channel and a-' = 2.236 f 0.098[2.29 f 
0.091 GeV from the PP-SS channel. 

Figures 7, 8 illustrate new results, which were 
out of reach with a smaller lattice. In Fig. 7 we 
show the quantity log lGBB(t)l with B = Brt. = 
(1 f YO)E,~, [uzC-y5db] u, (a sum over the spatial 
coordinates of B over the time slice at t is im- 
plicit). Since the correlation function with the 
1 + 7 0  projector describes forward propagating 
1/2+ baryons and backward propagating 1/2- 
baryons, while the two parities are interchanged 
with the 1 - 70 projector, in Fig. 7 we plot the 
1 - 70 correlation function against 64a - t. The 
results for the two correlation functions, after this 
inversion of the time axis, are quite consistent, as 
one would expect, and exhibit an extended linear 
region over which one can extract an estimate of 
the lowest baryon masses. The corresponding lin- 
ear fits are also shown in Fig. 7. 
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Figure 7. Logarithm of the baryon-baryon corre- 
lation functions. 

In Fig. 8 we collect all of our results for the 
lowest 1/2+ and 1/2- baryon masses. We cal- 
culated the masses corresponding to all combina- 
tions where two of the quarks have the same mass. 
The masses of the 1/2+ states appear to fall on a 
single curve, indicating a dependence only on the 
total quark mass. The masses of the 1/2- seem to 
indicate a dependence on the quark mass differ- 
ence a.lso, but the statistical errors are high and 
a more elaborated analysis should be done before 
deriving any such implication from the data. We 
emphasize that these results are preliminary. In 
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Figure 8. Baryon masses as function of the total 
quark mass. 

particular the masses in Fig. 8 have been obtained 
with point sources and sinks. While having cal- 
culated point source quark propagators forces us 
to use point sources, we should be able to im- 
prove the statistical significance of the results by 
using suitable extended sink operators. Calcula- 
tions along these lines are in progress. 

3. Experimenting with the charm quark 
In the present section we investigate the behav- 

ior of overlap fermions with heavy quarks Q for 
which amQ # 1. In particular, we are interested 
in understanding whether the charm quark can 
be approximately simulated at lattice spacings of 
around 2 GeV, where the charm has a bare mass 
am, N 0.75. Related results, obtained with a dif- 
ferent gauge action, can be found in [16]. 

Though a rigorous investigation of discretiza- 
tion errors would require simulations at a num- 
ber of values of the lattice spacing, at the present 
time we only have a simulation for which a-' N 

2GeV. We have thus devised a number of tests 
which provide us with some measure of the mass- 
dependent discretization errors present in our 
simulation. They concern a variety of quantities, 
some of which are of direct phenomenological in- 
terest such as the leptonic decays constant of the 
D, meson, fD,. 
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3.1. Axial and vector Ward identities 
We turn once again to the non-singlet axial 

(AWI) and vector (VWI) Ward identities. In- 
stead of working with the ratio p(t)  defined in 
Eq. (l),  we consider the quantity 

with a similar definition for 2v(t;ml,mz) in 
terms of vector currents and scalar densities. 
These quantities are also constant in time, by 
virtue of the AWI and WVI, and reduce to the 
renormalization constants ZA and ZV of the axial 
and vector currents in the chiral limit. 2 ~ ( t )  and 
2v(t) have very nice plateaus in t for all quark- 
mass combinations, though error bars and fluctu- 
ations on 2v(t) are substantially larger. We thus 
fit them to a constant in the time range 14 5 at 5 
50, thereby obtaining mass-dependent “renormal- 
izat,ion constants” Z ~ ( m 1 ,  m2) and Zv(m1, m2). 
The fits to 2,4(t) are all excellent, except for the 
mass combination am1 = am2 = 0.75 where there 
is some evidence that the signal is lost for a hand- 
ful of points around the center of the lattice (cf. 
Fig. 1). The situation is much less satisfactory 
for 2v (t), where the fluctuations make it difficult 
to obtain reliable fits. 

The quantities ZA,v(ml, m2) are of particular 
interest here, because their mass dependence is 
solely due to discretization errors. Given our defi- 
nition, the leading mass dependence is of the form 
uz(ml + m2) and a2(rnl - 7 7 ~ 2 ) ~ / ( r n l  + mz). In 
Fig. 9 we plot Z~(m1,  mz)/ZA(O, 0) as a function 
of (am1 + am2) for all mass combinations, were 
ZA(O, 0) is obtained as described below. We con- 
sider Zv(rnl,m2) only for (am1 + am2) I 0.2, 
since it is not clear that we can reliably fit 2v(t) 
for larger masses. The values of Z~(ml,m2) for 
(am1 + um2) 5 0.2 display linear behavior, indi- 
cating that mass-dependent discretization errors 
are dominated by a2(m1 + mz)-type terms in this 
range of masses. Therefore, in this mass range we 
fit ZA(mq,mq) to: 

zA(mq, mq) = ZA(0,o) (1 + 2(aB)(amq)) 1 (3) 

where we only consider degenerate combinations 
to eliminate possible a2(rn1 - m2)2/(m1 + m2) 

terms. We find z~(0,O) = 1.5544(15), which is 
entirely compatible with the value given after Eq. 
(l), and UB = -0.102(5). 

1.05 

8 1  o 2, nun-degcn. 

B ZJ Ron 2”; n v 
N‘ 2 0.95 
E 
a! 0.9 
E7 
lu 

N 

v 2 0.85 

0.8 
0 0.5 1 1.5 

(am,+ am,) 
Figure 9. ZA,v(ml,rn2)/Z~(O,O) vs. (am1 + 
am2). The straight line corresponds to the fit 
described around Eq. (3). The two filled symbols 
approximately correspond, from left to right, to 
a D, and an qc meson. 

The first point worth noting is that the coef- 
ficient B of the a2(ml + m2) discretization error 
is small, B N 225MeV. The second interesting 
feature is that deviation from linearity becomes 
statistically significant (i.e. larger than 3 standard 
deviations) only for (am1 + am2) 2 0.28. We are 
actually able to consistently fit Z~(m1,mz) all 
the way up to am1 = am2 = 0.5 with the addition 
of two terms proportional to a3(ml + m ~ ) ~  and 
a2(m1 - mz)’/(rnl+ m2), and all the way up to 
am1 = am2 = 0.75 with an additional term pro- 
portional to a4(ml +m2)3, though the coefficients 
obtained in the latter fit are only marginally con- 
sistent with those from our two other fits. In these 
fits to extended mass ranges, we further find that 
the coefficients of the higher order terms are ap- 
proximately one half to a full order of magnitude 
smaller than aB. The net result is that discretiza- 
tion errors inferred from Z~(ml,m2) are approxi- 
mately 10% at (aml, am2) = (0.06,0.75) and 15% 
at (aml, am2) = (0.75,0.75), mass combinations 
which corresponds roughly to a D, and an qc 
meson, respectively. Moreover, chiral symmetry 
seems to be good, as evidenced by the compat- 
ibility of Z~(m1, m2) and Zv(m1, m2) at small 
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masses. Thus, there is no evidence for a major 
breakdown of overlap fermions up to am4 = 0.75 
and (am1 + am2) = 1.5. 
3.2. 2-point functions, pseudoscalar meson 

We have performed fits to the zero-momentum 
PP, PP-SS, AoP, PAo, AoAo and Jk J k  corre- 
lators, all of which have the pseudoscalar meson 
as the lightest contributing state. The fit form 
used is: 

masses and decay constants 

(4) 
azo>>l 

( I ( x )  J ( 0 ) )  
X 

where the fit parameters are 2 I J  and M I J ,  and 
S I J  = -1 for I J  = AP, P A  and +1 otherwise. 
For all of our quark masses, the fits are excel- 
lent. For each correlation function, we define the 
corresponding pseudoscalar decay constant: 

I J  == PP, PP-SS 
I_ 

I J  = AA, J L  J L  (5) 

where, in our conventions, fT = 131MeV. The 
point of considering these three definitions is that 
they differ in their discretization errors. In fact, 
we expect these differences to be at most equal 
to the mass-dependent discretization errors iden- 
tified in ZA(m1, m2). Indeed, f,“/ f f l A  is simply 
ZA(m1, mz)/ZA(O, 0) to the extent that the fits 
to the continuum-limit parametrizations of Eq. 
(4) do not modify the relative discretization er- 
rors in the amplitudes 21 J ;  that VO applied on 
GAop(t)  yields a value of the pseudoscalar mass 
which is the same as the one determined by the 
fits; that finite-volume effects do not distort the 
various correlation functions differently. And un- 
der these same conditions, all other ratios of de- 
cay constants should be less than or equal to 
f ,“/fflA. Moreover, the correlation functions 
are affected by topological zero modes differently. 
In particular, PP - SS and J,f J,f are free of zero 

modes. Differences at small quark masses thus 
give a measure of zero-mode contamination. 

In Fig. 10 we plot f i J  versus M I J ,  for all 
I J .  No statistically significant difference in 
the masses obtained from the various correlation 
functions is observed. At low quark mass this in- 
dicates that there is no evidence for zero-mode 
contamination in our fits. At high quark mass, 
the agreement is reassuring but not significant as 
discretization errors on the mass are determined 
by the action, which is the same for all corre- 
lation functions. That is not the case for the 
decay constant, where different correlation func- 
tions will induce different discretization errors. 
Indeed, we find that the difference increases as 
the quark mass is increased. For the “D,”, we 
find a variation of approximately 10% and it is 
15% for the ‘Lr]c)),  which is entirely consistent with 
the results obtained from ZA(m1, m2), as antici- 
pated. While significant, these variations do not 
indicate a major breakdown of the theory, even at 
aml+am2 = 1.5. This is further confirmed by the 
fact that with a charm quark such that the corre- 
sponding “D,” meson has a mass N 1.95 GeV (i.e. 
20MeV below experiment), our “qC” has a mass 
N 2.93 GeV which is only 50 MeV (i.e. 2%) below 
experiment. Moreover, the preliminary value of 
fD, that we obtain is 267(15)(24) MeV, which is 
in good agreement with the most recent quenched 
calculation [17] and experimental measurement, 
fD, = 285(19)(40) MeV [18]. 

3.3. Charm quark summary 
We have simulated the charm quark with over- 

lap fermions on a lattice with N 2 GeV. We 
have investigated the effects of mass-dependent 
discretization errors on the axial Ward identity as 
well as on the pseudoscalar decay constant. We 
find that these effects are relatively small: 10% for 
the “D,” and 15% for the l‘r]c”.  We further find 
a value of fD, which is in good agreement with the 
latest quenched and experimental results. Thus, 
there is no sign of a major breakdown of the for- 
malism even for bare quarks masses amq = 0.75. 
Of course, these preliminary findings require fur- 
- 
31t should be noted, however, that these figures come from 
ratios of quantities in which some discretization errors may 
cancel. 
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which are both free of unphysical zero modes [19]. 
The hrge temporal extent of our lattice al- 

lows us to choose ranges 10 5 xo/a 5 20 and 

ther investigation and, in particular, the apparent 
smallness of discretization effects should be con- 
firmed by simulations on finer lattices. 

4. Weak matrix elements 
4.1. Bare matrix elements 

We have calculated the K0-I(O mixing parame 
ter BK following the procedure detailed in [10,11]. 
BK is defined as 

44 5 yo/a 5 54 for the kaon source and sink, 
which are both safely in the asymptotic region 
20 >> a, yo << T and for which backward contri- 
butions due to the toroidal lattice geometry are 
negligible. As a consistency check, we have ver- 
ified that within these ranges the pseudoscalar 
meson mass extracted from CJO J (20, yo) agrees 
very well with the ones extracted from various 
%point functions (cf. Section 2). 

We have also computed the bag parameters 
B::: of the electroweak penguin operators in the 
AI = 3/2 channel of the AS = 1 effective Hamil- 
tonian. Following the convention of [20], we de- 
fine 

where O;/2 is given by 

0;" = S$'d(iiy,Ru - d;u,Rd) + S$uii$d (12) 

and Oil2 is the corresponding color-mixed oper- 
ator. We work in the SU(3)v limit m, = md = 
m,, in which all eye contractions cancel. 

In contrast to BK,  finding appropriate sources 
to cancel all zero-mode contributions is not 
straightforward for Bt:: due to the L-R struc- 
ture of the operator. For this preliminary study, 
we therefore choose to simply report results ob- 
tained with pseudoscalar sources on the 3-point 
function 

312 bare 
c7/8(20iY0) x ( P ( 2 ) ( 0 7 / 8 )  (o )p (y ) )  (13) 

X,Y 

and the 2-point function 

C P P ( 2 0 )  = CP(4P(O)) (14) 
X 

and postpone a more careful investigation of this 
issue to a future publication.* 

We identify nice plateaus in c7 /8 (20 ,  yo) in the 
range 18 5 xo/u 5 23 and 41 5 yo/a 5 46. In 
4Pseudoscalar sources are not the optimal choice, since 
they allow for l/m2 divergences in the 3-point functions. 
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this region, the mass extracted from the 3-point 
function agrees very well with the mass extracted 
from various 2-point functions (cf. Section 2). 
4.2. Non-perturbat he renormalization 

We perform all renormalizations non- 
perturbatively in the RI/MOM scheme following 
[21]. Thus, we fix gluon configurations to Lan- 
dau gauge and numerically compute appropriate, 
amputated forward quark Green functions with 
legs of momenta p .  The renormalization of BK 
is detailed in [ll].  In order to renormalize B$, 
we calculate the renormalization constants of 
a full set of dimension 6, 4-flavor operators in 
the basis suggested by [22]. In this basis, O;/2 
renormalizes as QZ and Oil2 as -2Qt. These 
2 operators mix among each other but chiral 
symmetry protects them from mixing with other 
operators. The renormalization condition vio- 
lates chiral symmetry at  low p 2 ,  but we found, 
that the violation is tiny. 

The renormalization pattern for the B param- 
eters is given by 

In order to determine the Zgl(p) we define 

where rib2, m) is the amputated Green function 
of the operator 0:/2 and Pi the corresponding 
projector (cf. [22]). After performing an appro- 
priate chiral extrapolation, we must isolate the 
“perturbative part” of this ratio to get the renor- 
malization constant. In order to do this, we fit 
the matrix RR1(p)  to the form 

+cij x (spy + . * * (17) 

where the running of Z y ( p )  is given by NLO 
continuum perturbation theory. The 1/p2 and 
l/p* terms are motivated by the OPE in l/p2 

2 

1.5 

1 

0.5 

“L 

F[GeV’] 

Figure 11. The coefficient matrix Rg vs. p. One 
can see, that the data are very well described by 
Eq. (17). 

of Eq. (16), while the term c( ( ~ i ) ~  takes into 
account leading order discretization effects. 

In Fig. 11 the RE1(p) are shown together 
with fits of the form Eq. (17) in a range p E [a, 31 GeV. The fit describes the data very nicely 
even far outside the fit range and is stable against 
addition of extra terms and variations in the fit 
range. Some of the fit parameters have numeri- 
cally found to be consistent with 0 and have been 
eliminated. 
4.3. Physical results 

In Fig. 12 we show the renormalized value of 
BK in the E - N D R  scheme at 2 GeV. We have 
performed both a linear and a chiral log fit of the 
form 

B ~ = B ( 1 - 6 ( & ) ~ l n g )  (18) 

At the physical point, the result of both fits 
is - virtually indistinguishable and we obtain 
BFSmNDR(2GeV) = 0.61(7), where the error is 
statistical only. This result is compatible both 
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Figure 12. BF-NDR(2GeV) vs. the pseudoscalar , 

meson mass. The continuous line gives the result 
of a linear fit and the dotted line of a chiral log 
fit of the form Eq. (18). 

with our earlier result from smaller lattices [ll] 
and with a recent determination by the MILC 
collaboration [15]. 

In Fig. 12 we plot the renormalized value of 
B3I2 in the E - N D R  scheme at 2 GeV as a func- 
tion of M:. We postpone the study of this mass 

718 

- MS-NDR 
Figure 13. (B$) (2GeV) vs. the pseu- 
doscalar meson mass. 
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