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Detection of topological patterns in
protein networks

Sergei Maslov!, Kim Sneppen?

Introduction

Complex networks appear in biology on many different levels:

e All biochemical reactions taking place in a single cell constitute its
metabolic network, where nodes are individual metabolites, and edges
are metabolic reactions converting them to each other.

e Virtually every one of these reactions is catalyzed by an enzyme and
the specificity of this catalytic function is ensured by the key and lock
principle of its physical interaction with the substrate. Often the func-
tional enzyme is formed by several mutually interacting proteins. Thus
the structure of the metabolic network is shaped by the network of
physical interactions of cell’s proteins with their substrates and each
other.

e The abundance and the level of activity of each of the proteins in the
physical interaction network in turn is controlled by the regulatory net-
work of the cell. Such regulatory network includes all of the multiple
mechanisms in which proteins in the cell control each other includ-
ing transcriptional and translational regulation, regulation of mRNA
editing and its transport out of the nucleus, specific targeting of in-
dividual proteins for degradation, modification of their activity e.g.
by phosphorylation/dephosphorylation or allosteric regulation, etc. To
get some idea about the complexity and interconnectedness of protein-
protein regulations in baker’s yeast Saccharomyces Cerevisiae in Fig. 1
we show a part of the regulatory network corresponding to positive or
negative regulations that regulatory proteins exert on each other.
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Pajek

Figure 1: Regulations between regulators in yeast. Solid (dashed) arrows
represent positive (negative) regulations of one yeast regulatory protein by
another. The full list of known protein-protein regulations in yeast down-
loaded from the Yeast Proteome Database (YPD) [1] has 262 regulatory
proteins and 1772 positive or negative regulations. This figure shows all 219
regulations that regulatory proteins exert on each other. The Pajek software
[2] was used in drawing the network.



e On yet higher level individual cells of a multicellular organism exchange
signals with each other. This gives rise to several new networks such
as e.g. nervous, hormonal, and immune systems of animals. The inter-
cellular signaling network stages the development of a multicellular
organism from the fertilized egg.

e Finally, on the grandest scale, the interactions between individual species
in ecosystems determine their food webs.

An interesting property of many biological networks that was recently
brought to attention of the scientific community [3, 4, 5] is an extremely
broad distribution of node connectivities defined as the number of immediate
neighbors of a given node in the network. While the majority of nodes have
just a few edges connecting them to other nodes in the network, there exist
some nodes, that we will refer to as “hubs”, with an unusually large number
of neighbors. The connectivity of the most connected hub in such a network is
typically several orders of magnitude larger than the average connectivity in
the network. Often the distribution of connectivities of individual nodes can
be approximated by a scale-free power law form [3] in which case the network
is referred to as scale-free. Among biological networks distributions of node
connectivities in metabolic [4], protein interaction [5], and brain functional
[6] networks can be reasonably approximated by a power law extending for
several orders of magnitude.

The set of connectivities of individual nodes is an example of a low-level
(single-node) topological property of a network. While it answers the ques-
tion about how many neighbors a given node has, it gives no information
about the identity of those neighbors. It is clear that most functional prop-
erties of networks are defined at a higher topological level in the exact pattern
of connections of nodes to each other. However, such multi-node connectivity
patterns are rather difficult to quantify and compare between networks.

In this work we concentrate on multi-node topological properties of pro-
tein networks. These networks (as any other biological networks) lack the
top-down design. Instead, selective forces of biological evolution shape them
from raw material provided by random events such as mutations within in-
dividual genes, and gene duplications. As a result their connections are
characterized by a large degree of randomness. One may wonder which con-
nectivity patterns are indeed random, while which arose due to the network
growth, evolution, ans/or its fundamental design principles and limitations?



In the next chapter we describe a universal recipe for how such informa-
tion can be extracted. To this end one first constructs a proper randomized
version (null model) of a given network. As was pointed out in the general
context of complex scale-free networks [7], a broad distribution of connec-
tivities indicates that the connectivity itself is an important individual char-
acteristic of a node and as such it should be preserved in the randomized
null-model network. In addition to connectivities one may choose to pre-
serve some other low-level topological properties of the network in question.
Any measurable topological quantity, such as e.g. the total number of edges
connecting pairs of nodes with given connectivities, the number of loops of
a certain type, the number and sizes of components, the diameter of the
network, can then be measured in the real complex network and separately
in its randomized version. One then concentrates only on those topological
properties of the real network that significantly deviate from its null model
counterpart.

The plan of this review is as follows: In the next chapter we introduce
our basic algorithm for generation of an ensemble of randomized networks
8, 9]. We also propose a modification of this algorithm conserving other low-
level topological properties of the network in addition to connectivities of its
nodes [9]. In Chapter 3 we use these random ensembles to measure correla-
tion profiles of several protein networks, namely those of physical interactions
and transcriptional regulation between proteins in yeast Saccharomyces Cere-
visiae [8]. Finally, the potential meaning of the observed large-scale prop-
erties of protein networks is discussed in Chapter 4. The set of MATLAB
programs used to generate an ensemble of randomized networks, as well as
to construct, and visualize correlation profiles of any given complex network
can be downloaded from [10].

Local rewiring algorithm and topological pro-
files of a network

One may generate a random version of a given network using various algo-
rithms. They differ from each other by which low-level topological features
of the original network are preserved in its randomized counterpart. Below
we list three such randomization processes in order of the increasing number
of constraints:



1. Randomly rewire all edges in the network. This algorithm only con-
serves the average connectivity of all nodes in the network.

2. Randomly rewire edges in the network while preserving the number of
edges emanating from each individual node (node’s connectivity). This
algorithm conserves all single-node topological properties of a network,
while completely randomizes multi-node connection patterns. In a di-
rected network one may rewire edges in such a way that both the num-
ber of outgoing and incoming edges are separately conserved for each
node.

3. In addition to connectivities one may choose to conserve other low-level
topological properties of the network such as e.g. the number of loops
of a given type, the number and sizes of its components, its modular
structure, etc.

The first rewiring scheme always generates an Erdés-Rényi (ER) random net-
work [11] characterized by a narrow Poisson distribution p(k) = (k)* exp(—(k))/k!
of node connectivities k, irrespective of the original form of this distribution.
As topological properties of a network are very sensitive to the exact func-
tional form of this distribution (in particular to its second moment) [12, 7],
they typically would be modified as a result of the simple minded random-
ization algorithm #1. The change would be especially dramatic for networks
with a broad (e.g. scale-free) distribution of connectivities. Therefore, for
this class of networks a much more informative comparison would be to a
randomized network generated by algorithms 2-3, where connectivities of
individual nodes are strictly conserved.

The local rewiring algorithm giving rise to such random network was pro-
posed in [13, 8]. It consists of multiple repetitions of the following simple
switch move (elementary rewiring step) illustrated in Fig. 2:

Randomly select a pair of edges A—B and C—D and rewire them in
such a way that A becomes connected to D, while C to B, provided
that none of these new edges already exist in the network, in which
case the rewiring step is aborted and a new pair of edges is selected.

The last restriction prevents the appearance of multiple edges connecting
the same pair of nodes. A repeated application of the above rewiring step
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Figure 2: One step of the random local rewiring algorithm. A pair of edges
A—B and C—D is randomly selected. The two edges are then rewired in
such a way that A becomes connected to D, while C to B, provided that none
of these new edges already exist in the network, in which case the rewiring
step is aborted and a new pair of edges is selected. An independent random
network is obtained when the network is rewired by the above local switch
a large number of times, say several times in excess of the total number of
edges in the system. Note that for directed networks this rewiring algorithm
separately conserves both the in- and out- connectivities of each individual
node.



leads to a randomized version of the original network. The set of MATLAB
programs generating such a randomized version of any complex network can
be downloaded from [10].

Sometimes it is desirable that the null-model random network in addition
to nodes’ connectivities conserves some other topological quantity of the real
network. In this case one could still use the random rewiring algorithm,
described above, but supplement it with the Metropolis acceptance/rejection
criterion [14]of a simple switch move [8, 9].

For the sake of concreteness let’s assume that one wants to generate a
random network with the same set of nodes’ connectivities and the same
number N of triangles as the real undirected network [9]. Indeed, the
number of triangles in a network is related to its “clustering coefficient”
routinely used as a measure of modularity [15]. Hence, by conserving Na
one generates a null-model with the same average level of modularity as the
original complex network.

The Metropolis version of the random rewiring algorithm uses an artificial
energy function H that favors the number of triangles in a random network
N X ) to be as close as possible to its value Na in the real network:

(v~ )

H —
Na

(1)

The Metropolis rules in this case allow for any local rewiring step that low-
ers the energy H or leaves it unchanged. However, those steps that lead
to a AH increase in the “energy” H are accepted only with a probability
exp(—AH/T). Here the exact rules of the algorithm depend on (typically
very small) “temperature” T introduced to prevent the sequence of rewiring
steps from getting stuck in local (often suboptimal or non-representative)
energy minima. In order to get a random network with N(AT) sufficiently close
to Na the temperature should be selected to be as small as possible with-
out sacrificing the ergodicity of the problem. In the end one could always
“prune” the resulting ensemble of random networks by leaving only networks
with N7 = Na.

The above Metropolis algorithm can be easily extended to take care of
several independent topological motifs by using the composite energy func-
tion H = Y,, H,,, where the index m runs over the desired set of motifs.
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Once the desired null model random network is generated one could ask
the question: which topological quantities in the real complex network sig-
nificantly deviate from their values in its typical random counterpart. Such
deviations can be quantified by the following set of network’s topological pro-

files.

In the first profile one computes the ratio
R(j) = == (2)

where N(j) is the number of times the pattern j is seen in the real net-
work, and N,(j) is the average number of its occurrences in an ensemble of
randomized networks, generated e.g. by one of the local rewiring algorithms
described above. Patterns selected by design or evolution of the complex net-
work in question would manifest themselves by R(j) > 1, while suppressed
patterns correspond to R(j) < 1.

While R(j) determines the magnitude of the suppression/enhancement
it tells nothing about the statistical significance of the effect. This latter
quantity is measured by the Z-score of the deviation:

N(@) — Ne(J)
()

, (3)

where 0,.(7) is the standard deviation of N, () measured in a sufficiently large
ensemble of randomized networks.s

Alternatively the statistical significance of the difference between real and
randomized networks can be quantified in terms of its P-value. The P-value is
defined as the probability that the number of patterns N, (j) in a randomized
network is larger or equal (or smaller or equal in case when N(j) < N,(j))
than N(j). For patterns that are highly statistically significant it is often
impossible to directly evaluate the P-value in a reasonable number of realiza-
tions of random networks. In this case one reports an upper bound on such
a P-value given by the inverse size of the ensemble studied numerically. If
one can verify that N, is a Gaussian-distributed random variable the Z-score
can be easily converted to the P-value.



In the next chapter we discuss a particular example of the topological
profile of a network quantifying correlations between connectivities of its
neighboring nodes. In this case N(j) is given by N(Ky, K;) — the number of
edges connecting nodes of connectivity K to those of connectivity K; [8, 9];

A different topological profile was studied in [16, 17]. In their case N(j)
stood for the number of a particular small network motif (involving not more
than 4 nodes) such as e.g. a feed-forward or a feedback triangular loop in
directed networks.

Correlation profiles of protein networks.

Methods described in the previous chapter allow us to define and measure
the correlation profile of any large complex network. The correlation profile
quantifies correlations between connectivities of its neighboring nodes. We
have applied these numerical tools to investigate two levels of molecular net-
works in yeast Saccharomyces Cerevisiae, which at present is perhaps the
best characterized biological model organism:

1. The protein interaction network used in this work consists of 4475 phys-
ical interactions between 3279 yeast proteins as measured in the most
comprehensive high-throughput yeast two-hybrid screen [18]. In order
to better visualize the protein interaction network in Fig. 3 we plotted
its small part formed by all interactions of proteins localized in the
yeast nucleus [1] with each other.

2. The most general definition of the requlatory network includes all cases
when production or degradation of one of its proteins is directly con-
trolled by another. Edges of this network correspond to transcription
and translational regulation, phosphorylation, allosteric modification,
specific targeting for degradation of one protein by another, etc. The
YPD database [1] contains 1772 (1328 positive and 444 negative) such
regulations among 848 yeast proteins. To narrow down the range of
possible regulatory mechanisms and make the resulting network more
homogeneous we have constructed correlation profiles of the transcrip-
tion requlatory network, which is the subset of the general regulatory
network formed by all positive and negative direct transcription regu-
lations. This network, shown in Fig. 4, consists of 1289 (1047 positive
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Figure 3: Network of physical interactions between nuclear proteins in yeast.
Here we show the subset of protein-protein physical interactions reported in
the full set of Ref. [18]. The subset consists of 318 interactions between pro-
teins that are known to be localized in the yeast nucleus [1]. The resulting
network involves 329 proteins. Note that most neighbors of highly connected
proteins have rather low connectivity. This feature will be later quantified
in the correlation profile of this network (Figs 5, 7). Nodes are color coded
according to how essential they are for the survival of yeast cells under lab-
oratory conditions [1]. White nodes correspond to viable and black ones to
non-viable null-mutants lacking the corresponding protein.
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and 242 negative) regulations by 125 transcription factors [1] within
the set of 682 proteins.

While the regulatory network is naturally directed, the network of phys-
ical interactions among proteins in principle lacks directionality. Random-
ized versions of these two molecular networks were constructed by randomly
rewiring their edges, while preventing “unphysical” multiple connections be-
tween a given pair of nodes, as described in the previous chapter. By con-
struction this algorithm separately conserves the in- and out-connectivities
of each node. Therefore, in a randomized version of the regulatory network
each protein has the same numbers of regulators and regulated proteins as in
the original network. Taking in consideration the bait-prey asymmetry men-
tioned in [8], when generating random counterpart of the interaction network
we chose to separately conserve numbers of interaction partners of the bait-
hybrid and the prey-hybrid of every protein. The set of MATLAB programs
for both randomization algorithm and the correlation profile detection and
visualization can be downloaded from [10].

The topological property of the network giving rise to its correlation
profile is the number edges N(Kj, K1) connecting pairs of nodes with con-
nectivities Ky and K;. To find out if in a given complex network con-
nectivities of interacting nodes are correlated, N(Ky, K1) should be com-
pared to its value N,(Ky, K1) £ AN, (Ko, K1) in a randomized network,
generated by the edge rewiring algorithm. When normalized by the to-
tal number of edges F, N(Kj, K;) defines the joint probability distribution
P(Ky, K1) = N(Ky, K1)/E of connectivities of interacting nodes. Any cor-
relations would manifest themselves as systematic deviations of the ratio

R(Ky, K1) = P(Ko, K1)/P.(Ko, K1) (4)

away from 1. Statistical significance of such deviations is quantified by their
Z-score

Z(Ky, K1) = (P(Ky, K1) — P.(Ko, K1)) /o (Ko, K1) , (5)

where o, (Ko, K1) = AN, (K, K1)/N is the standard deviation of P,(K, K7)
in an ensemble of randomized network.

Figs. 5 and 6 show the ratio R(Kj, K;) as measured in yeast interaction
and transcription regulatory networks, respectively. In the interaction net-
work Ky and K7 are numbers of neighbors of the two interacting proteins,

11
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Figure 4: Transcription regulatory network in yeast. Apart from the absence
of clear signs of modularity (the network has a unique giant connected com-
ponent or module and only a few small small disconnected modules), one
notices several striking features related to hub proteins that each regulate
many other proteins: 1) They tend to regulate genes with just a few regula-
tory inputs. As a result of this they are well separated form each other, and
positioned [2] on a periphery of the network. 2) it is much more frequent for a
protein to regulate many other proteins, than to be regulated by many. It is
the first of these features, the separation of out- and in-hubs from each other,
that is quantified with the help of the correlation profile of this network (Figs
6, 8). 12



while in the regulatory network K is the out-connectivity of the regulatory
protein and K — the in-connectivity of its regulated partner. Thus by the
very construction P(Kjy, K1) is symmetric for the physical interaction net-
work but not for the regulatory network. Figs. 7,8 plot the statistical signifi-
cance Z(Ky, K;) of deviations visible in Figs. 5,6 correspondingly. To arrive
at these Z-scores 100 randomized networks were sampled and connectivities
were logarithmically binned into two bins per decade.

The combination of R- and Z-profiles reveals the regions on the Ky — K,
plane, where connections between proteins in the real network are signifi-
cantly enhanced or suppressed, compared to the null model. In particular,
the light region in the upper right corner of Figs. 5-8 reflects the reduced
likelihood that two hubs are directly linked to each other, while dark regions
in the upper left and the lower right corners of these figures reflect the ten-
dency of hubs to associate with nodes of low connectivity. One should also
note a prominent light-colored feature on the diagonal of the Fig. 5 and
7 corresponding to an enhanced affinity of proteins with between 4 and 9
physical interaction partners towards each other. This feature can be ten-
tatively attributed to members of multi-protein complexes interacting with
other proteins from the same complex. The above range of connectivities thus
correspond to a typical number of direct interaction partners of a protein in
a multi-protein complex. When we studied pairs of interacting proteins in
this range of connectivities we found 39 of such pairs to belong to the same
complex in the recent high-throughput study of yeast protein complexes [20].
This is about 4 times more than one would expect to find by pure chance
alone.

When analyzing molecular networks one should consider possible sources
of errors in the underlying data. Two-hybrid experiments in particular are
known to contain a significant number of false positives and probably even
more false negatives.

The evidence of a significant number of false negatives lies in the fact that
only a small fraction of functionally plausible interactions were detected in
both directions (the bait-hybrid of a protein A interacting the prey-hybrid
of a protein B as well as the prey-hybrid of a protein A interacting the bait-
hybrid of a protein B). It is also attested by a relatively small overlap in
interactions detected in the two independent high-throughput two hybrid
experiments [19, 18]. There exist a number of plausible explanations of these

13
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Figure 5: Correlation profile of the protein interaction network in yeast. The
ratio R(K(), Kl) = P(Kg, Kl)/Pr(Km Kl), where P(K(), Kl) is the probabil—
ity that a pair of proteins with K and K; interaction partners correspond-
ingly, directly interact with each other in the full set of Ref. [18], while
P,(Ky, K;) is the same probability in a randomized version of the same net-
work, generated by the random rewiring algorithm described in the text.
Note the logarithmic scale of both axes.
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Figure 6: Correlation profile of the transcription regulatory network in yeast.
The ratio R(Kout, Kin) = P(Kout, Kin)/ Pr(Kout, Kin), where P(K,u, Kip) is
the probability that a protein node with the out-connectivity K,,; tran-
scriptionally regulates the protein node with the in-connectivity Kj;, in the
network from the YPD database [1], while P.(Ky, K;y,) is the same proba-
bility in a randomized version of the same network, generated by the random
rewiring algorithm described in the text. Note the logarithmic scale of both
axes.
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Figure 7: Statistical significance of correlations present in the protein interac-
tion network in yeast. The Z-score of correlations Z(Ky, K1) = (P (Ko, K1) —
P,(Ky, K4))/o.(Ky, K1), where P(Ky, K;) is the probability that a pair of
proteins with Ky and K interaction partners correspondingly, directly inter-
act with each other in the full set of Ref. [18], while P,(Ky, K;) is the same
probability in a randomized version of the same network, generated by the
random rewiring algorithm described in the text, and o, (Ko, K1) is the stan-
dard deviation of P.(Kjy, K1) measured in 1000 realizations of a randomized
network. Note the logarithmic scale of both axes.
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Figure 8: Statistical significance of correlations present in the transcription
regulatory network in yeast. The ratio Z(Kou, Kin) = (P(Kout, Kin) —
P Kouty Kin))/or(Kout, Kin)), where P(Kyu, Kip) is the probability that a
protein node with the out-connectivity K,,; transcriptionally regulates the
protein node with the in-connectivity K, in the network from the YPD
database [1], while P,(K,yu, K;,) is the same probability in a random-
ized version of the same network, generated by the random rewiring algo-
rithm described in the text, and o, (K,u, K;p,) is the standard deviation of
P.(Kout, Kin) measured in 1000 realizations of a randomized network. Note
the logarithmic scale of both axes.
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false negatives. First of all, binding may not be observed if the conformation
of the bait or prey chimeric protein blocks relevant interaction sites or if
it altogether fails to fold properly. Secondly, it is not entirely clear if the
number of cells in batches used in high-throughput two hybrid experiments
is sufficient for any given bait-prey pair to meet in at least one cell. Finally,
391 out of potential 5671 baits in [18] were not experimentally tested because
they were found to activate the transcription of the reporter gene in the
absence of any prey proteins.

Several sources of false positives are also commonly mentioned in the
literature:

e In one scenario spurious interactions of highly connected baits are
thought to arise due to a low-frequency indiscriminate activation of the
reporter gene in the absence of any prey proteins. Such false positives
(if they exist) are easy to eliminate by using curated high-throughput
datasets which contain only protein pairs that were observed, say, at
least 3 times in the course of the experiment. We have shown that all
qualitative features of the correlation profile of the protein interaction
network reported above remain unchanged when one uses such curated
datasets [21].

e In another scenario the interaction between proteins is real but it never
happens in the course of the normal life cycle of the cell due to spatial
or temporal separation of participating proteins. However, it is hard
to believe that such non-functional interactions would be preserved for
a long time in the course of evolution. Hence, it is dubious that such
false-positives would be ubiquitous.

e In yet another scenario an indirect physical interaction is mediated by
one or more unknown proteins localized in the yeast nucleus. However,
since in two-hybrid experiments bait and prey proteins are typically
highly overexpressed, it is only very abundant intermediate proteins
that can give rise to an indirect binding. The relative insignificance of
indirect bindings is attested by a relatively small number of triangles
(178 vs o< 100 in a randomized version) in the protein interaction net-
work. Indeed, an indirect interaction of a protein A with a protein B
effectively closes the triangle of direct interactions A-C and C-B with
an intermediate protein C.

18



1 Discussion: What it may all mean?

The large-scale organization of molecular networks deduced from correlation
profiles of protein interaction and transcription regulatory networks in yeast
is consistent with compartmentalization and modularity characteristic of
many cellular processes [22]. Indeed, the suppression of connections between
highly-connected proteins (hubs) suggests the picture of semi-independent
modules centered around or regulated by individual hubs. On the other
hand, the very fact that these molecular networks do not separate into
many isolated components but are dominated by one “giant component”
suggests that this tendency towards modularity is not taken to its logical
end. The observed patterns can in fact be characterized as “soft modular-
ity”, where interactions between individual modules are suppressed but not
completely eliminated. Thus on sufficiently large scale molecular networks
exhibit system-wide properties making their behavior different from that of
a set of mutually independent modules. Two recent empirical observations
hint at global interrelations in the overall connectivity pattern of molecular
networks:

1. Elena and Lenski [23] studied the cooperativity of regulation in E.coli
by comparing changes of the cell cycle length in single-gene null mutants
with those in double null mutants. They concluded that about 30% of
gene pairs exhibited more than additive effects on cell cycle length,
and thus at least 30% of protein pairs are functionally interconnected.
Such level of cooperativity would be impossible in a regulatory network
consisting of a large number of independent modules.

2. C.K. Stover et al. [24] found that the number of transcription factors
(Ny-) in procaryotic organisms grows as a square of the number of genes
(N): Ny o< N2, Hence, each additional gene (or a module of function-
ally related genes) appears to be regulated with respect to all other
genes present in the genome. This indicates an overall regulation pat-
tern that on sufficiently large scale is neither modular, nor hierarchic.
The equation Ny /N = (Ki,)/(Kou) relates the fraction of transcrip-
tion factors in the genome to the average in- and out-connectivities of
the transcription regulatory network. On the network level the growth
of Ni./N o« N with N is most naturally achieved by an increase in
complexity of regulation of individual genes: (K;,). Thus regulatory

19



networks inevitably become more and more interconnected in more and
more complex organisms.

A further implication of the deficit of connections between highly con-
nected proteins (Figs. 5, 6) is in the suppression of propagation of deleteri-
ous perturbations over the network. It is reasonable to assume that certain
perturbations such as e.g. a significant change in the concentration of a given
protein (including it vanishing altogether in a null-mutant cell) with a cer-
atin probability can affect its first, second, and sometimes even more distant
neighbors in the corresponding network. While the number of immediate
neighbors of a node is by definition equal to its own connectivity Ky, the av-
erage number of its second neighbors is bound from above by Ko((K;—1)) g,
and thus depends on the correlation profile of the network. Since highly
connected nodes serve as powerful amplifiers for the propagation of delete-
rious perturbations it is especially important to suppress this propagation
beyond their immediate neighbors. It was argued that scale-free networks in
general are very vulnerable to cascading failures started at individual hubs
(25, 26]. The deficit of edges directly connecting hubs to each other reduces
the branching ratio around these nodes and thus provides a certain degree
of protection against such accidents.

To summarize the above discussion, it is feasible that molecular networks
operating in living cells have organized themselves in an interaction pattern
that is both robust and specific. Topologically the specificity of different
functional modules is enhanced by limiting interactions between hubs and
suppressing the average connectivity of their neighbors. On a larger scale
there is evidence for interconnections between these modules, although the
principles of such global organization of living cells remain unclear from the
present day data and analysis tools.

The main goal of the present review was to introduce a number of sta-
tistical tools necessary for analyzing topological patterns and correlations
present in biological networks. These tools allowed us to identify the set of
distinctive topological features of several protein networks, which may help to
better understand possible mechanisms of their function and evolution. The
advantage of our approach lies also in its iterative nature in which the un-
derstanding of more and more complex topological patterns gradually builds
up on the analysis of the lower level features.
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