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Large-scale topological properties of
molecular networks

Sergei Maslov1, Kim Sneppen2

Abstract:

Bio-molecular networks lack the top-down design. Instead, selective forces
of biological evolution shape them from raw material provided by random
events such as gene duplications and single gene mutations. As a result
individual connections in these networks are characterized by a large degree
of randomness. One may wonder which connectivity patterns are indeed
random, while which arose due to the network growth, evolution, ans/or its
fundamental design principles and limitations?

Here we introduce a general method allowing one to construct a random
null-model version of a given network while preserving the desired set of
its low-level topological features, such as, e.g., the number of neighbors of
individual nodes, the average level of modularity, preferential connections
between particular groups of nodes, etc. Such a null-model network can then
be used to detect and quantify the non-random topological patterns present
in large networks.

In particular, we measured correlations between degrees of interacting
nodes in protein interaction and regulatory networks in yeast. It was found
that in both these networks, links between highly connected proteins are
systematically suppressed. This effect decreases the likelihood of cross-talk
between different functional modules of the cell, and increases the overall
robustness of a network by localizing effects of deleterious perturbations. It
also teaches us about the overall computational architecture of such networks
and points at the origin of large differences in the number of neighbors of
individual nodes.

1Department of Physics, Brookhaven National Laboratory, Upton, New York 11973,
USA; E-mail: maslov@bnl.gov

2Nordita, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark; E-mail: sneppen@nbi.dk
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1 Introduction

Complex networks appear in biology on many different levels:

• All biochemical reactions taking place in a single cell constitute its
metabolic network, where nodes are individual metabolites, and edges
are metabolic reactions converting them to each other.

• Virtually every one of these reactions is catalyzed by an enzyme and
the specificity of this catalytic function is ensured by the key and lock
principle of the physical interaction with its substrate. Often the func-
tional enzyme is formed by several mutually interacting proteins. Thus
the structure of the metabolic network is shaped by the network of
physical interactions of cell’s proteins with their substrates and each
other.

• The abundance and the level of activity of each of the proteins in the
physical interaction network in turn is controlled by the regulatory
network of the cell. Such regulatory network includes all of the mul-
tiple mechanisms in which proteins in the cell exert control on each
other including transcriptional and translational regulation, regulation
of mRNA editing and its transport out of the nucleus, specific targeting
of individual proteins for degradation, modification of their activity e.g.
by phosphorylation/dephosphorylation or allosteric regulation, etc.

• On yet higher level individual cells in a multicellular organism exchange
signals with each other. This gives rise to several new networks such
as e.g. nervous, hormonal, and immune systems of animals. The inter-
cellular signaling network stages the development of a multicellular
organism from the fertilized egg.

• Finally, on the grandest scale, the interactions between individual species
in ecosystems determine their food webs.

In this review we concentrate on large-scale topological properties of com-
plex biological networks operating on the levels of physical protein-protein
interactions and transcriptional regulation.
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2 Topological properties of protein networks

2.1 Single-node topological properties

An interesting property of many biological networks that was recently brought
to attention of the scientific community [1, 2, 3] is an extremely broad distri-
bution of nodes’ degrees (often called connectivities in the network literature)
defined as the number of immediate neighbors of a given node in the network.
While the majority of nodes have just a few edges connecting them to other
nodes in the network, there exist some nodes, that we will refer to as “hubs”,
with an unusually large number of neighbors. The degree of the most con-
nected hub in such a network is typically several orders of magnitude larger
than the average degree in the network. Often the number of nodes N(K)
with a given degree K can be approximated by a scale-free power law form
N(K) ∼ K−γ in which case the network is referred to as scale-free [1].

In this review we concentrate on large-scale properties of physical in-
teraction and regulatory protein networks. In Fig 1 we show the presently
known [4] set of transcriptional regulations in a procaryotic bacterium Es-
cherichia coli. For comparison, Fig. 2 shows the presently known [5] tran-
scriptional regulations in a simple single-cell eucaryote, Saccharomyces cere-
visiae (baker’s yeast).

Both yeast and E.coli regulatory networks are characterized by the above
mentioned broad distribution of out-degrees Kout of its protein-nodes defined
as the number of directed arrows emanating from individual regulatory pro-
teins. Clearly visible in Figs. 1,2 are the hub regulatory proteins that control
the expression level of an unusually large number other proteins. For exam-
ple, in the E.coli network one can see an extremely highly connected node in
the lower half of Fig. 1. It is the CAP protein that senses the glucose level,
and in response to it orchestrates a cooperative action of a large battery of
other proteins related to its utilization.

By comparing Figs. 1, and 2 one gets an impression that the apparent
growth in complexity of the transcription regulatory network from procary-
otes to eucaryotes is achieved mostly by the virtue of an increase in the
typical number of regulatory inputs of a protein (in-degree) Kin.

To quantify this further in Fig. 3A we compare distributions of nodes’
in-degrees in transcriptional regulatory networks of yeast (diamonds, dashed-
line) and E. coli (circles, solid-line). One can clearly see that the distribution
of in-degrees in yeast is significantly broader than that in the E. coli. Indeed,
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Figure 1: Presently known [4] transcriptional regulations in E. coli. Green
and red arrows denote positive and negative regulations correspondingly.
Nodes in this network represent operons (groups of genes transcribed onto
a single mRNA) and arrows (edges) – direct transcriptional regulation of
a downstream operon by a transcription factor encoded in the upstream
operon. This network consists of 606 regulations of 424 operons by tran-
scription factors contained in 116 different operons.
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Figure 2: Presently known [5] transcriptional regulations in baker’s yeast S.
cerevisiae. This network consists of 1289 regulations of 682 proteins by 125
transcription factors. Green and red arrows denote positive and negative
regulations correspondingly. Vertices corresponding to transcription factors
are filled while those of remaining proteins are left empty. Apart from the ab-
sence of clear signs of modularity (the network has a unique giant connected
component or module and only a few small small disconnected modules),
one notices several striking features related to hub proteins that each reg-
ulate many other proteins: 1) They tend to regulate genes with just a few
regulatory inputs. As a result of this they are well separated form each other,
and positioned on a periphery of the network. This will be later quantified in
the correlation profile of this network (Figs 7, 9). 2) It is much more frequent
for a protein to regulate many other proteins, than to be regulated by many.
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while in the E. coli Kin has an exponential distribution ranging only between
0 and 6, in yeast its range is already between 0 and 15 and the tails of
the distribution start to significantly deviate from the exponential functional
form.

The above observations are in agreement with two recent empirical stud-
ies: C.K. Stover et al. [6] found that the number of transcription factors
(Ntr) in procaryotic organisms grows as a square of the number of genes (N):
Ntr ∝ N2. Very recently E. van Nimwegen [7] has extended this result to
eucaryotes where he also observed a superlinear scaling Ntr ∝ N1.26. The
exact equation

Ntr/N = 〈Kin〉/〈Kout〉 (1)

relates the fraction of transcription factors in the genome of an organism to
the average in- and out-degrees of its transcription regulatory network. Thus
a direct consequence of the growth of the ratio Ntr/N with N is the increase
in complexity of regulation of individual genes: 〈Kin〉.

The distribution of Kout shown in Fig. 3B appears to be about equally
broad in E. coli and yeast. It ranges between 1 and about 70 regulations
in both networks. The power-law fit N(Kout) ∼ K−γ

out gives γ ≈ 2 in E-coli,
while in yeast the distribution seems to have an initial slope characterized by
γ ≈ 1 followed by a sharper decay for Kout > 30. However, due to a limited
range and an incomplete and possibly anthropomorphically biased nature of
the data (databases of research articles) one should not take these fits too
seriously: at the very least they indicate an unusually broad distribution of
degrees in both networks.

Comparison of the Fig. 3 A and B also shows that in both organisms
the in-degree distribution is much more narrow than that of the out-degree.
That is a simple consequence of the fact that regulatory proteins (those with
a non-zero Kout) constitute just a small fraction of all proteins in the cell.

Apart from transcriptional regulatory networks, metabolic networks [2],
and protein-protein physical interaction networks [3] are characterized by a
very broad distribution in the number of neighbors of their individual nodes.
A small part of such physical interaction network in baker’s yeast is visual-
ized in Fig. 4.

One aspect of a broad distribution of node degrees in protein interaction
and regulatory networks, is the possibility of amplification and exponential
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Figure 3: A. The histogram N(Kin) of nodes’ in-degrees Kin in transcription
regulatory networks of yeast (diamonds, dashed line), and E. coli (circles,
solid line). This histogram in yeast is noticeably broader and has fatter
non-exponential tails than that in the E. Coli.
B. The histogram N(Kout) of nodes’ out-degrees Kout in transcription regula-
tory network in yeast (diamonds, dashed line), and E. coli (circles, solid line).
Overall, these histograms are rather similar between these two very different
organisms. Straight lines are power law fits with the slope −2 (solid) and
−1 (dot-dashed). To improve the statistics all histograms in this panel were
logarithmically binned into 5 bins per decade.
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Figure 4: Network of physical interactions between nuclear proteins in yeast.
Here we show the subset of protein-protein physical interactions reported in
the full set of Ref. [8] consisting of 318 interactions between proteins that are
known to be localized in the yeast nucleus [5]. The resulting network involves
329 proteins. Note that most neighbors of highly connected proteins have
rather low connectivity. This feature will be later quantified in the correlation
profile of this network (Figs 6, 8). Nodes are color coded according to how
essential they are for the survival of yeast cells under laboratory conditions
[5]. White nodes correspond to viable and black ones to non-viable null-
mutants lacking the corresponding protein.
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spread of signals propagating in the network. The upper bound of the one
step amplification of some biochemical signal propagating in a directed net-
work is given by

A(dir) =
〈KinKout〉
〈Kin〉 . (2)

This amplification factor A(dir) measures the average number of neighbors to
which the signal can be potentially broadcasted in one propagation step. The
above formula, derived by Newman in Ref. [9], follows from the observation
that a signal enters a given node with a probability proportional to its in-
degree Kin, and leaves along any of its Kout outgoing links. For A(dir) ≤ 1 the
any given signal eventually dies out and hence affects only a small fraction of
nodes in the network. On the other hand, for A(dir) > 1 signals propagating
in the network might be exponentially amplified, and thus each of them could
influence (and possibly interfere with) other signals over the entire network.

The degree K in undirected networks cannot be decomposed into in- and
out- components. Hence the upper bound on amplification of signals is given
by the amplification factor A(undir) [9]:

A(undir) =
〈K(K − 1)〉

〈K〉 . (3)

In the above equation we take into account the fact that the signal cannot
reach new nodes along the edge by which it came to a given node. Hence the
use of K−1 in the enumerator. The amplification factor A(undir) in scale-free
networks with γ < 3 is very large and sensitive to the degrees of the highest
connected hub-nodes. Here the borderline case A(undir) = 1 also separates
two different regimes. For A(undir) < 1 the network breaks apart into many
components isolated from each other, while for A(undir) À 1 it consists of a
unique “giant” component, containing the majority of all nodes, and a few
small disconnected components.

The direct calculation of the directed amplification ratioA(dir) in the tran-
scription regulatory network gives A(dir)

ec = 1.08 in the E. coli and A(dir)
sc =

0.58 in yeast. Hence as directed networks they are both below or approxi-
mately at (in E. coli) the critical point Ac = 1. Therefore, signals propagat-
ing in these networks cannot exponentially amplify, which limits the extent
of cross-talk between them. However if both these regulatory networks are
treated as undirected (i.e. one temporarily forgets about the arrows on their
edges) one gets significantly overcritical amplification ratios A(undir) >> 1:
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A(undir)
ec = 10.5 in the E.coli and A(undir)

sc = 13.4 in yeast. This explains why
the majority of nodes in Figs 1,2 belong to the largest connected component,
and why the size of disconnected components is so small. Apparently the
cross-talk presents much bigger poetntial problem in the network of physical
interactions between yeast proteins (Fig. 4), where A(undir)

PPI = 26.3. In the
last chapter of this review we would return to the question of cross-talk and
demonstrate how higher-level topological properties detected in both phys-
ical and regulatory networks in yeast [10] help to reduce such undesirable
interference between signals.

2.2 Local rewiring algorithm: constructing a random-
ized null-model network

The set of degrees of individual nodes is an example of a low-level (single-
node) topological property of a network. While it answers the question about
how many neighbors a given node has, it gives no information about the
identity of those neighbors. It is clear that most functional properties of
networks are defined at a higher topological level in the exact pattern of
connections of nodes to each other. However, such multi-node connectivity
patterns are rather difficult to quantify and compare between networks.

In this chapter we concentrate on multi-node topological properties of
protein networks. These networks (as any other biological networks) lack
the top-down design. Instead, selective forces of biological evolution shape
them from raw material provided by random events such as mutations within
individual genes, and gene duplications. As a result their connections are
characterized by a large degree of randomness. One may wonder which con-
nectivity patterns are indeed random, and which arose due to the network
growth, evolution, ans/or its fundamental design principles and limitations?

To this end we first construct a proper randomized version (null model)
of a given network. As was pointed out in the general context of complex
scale-free networks [9], a broad distribution of degrees indicates that the de-
gree itself is an important individual characteristic of a node and as such
it should be preserved in the randomized null-model network [10]. In addi-
tion to degrees one may choose to preserve some other low-level topological
properties of the network in question [11]. Any measurable topological quan-
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Figure 5: One step of the random local rewiring algorithm. A pair of edges
A→B and C→D is randomly selected. The two edges are then rewired in
such a way that A becomes connected to D, while C to B, provided that
none of these new edges already exist in the network, in which case the
rewiring step is aborted and a new pair of edges is selected. An independent
random network is obtained when the above local switch move is performed
a large number of times, say several times in excess of the total number of
edges in the system. Note that for directed networks this rewiring algorithm
separately conserves both the in- and out- degrees of each individual node.

tity, such as e.g. the total number of edges connecting pairs of nodes with
given degrees, the number of loops of a certain type, the number and sizes
of components, the diameter of the network, can then be measured in the
real complex network and separately in its randomized version. One then
concentrates only on those topological properties of the real network that
significantly deviate from its null model counterpart [10, 11, 12, 13].

An algorithm giving rise to a random network with the same set of indi-
vidual node degrees as in a given complex network was proposed in [14, 10].
It consists of multiple repetitions of the following simple switch move (ele-
mentary rewiring step) illustrated in Fig. 5:

Randomly select a pair of edges A→B and C→D and rewire them
in such a way that A becomes connected to D, while C to B. To
prevents the appearance of multiple edges connecting the same pair of nodes,
the rewiring step is aborted and a new pair of edges is selected if one or two
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of the new edges already exist in the network. A repeated application of the
above rewiring step leads to a randomized version of the original network.
The set of MATLAB programs generating such a randomized version of any
complex network can be downloaded from [15].

Sometimes it is desirable that the null-model random network in addition
to nodes’ degrees conserves some other topological quantity of the real net-
work. In this case one could supplement [11] the random rewiring algorithm
described above with the Metropolis acceptance/rejection criterion [16] of a
switch move.

For the sake of concreteness let’s assume that one wants to generate a
random network with the same set of nodes’ degrees and the same number
N4 of triangles as the real undirected network [11]. Indeed, the number of
triangles in a network is related to its “clustering coefficient” routinely used
as a measure of its modularity [17]. Hence, by conserving N4 one generates a
null-model with the same average level of modularity as the original complex
network.

The Metropolis version [11] of the random rewiring algorithm uses an
artificial energy function H that favors the number of triangles in a random
network N

(r)
4 to be as close as possible to its value N4 in the real network:

H =

(
N

(r)
4 − N4

)2

N4
. (4)

The Metropolis rules in this case allow for any local rewiring step that low-
ers the energy H or leaves it unchanged. However, those steps that lead
to a ∆H increase in the “energy” H are accepted only with a probability
exp(−∆H/T ). Here the exact rules of the algorithm depend on (typically
very small) “temperature” T introduced to prevent the sequence of rewiring
steps from getting stuck in a local (often suboptimal or non-representative)

energy minimum. In order to get a random network with N
(r)
4 sufficiently

close to N4 the temperature should be selected to be as small as possible
without sacrificing the ergodicity of the problem. In the end one could always
“prune” the resulting ensemble of random networks by leaving only networks
with N

(r)
4 = N4.
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2.3 Multi-node properties of protein networks: corre-
lation profile.

The correlation profile of any large complex network quantifies correlations
between degrees of its neighboring nodes. We have calculated correlation
profiles of:

1. The protein interaction network consisting of 4475 physical interactions
between 3279 yeast proteins as measured in the most comprehensive
high-throughput yeast two-hybrid screen [8]. A subset of this network
is shown in Fig. 4

2. The transcriptional regulatory network in yeast (Fig. 2), consists of
1289 (1047 positive and 242 negative) regulations by 125 transcription
factors [5] within the set of 682 proteins.

While the regulatory network is naturally directed, the network of phys-
ical interactions among proteins in principle lacks directionality. Random-
ized versions of these two molecular networks were constructed by randomly
rewiring their edges, while preventing “unphysical” multiple connections be-
tween a given pair of nodes, as described in the previous chapter. By con-
struction this algorithm separately conserves the in- and out-degrees of each
node. Therefore, in a randomized version of the regulatory network each
protein has the same numbers of regulators and regulated proteins as in the
original network. Taking in consideration the bait-prey asymmetry men-
tioned in [10], when generating random counterpart of the interaction net-
work we chose to separately conserve numbers of interaction partners of the
bait-hybrid and the prey-hybrid of every protein.

The topological property of the network giving rise to its correlation
profile is the number edges N(K0, K1) connecting pairs of nodes with de-
grees K0 and K1. To find out if in a given complex network the degrees
of interacting nodes are correlated, N(K0, K1) should be compared to its
value Nr(K0, K1) ± ∆Nr(K0, K1) in a randomized network, generated by
the edge rewiring algorithm. When normalized by the total number of
edges E, N(K0, K1) defines the joint probability distribution P (K0, K1) =
N(K0, K1)/E of degrees of interacting nodes. Any correlations would mani-
fest themselves as systematic deviations of the ratio

R(K0, K1) = P (K0, K1)/Pr(K0, K1) (5)
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away from 1. Statistical significance of such deviations is quantified by their
Z-score

Z(K0, K1) = (P (K0, K1)− Pr(K0, K1))/σr(K0, K1) , (6)

where σr(K0, K1) = ∆Nr(K0, K1)/N is the standard deviation of Pr(K0, K1)
in an ensemble of randomized networks.

Figs. 6 and 7 show the ratio R(K0, K1) as measured in yeast interaction
and transcription regulatory networks, respectively. In the interaction net-
work K0 and K1 are numbers of neighbors of the two interacting proteins,
while in the regulatory network K0 is the out-degree of the regulatory protein
and K1 – the in-degree of its regulated partner. Thus by its very construction
P (K0, K1) is symmetric for the physical interaction network but not for the
regulatory network. Figs. 8,9 plot the statistical significance Z(K0, K1) of
deviations visible in Figs. 6,7 correspondingly. To arrive at these Z-scores
1000 randomized networks were sampled and degrees were logarithmically
binned into two bins per decade.

The combination of R- and Z-profiles reveals the regions on the K0−K1

plane, where connections between proteins in the real network are signifi-
cantly enhanced or suppressed, compared to the null model. In particular,
the blue/green region in the upper right corner of Figs. 6-9 reflects the re-
duced likelihood that two hubs are directly linked to each other, while red
regions in the upper left and the lower right corners of these figures reflect
the tendency of hubs to associate with nodes of low degree. One should also
note a prominent feature on the diagonal of the Fig. 6 and 8 corresponding
to an enhanced affinity of proteins with between 4 and 9 physical interac-
tion partners towards each other. This feature can be tentatively attributed
to members of multi-protein complexes interacting with other proteins from
the same complex. The above range of degrees thus correspond to a typical
number of direct interaction partners of a protein in a multi-protein com-
plex. When we studied pairs of interacting proteins in this range of degrees
we found 39 of such pairs to belong to the same complex in the recent high-
throughput study of yeast protein complexes [18]. This is about 4 times more
than one would expect to find by pure chance alone.
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Figure 6: Correlation profile of the protein interaction network in yeast. The
ratio R(K0, K1) = P (K0, K1)/Pr(K0, K1), where P (K0, K1) is the proba-
bility that a pair of proteins with K0 and K1 interaction partners corre-
spondingly, directly interact with each other in the full set of Ref. [8], while
Pr(K0, K1) is the same probability in a randomized version of the same net-
work, generated by the random rewiring algorithm described in the text.
Note the logarithmic scale of both axes.
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Figure 7: Correlation profile of the transcription regulatory network in yeast.
The ratio R(Kout, Kin) = P (Kout, Kin)/Pr(Kout, Kin), where P (Kout, Kin) is
the probability that a protein node with the out-degree Kout transcription-
ally regulates the protein node with the in-degree Kin in the transcription
regulatory network obtained from the YPD database [5] (Fig. 2), while
Pr(Kout, Kin) is the same probability in a randomized version of the same
network, generated by the random rewiring algorithm described in the text.
Note the logarithmic scale of both axes.
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Figure 8: Statistical significance of correlations present in the protein interac-
tion network in yeast. The Z-score of correlations Z(K0, K1) = (P (K0, K1)−
Pr(K0, K1))/σr(K0, K1), where P (K0, K1) is the probability that a pair of
proteins with K0 and K1 interaction partners correspondingly, directly inter-
act with each other in the full set of Ref. [8], while Pr(K0, K1) is the same
probability in a randomized version of the same network, generated by the
random rewiring algorithm described in the text, and σr(K0, K1) is the stan-
dard deviation of Pr(K0, K1) measured in 1000 realizations of a randomized
network. Note the logarithmic scale of both axes.
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Figure 9: Statistical significance of correlations present in the transcription
regulatory network in yeast. The ratio Z(Kout, Kin) = (P (Kout, Kin) −
Pr(Kout, Kin))/σr(Kout, Kin)), where P (Kout, Kin) is the probability that a
protein node with the out-degree Kout transcriptionally regulates the pro-
tein node with the in-degree Kin in the network from the YPD database [5],
while Pr(Kout, Kin) is the same probability in a randomized version of the
same network, generated by the random rewiring algorithm described in the
text, and σr(Kout, Kin) is the standard deviation of Pr(Kout, Kin) measured
in 1000 realizations of a randomized network. Note the logarithmic scale of
both axes.
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2.4 Robustness of the correlation profile with respect
to potential errors in the data

When analyzing molecular networks one should consider possible sources of
errors in the underlying data. Two-hybrid experiments in particular are
known to contain a significant number of false positives and probably even
more of false negatives.

The evidence of a significant number of false negatives lies in the fact that
only a small fraction of functionally plausible interactions were detected in
both directions (the bait-hybrid of a protein A interacting the prey-hybrid
of a protein B as well as the prey-hybrid of a protein A interacting the bait-
hybrid of a protein B). It is also attested by a relatively small overlap in
interactions detected in the two independent high-throughput two hybrid
experiments [19, 8]. There exist a number of plausible explanations of these
false negatives. First of all, binding may not be observed if the conformation
of the bait or prey chimeric protein blocks relevant interaction sites or if
it altogether fails to fold properly. Secondly, it is not entirely clear if the
number of cells in batches used in high-throughput two hybrid experiments
is sufficient for any given bait-prey pair to meet in at least one cell. Finally,
391 out of potential 5671 baits in [8] were not experimentally tested because
they were found to activate the transcription of the reporter gene in the
absence of any prey proteins.

Several sources of false positives are also commonly mentioned in the
literature:

• In one scenario spurious interactions of highly connected baits are
thought to arise due to a low-frequency indiscriminate activation of the
reporter gene in the absence of any prey proteins. Such false positives
(if they exist) are easy to eliminate by using curated high-throughput
datasets which contain only protein pairs that were observed, say, at
least 3 times in the course of the experiment. We have shown that all
qualitative features of the correlation profile of the protein interaction
network reported above remain unchanged when one uses such curated
datasets [20].

• In another scenario the interaction between proteins is real but it never
happens in the course of the normal life cycle of the cell due to spatial
or temporal separation of participating proteins. However, it is hard
to believe that such non-functional interactions would be preserved for
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a long time in the course of evolution. Hence, it is dubious that such
false-positives would be ubiquitous.

• In yet another scenario an indirect physical interaction is mediated by
one or more unknown proteins localized in the yeast nucleus. However,
since in two-hybrid experiments bait and prey proteins are typically
highly overexpressed, it is only very abundant intermediate proteins
that can give rise to an indirect binding. The relative insignificance of
indirect bindings is attested by a relatively small number of triangles
(178 vs ∝ 100 in a randomized version) in the protein interaction net-
work. Indeed, an indirect interaction of a protein A with a protein B
effectively closes the triangle of direct interactions A-C and C-B with
an intermediate protein C.

3 Discussion: What it may all mean?

The large-scale organization of molecular networks deduced from correlation
profiles of protein interaction and transcription regulatory networks in yeast
is consistent with compartmentalization and modularity characteristic of
many cellular processes [21]. Indeed, the suppression of connections between
highly-connected proteins (hubs) suggests the picture of semi-independent
modules centered around or regulated by individual hubs. On the other
hand, the very fact that these molecular networks do not separate into
many isolated components but are dominated by one “giant component”
suggests that this tendency towards modularity is not taken to its logical
end. The observed patterns can in fact be characterized as “soft modular-
ity”, where interactions between individual modules are suppressed but not
completely eliminated. Thus on sufficiently large scale molecular networks
exhibit system-wide properties making their behavior different from that of
a set of mutually independent modules.

A further implication of the deficit of connections between highly con-
nected proteins (Figs. 6, 7) is in the suppression of propagation of deleteri-
ous perturbations over the network. It is reasonable to assume that certain
perturbations such as e.g. a significant change in the concentration of a given
protein (including it vanishing altogether in a null-mutant cell) with a cer-
atin probability can affect its first, second, and sometimes even more distant
neighbors in the corresponding network. While the number of immediate
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neighbors of a node is by definition equal to its own degree K0, the aver-
age number of its second neighbors is bound from above by K0〈(K1 − 1)〉K0

and thus depends on the correlation profile of the network. Since highly
connected nodes serve as powerful amplifiers for the propagation of delete-
rious perturbations it is especially important to suppress this propagation
beyond their immediate neighbors. It was argued that scale-free networks in
general are very vulnerable to cascading failures started at individual hubs
[22, 23]. The deficit of edges directly connecting hubs to each other reduces
the branching ratio around these nodes and thus provides a certain degree
of protection against such accidents.

Finally, we would like to mention that the tendency of highly connected
proteins to be positioned at the periphery of signalling and regulatory net-
works teaches us something about the overall computational architecture of
such networks and origins of their broad degree distributions. Indeed, the
peripheral position of hubs indicates that they presumably execute collec-
tive orders of other more “computationally-involved” regulators, rather than
performing computations and making decision on their own. This principle
is nicely illustrated in the lambda-phage regulatory network (see Fig. 10),
where the decision making/computation is done by CI , CII, and Cro proteins
of low-to-intermediate degree, whereas their orders are executed through the
N, and LexA hub-proteins. Broad degree distributions observed in molec-
ular networks presumably reflect the widely different needs associated with
different functions that a living cell needs to cope with changes in its envi-
ronment. Thus highly connected regulatory proteins usually correspond to
rather complicated tasks such as e.g. the heat shock response, where about 40
chaperones are controlled by a single sigma factor, or the chemotaxis where a
few regulatory proteins switch on a large number of proteins associated with
flagella, flagellar motor, and sensing of the environment.

To summarize the above discussion, it is feasible that molecular networks
operating in living cells have organized themselves in a particular computa-
tional architecture that makes their dynamical behavior both robust and spe-
cific. Topologically the specificity of different functional modules is enhanced
by limiting interactions between hubs and suppressing the average degree of
their neighbors. On a larger scale there is evidence for interconnections be-
tween these modules, although the principles of such global organization of
living cells remain unclear from the present day data and analysis tools.
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Figure 10: Lambda-phage regulatory network. The actual computation is
done by centrally positioned CI, Cro and CII that have low-to-intermediate
out-degree and relatively large in-degree. Their decision is transmitted to
peripherally positioned, highly connected hub-proteins such as N and LexA,
which in their turn broadcast it to the whole battery of response genes. As a
curiosity, note that the HflB protease from E. coli’s heat-shock response net-
work interacts with the lambda-phage regulatory network. Another curiosity:
the HflB directly regulates DnaK, which at least indirectly has substantial
influence on the overall transcription of ribosomal RNAs of the E. coli. Thus
the lambda network integrates as a small subnetwork in the overall bacterial
regulatory network of E. coli. The notation used in this figure: ↑ indicates
positive regulation, > indicates passive negative regulation; > indicates ac-
tive degradation through the protease activity.
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