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Dynamical Response of Quasi 1D Mott Insulators 

Fabian H.L. Essler and Alexei bl. Tsvelik 

Abstract. At low energies cert.ain one dimensional Mott insulators can be described 
in terms of an exactly solvable quantum field theory, the U(1) Thirring model. 
Using exact results derived from integrability we determine dynamical properties 
like the frequency dependent optical conductivity and the single-particle Green’s 
function. We discuss the effects of a small temperature and the effects on interchain 
tunneling in a model of infinitely many weakly coupled chains. 

I Introduction 

The problem of the Mott metal-insulator transition, which is a paradigm for the 
importance of electron-electron interactions, has been the subject of great interest 
[l] since the pioneering works by Mott [2]. The intrinsic difficulty in describing 
the Mott transition quantitatively is that it occurs when the kinetic and potential 
energies are of the same order. This regime is difficult to access from either the 
“band” (where one diagonalizes the kinetic energy first and then takes electron- 
electron interactions into account perturbatively) or the “atomic” (where one di- 
agonalizes the electron-electron interaction first and then takes the hopping into 
account perturbatively) limits. In recent years much progress in understanding 
the Mott transition has been made based on the so-called Dynamical Mean Field 
theory, which considers a lattice in infinitely many dimensions D --i 00 (see Ref.[3] 
and references therein). Here we are concerned with the rather different situation, 
where the tunneling along one lattice direction is much larger than along all others. 
The resulting system can be thought of in terms of weakly coupled chains of elec- 
trons and will be referred to as a quasi one dimensional Mott insulator. When the 
band is half-filled and the interchain tunneling is switched off, Umklapp processes 
dynamically generate a spectral gap M and we are dealing with an ensemble of 
uncoupled 1D Mott insulating chains. The same Umklapp scattering mechanism 
can generate gaps at any commensurate flling e.g. quarter filling, but only if the 
interactions are sufficiently strong. There are two questions we want to address: 
(i) What is the dynamical response of the uncoupled Mott-insulating chains sys- 
tem? and (ii) What are the effects of a weak interchain tunneling? Examples of 
materials that are believed to fall into the general category of quasi-1D Mott in- 
sulators are the Bechgaard salts {4] and chain cuprates like SrCuO2, Sr2CuO3 ’ 
or PrBazCu307. They have been found to exhibit very rich and unusual physical 
properties such as spin-charge separation [5, 61. 

IMore precisely, these compounds are considered to be chargetransfer insulators. 
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The Models 

The simplest models used in the description of one dimensional Mott insulators 
are “extended” Hubbard models of the form 

fi = -t [ c ~ , , c ~ + I , ~  + h.c.1 + U C n k , T n k . l  + V, C n k n k + j  (1) 

where n k , ,  = cL,,ck,, and n k  = n k , ~  + n k . 1  are electron number operators. The 
electron-electron interaction terms mimic the effects of a screened Coulomb inter- 
action. Two cases are of particular interest from the point of view of application to 
e.g. the Bechgaard salts [4, 71: (1) Half filling (1 electron per site) and (2) Quarter 
filling (1 electron per 2 sites). We will discuss both these cases and emphasize 
similarities and differences in their dynamical response. 

I1 

The field theory limit is constructed by keeping only the low-energy modes in the 
vicinity of the Fermi points i k ~ .  We may express the lattice electron annihilation 
operator in terms of the slowly varying (on the scale of the lattice spacing ao) right 
and left moving electron fields R(z) and L(z)  

121 k k n.u 

Field theory description of the low energy limit 

(2) C L , ~  - Jao[exp(ik~z) &(zj + exp(-ibz) L,(z)l. 

Here k~ = 7r/2ao for the half-filled band and z = lao. The resulting Fermion 
Hamiltonian can then be bosonized by standard methods [8]. 

A. Half Filled Band 
For the half-filled case we have 

RL(z) = - ezfor/‘exp (i [$ac + ;ec])  exp (% [a, + e,]) 1 (3) 6 
where qa are Klein factors with {q,, q,} = 26,b and where fr = 1, f l  = -1 ’. The 
canonical Bose fields @A.c and their respective dual fields @s.c are given by 

- - 
(4 @,=$,+a, ,  o , = ( b a - c b a ,  a = s , c ,  

where the chiral boson fields and 4, fulfill the following commutation relations 

(5) [&(x), &(yj] = 27ri , a = c, s. 

2The phase factors in (3) have been introduced in order to ensure the standard bosonization 
formulas foe the staggered magnetizatlons 
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We choose a normalization such that for 15 - y1 - 0 the following operator 
product expansion holds 

exp ( i c ~ @ ~ ( x ) )  exp (i,B@,(y)) - 15 - y14@ exp ( i c ~ @ ~ ( x )  + i P C ( y ) ) .  (6) 

Applying the bosonization identities we obtain the following bosonic form of the 
low energy effective Hamiltonian 

(7) 
VC 

1-Ic = + (&W2] + 2pccosPQ>c . 

Here the spin and charge velocities vstc and the parameters ,B and pc are functions 
of U and V,. The Hamiltonian (7) exhibits spin-charge separation: 7-Lc,s describe 
charge and spin degrees of freedom respectively, which are independent of one 
another. The pure Hubbard model corresponds to the limit ,B + 1 and the effect 
of V, is to decrease the va.lue of 0. From the form (7) we can deduce a number 
of important properties. Firstly, the spin sector is gapless and is described by a 
free bosonic theory. Hence correlation functions involving (vertex operators of) the 
spin boson as and its dual field 0, can be calculated by standard methods [8]. 
Excitations in the spin sector are scattering states of gapless, chargeless spin 
objects called SP~RORS. The charge sector of (7) is a Sine-Gordon model (SGM). 
Here excitations in the regime ,B > -& are scattering states of gapped charge f e  
excitations called soliton and antisoliton respectively. In the context of the half- 
filled Mott insulator these are also known as h0l011 and antiholon. Soliton and 
antisoliton have massive relativistic dispersions, 

E ( P )  = &iFT-p 1 (8) 

where M is the single-particle gap. For V, = 0, j 2 3 the gap scales as 

where we have fixed the constant factor by comparing to the exact result for the 
Hubbard model, and where 

U + 6V2 + 2V2 1 

g = (U+6& + 2 V z ) / 2 ~ t .  (10) 

We note that the gap vanishes on the critical surface U - 2Vl+ 2V2 = 0 separating 
the Mott-insulating phase with gapless spin excitations from another phase with 
a spin gap. 
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In the regime 0 < p < l/d, soliton and antisoliton attract and can form 
[n the SGM these are usually known as “breathers“ and correspond 

E L _. 
h- - - 

to excitons in the underlying extended Hubbard lattice model. There are 
bound states. : 

different types of excitons, where [z] in (11) denotes the integer part of 2. The 
exciton gaps are given by 

Mn = 2Msin(n~[/2) , n = 1,. . . , N , 

P2 E = - -  
1 - p .  

(12) 

(13) 
where 

B. Quarter Filled Band 

In the quarter filled case there are no simple Umklapp processes that can open a 
gap in the charge sector. As a result the quarter-filled extended Hubbard model 
is metallic in the weak coupling regime. However, integrating out the high energy 
degrees or freedom generates “double Umklapp” processes involving four electron 
creation and annihilation operators each [9, lo]. For small U, V, these processes are 
irrelevant, but increasing U, V, decreases their scaling dimension until the double 
Umklapp term eventually becomes relevant. The low-energy effective Hamiltonian 
is identical to (7), but the relations between the Fermi operators and the Bose 
fields are different 

‘cr ezfor/‘exp (-4 i p  [zm, - ,o.]) 2 exp (-T ifm [+a, -es]) , L!(z) = - 
Jz;; 

RL(2) = - 
Jz;; 
% eiforr/‘ exp (4 i p  [ T+c + ...I> 2 exp (% [as + Q S ] )  . (14) 

Although the low-energy effective Hamiltonian is the same as for the half-filled 
blott insulator, the physical properties in the quarter-filled case are rather dif- 
ferent. Firstly, the insulating state emerging for sufficiently large U, V, at quarter 
filling is generated by a different physical mechanism (double Umklapp scattering) 
as compared to half filling (Umklapp scattering) and concomitantly is referred to 
as a 4 k ~  charge-density wave insulator in the literature [ll]. We adopt this ter- 
minology here. Secondly, the quantum numbers of elementary excitations in the 
charge sector are different. Like for the half-filled case the elementary excitations in 
the charge sector are a soliton/antisoliton doublet, but now they carry fractional 
charge zt:. A simple way to see this is to recall that the conserved topological 
charge in the SGM is defined as 

& = 4 / ” d r a , m , .  2T -= (15) 
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The soliton has topological charge -1 and the antisoliton +l. A simple calculation 
shows that the right moving fermion creates two solitons 

QRf,(zj10) = -2RL(z)10) . 

This implies that. fermion number one corresponds to topological charge 2 and 
hence solitons have fractional charge. The elementary excitations in the spin sector 
are again a pair of gapless, chargeless spin spinons. 

I11 The Method 

Due to spin charge separation a general local operator O(t, z) can be represented 
as a product of a charge and a spin piece 0 = O,O,. As a result correlation 
functions factorize as well 

(olo+(t, z) 0(0)10) = c(olo:(t, z) oc(0)lO)c .(olo!(t, z) os(0)10), , (17) 

where lo),., are the vacua in the spin and charge sectors respectively. The corre- 
lation function in the spin sector is easily evaluated as we are dealing with a free 
theory. 

Correlation Functions in the Charge Sector 

Let us now discuss how to calculate two point functions in the SGM describing 
the charge sector of the theory. One first constructs a spectral representation and 
then utilizes integrability to determine the matrix elements of the operator under 
consideration between the ground state and excited states. This method is known 
as the “Form Factor Bootstrap Approach” [12, 131. In order to utilize the spectral 
representation we need to specify a basis of eigensta.tes of the Hamiltonian (7). 
Such a basis is given by scattering states of solitons, antisolitons and breathers. 
In order to distinguish these we introduce labels B I ,  B2,. . . B N ,  s, S .  As usual for 
particles with relativistic dispersion, it is useful to introduce a rapidity variable B 
to parametrize energy and momentum 

Es(6) = Mcosh0, Ps(B) = (M/v,jsinh0, (18) 

Es(0) = Mcosh0 , .&(e) = (M/vc)sinh0, (19) 

EB, (e) = M, cosh 0 , P B ~  (0) = (Mn/vc) sinh 0 , (20) 

where the breather gaps Mn are given by (12). A basis of scattering states of soli- 
tons, antisolitons and breathers can be constructed by means of the Zamolodchi- 
kov-Faddeev (ZF) algebra, which is the extension of the algebra of creation and 
annihilation operators for free fermions or bosons to the case of interacting par- 
ticles with factorizable scattering. The ZF algebra is based on the knowledge of 
the exact spectrum and scattering matrix of the model [14]. For the SGM the 

. . - . - . - .. . ,  ._ . . .  
. .  . . 

~- 
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ZF operators (and their hermitian conjugates) satisfy the following "generalized 
commutation relations'' 

Multiparticle states are then obtained by acting with strings of creation operators 
2; (e)  on the vacuum 

Ion . . . el)tn...el = z,tn (en) . . zj1 (el>lo>. (25)  

In this basis the resolution of the identity is given by , 

and the following spectral representation of the two-point function of the operator 
6 holds 

Here Pj and Ej are given by 

(28) 
n/r, 

- 'U,  
P.  - J sinh Sj, Ej  = ME, cosh 6, , 

and the formfactors of the operator 6 are denoted by 

fo(el . . . 5 (o l~(o,o) I@,~.  . . &)e,...e1 . (29) 

The form factors ca.n be calculated by solving a Riemann-Hilbert problem involving 
the exact, scattering matrix of the SGh4 and are known for many operators. 
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Our conventions in (28) are such that Ads = hfj = A4 and MB,, = Agn. We 
are mainly interested in the Fourier transforms of the ret,arded space and time 
dependent correlation functions. These take the following general form 

IV Optical Conductivity 

The optical conductivity was calculated in Refs [17, 18, 19, 211. In the field-theory 
limit, the electrical current operator is given by 

J( t , z )  = a&$, , (31) 

where A' > 0 is a non-universal constant. The expression for the current operator 
is the same for the half-filled and the quarter filled bands. As seen from Eq. (31), 
the current operator does not couple to the spin sector. This shows that spinons 
do not contribute to the optical conductivity in the field theory limit. Hence, the 
calculation of the optical conductivity has been reduced to the evaluation of the 
retarded current-current correlation function in the charge sector. The real part 
of the optical conductivity (w > 0) has the following spectral representation 

In Refs. [12,13] integral representations for the form factors of the current operator 
in the SGM were derived. Using these results we can determine the first few terms 
of the expansion (32). From (32) it is easy to see for any given frequency w only 
a finite number of intermediate states will contribute: the delta function forces 
the sum of single-particle gaps C j  Mci to be less than w .  Expansions of the form 
(32) are usually found to exhibit a rapid convergence, which can be understood in 
terms of phase space arguments [15, 161. Therefore we expect that summing the 
first few terms in (32) will give us good results over a large frequency range. 

Using the transformation property of the current operator under charge con- 
jugation one h d s  that many of the form factors in (30) actually vanish. In particu- 
lar, only the "odd" breathers B1, BB, . . . (assuming they exist, i.e., p is sufficiently 
small) couple to the current operator. The first few non-vanishing terms of the 
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spectral representation (32) are 

Here A = A’v,/Lao and C T B ~ ( W ) ,  C T ~ ~ ( W )  and C B ~ B ~  (w )  are the contributions of the 
odd breathers, the soliton-antisoliton continuum and the B1 B2 breather-breather 
continuum respectively. The latter of course exists only if N 2 2. We find 

m-1 

fm = 4M2C2 sin(rnnE) tan2(7rnE/2) . 
n=l 

. (35) 
O0 d t  sinh(t(1 - J)/2) sinh2(rnt</2)) 

exp ( -2 7 sinh(tE/2) cosh(t/2) , sinh t 

The soliton-antisoliton contribution is [18] 

4 ~ z = u i m ( w  - an!) 
w2[cos(7r/<) f cosh(6/4)] CTsS(W) = 

) (36) 
d t  sinh[t(l - 5)/2] [l - cos(t6/n) cosht] 

e x p ( I  t sinh(tc/2) cosh(t/2) sinht 

where 6 = 2arccosh(w/2M). The result for the BlB2 breather-breather continuum 
is given in Ref. [21]. As a function of the parameter p, the optical conductivity 
behaves as follows. 

1 2  p2 > 1/2: 
In this regime the optical spectrum consists of a single “band” corresponding 
to (multi) soliton-antisoliton states above a threshold A = 2M. The absorp- 
tion band increases smoothly above the threshold A in a universal square 
root fashion 

a(w)  cc d x  for w -+ A’ . (37) 

In Fig. 1 we plot the leading contributions for the case 0’ = 0.9. Clearly, the 
four-particle contribution is negligible at low frequencies. 

b 1/2  2 o2 > 1/3: 
Here the optical spectrum contains one band and one excitonic breather peak 
below the optical gap A = 2.M at the energy W B ~  = hdl. The optical weight 
is progressively transferred from the band to the breather as p2 decreases 
down to 1/3. The absorption band again increases in a square-root fashion 
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6 

2 

Figure 1: Optical conductivity for p2 = 0.9. Shown are the dominant contributions 
at low frequencies: the soliton-antisoliton part B ~ ( w )  and the two soliton - two 
antisoliton contribution C J ~  (w).  

(37) above the threshold for all values of p2 except p2 = 1/2, where the 
breather peak merges with the band. In this case ~ ( w )  shows a square-root 
divergence at the absorption threshold 

The field theory results discussed here have been compared to Dynamical Den- 
sity Matrix Renormalization Group (DDMRG) (see e.g. Ref. [20] and references 
therein) computations of ~ ( w )  for extended Hubbard models in Refs [17, 21, 221 
and good agreement has been found in the appropriate regime of parameters. We 
note that the DDldRG method can also deal with parameter regimes in the un- 
derlying lattice model, to which field theory does not appIy. Let us discuss the 
above results from the point of view of an application to optical conductivity mea- 
surements in the Bechgaard salts [23]. There it is found that up to 99% of the 
total spectral weight is concentrated in a finite-frequency feature, which has been 
attributed to Mott physics of the type discussed here [23]. A comparison of (33) 
to the experimental data gives satisfactory agreement at high frequencies, but the 
detailed peak structure at low frequencies is not reproduced [18]. A likely source 
for these differences is the interchain tunneling. 

V Spectral Function 

A. Half-Fillled Mott Insulatpr . 

The zero-temperature spectral function of the half-filled Mott insulator has been 
studied in many previous works. There have been extensive numerical studies on 

-, ~ .- - 
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finite size t-J and Hubbard models e.g. Refs [24, 51. The limit where the single- 
particle gap is much larger than the bandwidth was treated in Refs [25]. This 
regime is complementary to the case we address here. The weak-coupling limit 
we are interested in was studied in Refs [26, 27, 281, where a conjecture for the 
spectral function was put forward. Here we derive these results by means of an 
exact, systematic method. In what follows we will for simplicity fix p = 1, i.e. deal 
with the Hubbard model only. 

1 Zero Temperature 

The single particle Green’s function is calculated by following the steps outlined 
above [29]. The creation and annihilation operators for right and left moving 
fermions factorize into spin and charge pieces upon bosonization (3). The spin 
part is easily calculated: In imaginary time we have 

The correlation function in the charge sector is calculated by means of the form 
factor bootstrap approach. Taking into account only processes involving one soliton 
we obtain 

&F-G 2 0  exp(--%d-) V C  , (40) 

where 2 0  M 0.9218 [30]. The corrections to (40) involve intermediate states with 
three particles and are negligible at long distances/low energies. In Fourier space 
we obtain after analytical continuation to real frequencies 

We note that the charge velocity v, is larger than the spin velocity v,. The spectral 
function is obtained from the imaginary part of the single particle Green’s function 
(41). In the case v, = v, = 21 it takes the simple form 

In Fig. 2 we plot the spectral function in the case ‘ZI, = 0 . 8 ~ ~  and p = 1 
both in a density plot and in a series of constant q scans. There is a continuum of 
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Figure 2: Spectral function for a half-filled Mott insulator with v, = 0.821, and 
p=1.  

states above the Mott gap, which is smallest at k ~ .  The most striking feature is 
the presence of two distinct "peaks" dispersing with velocities v, and vc respec- 
tively. Most of the spectral weight is concentrated in these features, which are a 
direct manifestation of Spin-Charge Separation. The lower (higher) energy fea- 
ture corresponds to the situation where all the momentum is carried by the spin 
(charge) sector. Concomitantly the high/low energy feature is referred to as anti- 
holon/spinon peak. Neither peak is sharp but has intrinsic width (more precisely, 
they correspond to square root divergences). 

2 Finite Temperature T << M 

It is possible to extend the results for the spectral function to small temperatures 
T 5 M [31]. The method is a straightforward generalization of the one we employed 
for T = 0. As T 5 M the effects of temperature on the charge piece of the 
correlation function are small, but the spin piece can be affected quite strongly 
because the spinons are gapless. The spectral function in the vicinity of k~ can be 
represented as 
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Figure 3: Spectral function for a half-filled Mott insulator with us = 0 . 5 ~ ~  and 
p = 1 a‘; temperatures T = 0.03M and T = 0.04 respectively. 

In Fig. 3 we plot the spectral function for us = 0 . 5 ~ ~  and p = 1 at temperatures of 
0.03 and 0.04 times the single particle gap. A significant temperature dependence 
of the “cha.rge” peak is apparent. It gets damped rather strongly at temperatures 
that are still small compared to the gap. This may make an unambiguous detection 
of SC-separation by ARPES more difficult as the experiments are done at elevated 
temperatures (room temperature for SrzCu03) in order to avoid charging effects. 

B. Quarter-Filled CDW Insulator 

The single-particle Green’s function in the quarter-filled case can be determined 
by the same method [32]. The spin sector is again gapless and the spin part of 
the Green’s function is easily determined. The charge piece is again analyzed by 
means of the form factor bootstrap approach. The difference to the half-filled case 
is that the charge piece of the single-electron operator (14) now couples to at least 
two (antijsolitons. Neglecting contributions of four or more particies in the charge 
sector we obtain the following result for the single-particle Green’s function in the 
vicinity of k F  

. .- 

where s2 = u2 - -v~q’~ c(8) = 3Mcosh8, cr = ( t i c  + u s ) / ( ~ ,  - ws). In Fig. 4 we plot 
the spectral function AR(w, k . ~  + q )  as a function of w for us = 0.8% and different 
t-dues of q. Clearly the spectral function is rather featureless and there are no 
singularities. Furthermore, in contrast to t,he half-filled Mott insulator discussed 



. 

Vol. 4, 2003 Dynamical Response of Quasi 1D Mott Insulators S601 

abow, thcre are no dispersing features associated separately with uc and us. The 
absence of any distinct features is clearly related to the fact that the electron h+ 
“fallen apart” into at least three pieces. 

Just above the threshold at s2 = w2 - r2q2 = 4M2 one can approximate 
IG(20) I = ICl sinh 01, so that for t i ,  = us 

(45) 

Thus the spectral weight increases linearly with s - 2 M  above the threshold. The 

Figure 4: A R ( w , ~ F  + q)  as a function of w/M for v, = 0.811,. The curves for 
different q are offset. 

tunneling density of states for v, = v, is 

2 2  arccosh(w/2M) de IG(26)12 
(46) J Z ; ; d r n ’  P(W> = 

and displays a roughly linear increase after an initial (w - 2M)3/2 behaviour just 
above the threshold at w = 2 M .  

Let us now turn to a comparison with experiments. PrBa2Cu307 (P123) 
is a quarter-filled quasi-lD cuprate, to which the theory presented here may have 
some relevance. The ARPES data for P123 (Fig. 3 of [6]) show a single, very broad, 
dispersing feature that is asymmetric around kF. If we interpret the underlying 
increase in intensity in the data as background, the signal has a form similar to 
Fig. 4. In order to assess whether the theory presented here is indeed relevant to 
P123, it would be interesting to extract a value ALg for the gap from the ARPES 
data and compare it to gaps seen in optical measurements A:!: and the thermal 

activation gap A!$) extracted e.g. fiom the dc conductivity. The theory presented 
here predicts 

(47) (“1 - (4, = &I - 2 4  PE 
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Figure 5: Elements of t.he diagrammatic perturbation theory in the interchain 
tunneling. 

+ ..... 

Figure 6: Diagrammatic expansion for the single-particle Green 
pled chains. 

function of cou- 

We allow the interchain tunneling to be long-ranged in order to be able+to carry 
out a controlled expansion in the case where the Fourier transform i ~ ( k )  of the 
interchain tunneling becomes of the same order as the 1D Mott gap M (see the 
discussion below). For simplicity we take t i  long-ranged only in the direction 
perpendicular to the chains, although it is straightforward to generalize all formulas 
to the an interchain tunneling of the form 

VII.l A. Expansion around uncoupled chains 

Following the analogous treatment for the case of coupled Luttinger liquids [34, 351 
we take the interchain tunneling into account in a perturbative expansion. The 
building blocks of this expansion are the n-point functions of fermion operators 
for uncoupled chains, which are represented pictorially in Fig. 5. The full single- 
particle Green’s function is given in terms of a diagrammatic expansion, the first 
few terms of which are shown in Fig. 6 

Unlike for Luttinger liquids it is extremely difficult to determine four-point 
functions for 1D Mott insulators. On the other hand, it is trivial to sum all dia- 
grams involving only two-point functions of uncoupled chains. This approximation 
is known as RPA and goes back a long way [36]. The small parameter making RPA 
a controlled approximation for any form of the interchain tunneling is the ratio of 
the interchain tunneling to either the temperature or the Mott gap. Within RPA 

._ 
- > . -  
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3 (4 - k F )  

Figure 7: Spectral Function for fixed i. 

the single-particle Green's function is given by 

Ann. Henri Poincar6 

The RPA Green's function G~D(w, q,  i) has the interesting property that it has a 
pole, which corresponds to a bound state of an antiholon and a spinon with the 
quantum numbers of an electron. For small interchgn tunneling this bound state 
still has a gap. Fig. 7 is a density plot of GQD(W: q,  k) as a function of w and q for 
a fixed value of and hence a fixed value of t _ ~ ( z ) .  At energies above the Mott 
gap there is a continuum of states, which is similar in nature to the result for 
uncoupled chains. In the Mott gap the coherent electronic mode is visible. 

B. Formation of a Fermi surface 

As long as the "binding energy" of the electronic bound state is small, RPA is 
a controlled approximation for any form of the interchain tunneling [35]. How- 
ever, in the most interesting situation when the gap of the bound states becomes 
very small, RPA becomes uncontrolled: there is no longer any small expansion 
parameter for a generic t l ( i ) .  An exception 4 is the case of a long-ranged interchain 
tunneling: here the support of t l ( k )  becomes very small. so that any integration 
over the transverse momentum generates a small volume factor proportional to the 
inxrerse range of the hopping. Recalling that RPA takes into account all terms not 
involving any integrations over the transverse hopping (i.e. "loops"), we conclude 
that RPA is the leading tern1 in a controlled loop expansion. 

Increasing t,(@ in RPA reduces the gap of the electronic bound state, until 
it eventually vanishes and electron and hole pockets are formed: we have crossed 
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Figure 8: Fermi surface predicted by the RPA for a 2D square lattice with nearest- 
neighbour interchain tunneling. 

over from weakly coupled 1D Mott insulators to an anisotropic Fermi liquid. As 
an example, let us consider a 2D square lattice with interchain tunneling between 
nearest neighbour chain only. Here RPA is an uncontrolled approximation, but we 
still find it instructive to discuss its predictions. 

In this case electron pockets are formed in the vicinity of the points ( r t k ~ ,  0 )  
and hole pockets form around ( f k ~ ,  rt7r). In the electron-hole symmetric case the 
volume of the electron pockets is precisely the same as the volume of the hole 
pockets. 

We note that the “Chain-DMFT” approach (which approximates the coupled 
chains system by a single chain in a self-consistent bath) gives an open Fermi 
surface [37]. 

VI11 Conclusions 

We have discussed the dynamical response of two strongly correlated one dimen- 
sional insulators: the half-filled Mott insulator and the quarter-filled ~ ~ F - C D W  
insulator. In the low-energy limit both of them exhibit spin-charge separation and 
it is possible to determine the dynamical response by means of exact methods. 
The optical conductivity is found to be insensitive to the spin degrees of freedom 
and also does not differentiate between the half-filled Mott and the quarter-filled 
4 k ~  CDW insulator. On the other hand the single-particle Green’s function (as 
well as the dynamical density-density reponse function [38]) probe the physics of 
both spin and charge sectors and are quite different in the two cases. We also have 
investigated the effects of interchain tunneling t l  in a system of infinitely many 
Mott-insulating chains. We have shown that any t l  # 0 leads to the formation of a 

- 
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gapped electronic bound state below the Mott gap. Increasing t i  reduces the gap 
of this bound state until eventually a Fermi surface in the form of closed electron r-- 

"+ and hole pockets is generated. 
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