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8.1 Introduction 
Networks have recently emerged as a unifying theme in complex systems research [l]. It is 
in fact no coincidence that networks and complexity are so heavily intertwined. Any future 
definition of a complex system should reflect the fact that such systems consist of many mutu- 
ally interacting components. These components are far from being identical as say electrons 
in systems studied by condensed matter physics. In a truly coniplex system each of them has 
a unique identity allowing one to separate it from the others. The very first question one may 
ask about such a system is which other components a given component interacts with? This 
information systemwide can be visualized as a graph, whose nodes correspond to individual 
components of the complex system in question and edges to their mutual interactions. Such 
a network can be thought of as a backbone of the complex system. Of course, system’s dy- 
namics depends not only on the topology of an underlying network but also on the exact form 
of interaction of components with each other, which can be very different in various complex 
systems. However, the underlying network may contain clues about the basic design princi- 
ples andor evolutionary history of the complex system in question. The goal of this article 
is to provide readers with a set of useful tools that would help to decide which features of a 
coniplex network are there by pure chance alone, and which of them were possibly designed 
or evolved to their present state. 

Living organisms provide us with a paradigm for a complex system. Therefore, it should 
not be surprising that in biology networks appear on many different levels. All biochemi- 
cal processes taking place in a single cell constitute its metabolic network, where nodes are 
individual metabolites, and edges are metabolic reactions converting them to each other. Vir- 
tually every one of these reactions is catalyzed by an enzyme and the specificity of its catalytic 
function is ensured by the key and lock principle of its physical interaction with the substrate. 
Often the functional enzyme is formed by several mutually interacting proteins. Thus the 
structure of the metabolic network is shaped by the network of physical interactions of cell’s 
proteins with their substrates and each other. Another way in which the network of physical 
interactions contributes to the complex dynamics of a living cell is through regulation of ac- 
tivity of individual proteins e.g. by phosphorylation or allosteric regulation. This constitutes 
a major mechanism for propagation of various biocheinical signals in the cell. Hence a more 
complete version of the physical interaction network in addition to substrates and proteins 
should also include all of their functionally modified forms. The prolduction and degradation 
of each of the proteins in the physical interaction network in turn is controlled by the reg- 
ulatory network of the cell. In Fig. 8.1 we show a part of such network in the bacterium 
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Escherichia coli (E.coli) corresponding to positive or negative transcriptional regulation of its 
proteins by transcription factors. More generally regulatory network in the cell in addition to 
transcriptional regulation includes translational regulation, RNA editing, specific targeting of 
individual proteins for degradation, etc. On yet higher level individual cells of a multicellular 
organism exchange signals with each other. This gives rise to several new networks such as 
e.g. nervous, hormonal, and iminune systems of an animal. The inter-cellular signaling net- 
work stages the development of a multicellular organism of a given species from the fertilized 
egg. Finally. on even larger scale interactions between individual species form the food web 
of an ecosystem. 

By no means complex networks are unique to living organisms: in fact they lie at the 
foundation of an increasing number of artificial systems. The most prominent example of this 
is the Internet and the World Wide Web (WWW) being the “hardware” and the “software” of 
the network of communications between computers. While the Internet is formed by “physi- 
cal” connections between constituent computers, or on a more coarse-grained scale, between 
so-called Autonomous Systems (AS), which are large domains of computers managed by the 
same organization such as e.g a university, or a business enterprise. The World Wide Web, on 
the other hand, is a much larger network whose nodes are individual webpages, and directed 
edges are links between them. 

Networks are also ubiquitous in systems studied by social sciences. To name just a few, 
scientists are connected by a network of collaborations defined as co-authorship of scientific 
articles, while articles themselves are linked through a directed network of citations. Ex- 
amples of networks in economics include that of customers and their choices of products, 
or economies of individual countries connected by the volume of direct foreign investments. 
This last example illustrates one important notion about complex networks: in some cases it 
appears that every component of a complex system is connected to every other component, 
which makes the concept of a network useless. Indeed, in this case the network is just a fully 
connected graph, which contains no information about the complexity of the underlying sys- 
tem. However, a meaningful network can be constructed in this case if one chooses to include 
only interactions stronger than a certain threshold, which has to be selected to maximize the 
information content of the resulting graph. For interacting economies that corresponds to in- 
cluding edges only for the strongest coupled pairs of countries, while for physical interaction 
networks in biological systems - for pairs of molecules with the binding constant above a 
certain threshold. 

The above mentioned complex networks in biological, technological, and social systems 
for the most part lack the top-down design. Instead they grow and evolve as a result of the 
bottom-up stochastic dynamics of their individual nodes. It makes an Erdos-RCnyi (ER) ran- 
dom network [3] the first null model to which topological properties of these networks can 
be compared. An interesting unifying feature of many complex networks that clearly distin- 
guishes them from ER random networks is an extremely broad distribution of connectivities 
(defined as the number of immediate neighbors) of individual nodes [4]. While the major- 
ity of nodes in such a network are each connected to just a handhl of neighbors, there exist 
some nodes, which will be referred to as “hubs”, that have a disproportionately large number 
of interaction partners. The connectivity of the highest connected hub is usually several or- 
ders of magnitude larger than the average connectivity of the network. This property stands 
in sharp contrast with ER networks, in which connectivities of individual nodes are Poisson- 
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Figure 8.1: The transcription regulatory netwoi 
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of E.coli. Nodes in this network represent operons - 
(groups of genes transcribed onto a single mRNA) and arrows (edges) - direct transcriptional regulation 
of a protein encoded in the downstream operon by a regulatory protein encoded in the upstream operon. 
Red and green arrows refer to respectively negative and positive regulations in a living E.co1i cell. In the 
present text we discuss how one can extract characteristic topological properties of networks such as the 
one shown here. The network was displayed using the Pajek software [2]. 
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distributed and thus the number of nodes with a connectivity significantly above average is 
negligibly small. Often the connectivity distribution in complex networks can be approxi- 
mated by a scale-free power law form [4]. Prominent examples of this are the Internet [5] and 
the WWW [6],  where in the last case the power law extends for up to four orders of mag- 
nitude. Among biological networks histograms of node connectivities in metabolic [7] and 
protein interaction [8] networks can be reasonably approximated by scale-free distributions 
extending for about two orders of magnitude. 

The set of connectivities of individual nodes is an example of a low-level topological 
property of a network. While it answers the question about how many neighbors a given node 
has, it gives no information about the identity of those neighbors. It is clear that most of non- 
trivial properties of networks are defined at a higher level in the exact pattern of connections 
of nodes to each other. However, such multi-node connectivity patterns are rather difficult to 
quantify and measure. By just looking at many complex networks one gets the impression 
that their components are linked to each other in a completely haphazard way. One may 
wonder which connectivity patterns are indeed random, while which arose due to evolution 
or fundamental design principles and limitations? Such non-random features can be used to 
identify a given complex network and better understand the underlying complex system. 

In this work we describe a universal recipe for how such information can be extracted. 
To this end we first construct a proper randomized version (null model) of a given network. 
As was pointed out by Newman and collaborators [9],  broad distributions of connectivities 
observed in most real complex networks indicate that the connectivity is an important individ- 
ual characteristic of their nodes and as such it should be preserved in any meaningful random 
counterpart. In addition to connectivities of its nodes one may choose to preserve some other 
low-level topological properties of the network. Any higher level topological proplerty, such as 
e.g. the total number of edges connecting pairs of nodes with given connectivities, the number 
of loops of a certain type, the number and sizes of components, the diameter of the network, 
can then be measured in the real complex network and separately in an ensemble of its ran- 
domized versions. Dealing with an ensemble allows one to put error bars on any quantity 
measured in the randomized network. One then concentrates only on those topological prop- 
erties of the complex network that significantly deviate from the null model, and, therefore, 
are likely to reflect its design principles and/or evolutionary history. 

The idea of comparing topological properties of a network to its randomized counterpart 
is not new. For example, in [lo] the level of clustering in some real world networks was 
compared to its value in ER random networks with the same number of edges and nodes. In 
the field of sociology there exists a rich history of testing hypotheses about social networks 
by comparison to randomized null-model networks [ 1 I]. A more recent twist on this idea was 
put in Ref. [9 ] .  Authors of this work derived a number of useful analytical results for random 
networks with an arbitraiy distribution of connectivities and compared certain topological 
properties of a number of real-life complex networks to these analytical expressions. In Ref. 
[ 121 it was demonstrated that when constructing a random network with a broad distribution 
of connectivities it is important to take into account the constraint of having no multiple edges 
between the same pair of nodes, This constraint applicable to most real-life complex networks 
modifies topological properties of their random counterparts, especially around their highly 
connected (hub) nodes. One may also select to conserve some other low-level topological 
properties in addition to connectivities of individual nodes [12]. In the absence of analytical 



174 8 Corr.elation Profiles and Mot$s in Complex Networks 

results in this case one has to resort to numerical simulation of such randomized networks 
Basic algorithms generating an ensemble of such random networks were applied to studies 
of complex networks in [13, 14, 121. Earlier on these algorithms were .actively studied in 
mathematical literature [15]. In these works a number of important results concerning their 
ergodicity were rigorously proven. 

The plan of this review is as follows: In the next section we introduce the local rewiring 
algorithm for generation of an ensemble of randomized networks [15, 13, 121 and compare it 
with global rewiring algorithms studied in [16. 91. We also propose several modifications of 
this algorithm, which in addition to node connectivities conserve some other low-level topo- 
logical properties of the complex network in question [12]. In the section 3 we use these ran- 
dom ensembles to measure correlation profiles of several complex networks, namely those of 
physical interactions and transcriptional regulation between proteins in yeast Succ!zar.ornyces 
cemvisiae [ 131, and that of the Internet defined on the level of Autonomous Systems (AS) [ 121. 
In the section 4 the comparison to a randomized network reveals the set of ubiquitous network 
motifs in the genetic regulatory network of Escherichia coli bacterium [ 141. The potential 
meaning of these empirically detected elements of design is discussed in the last section. The 
set of MATLAB numerical algorithms used to generate some of the results described in this 
work can be found at [ 171. 

8.2 Randomization algorithm: Constructing the proper 
null model 

One may generate a random version of a given network using various algorithms. They differ 
from each other bywhich low-level topological features of the original network are preserved 
in its randomized counterpart. Below are the first three representatives of such randomization 
algorithms listed in the order of increasing number of constraints: 

1. Randomly rewire all edges in the network. This algorithm only conserves the uvwuge 
connectivity of all nodes in the network. 

2. Randomly rewire edges in the network while preserving the number of edges emanating 
from each individual node (node’s connectivity). This algorithm conserves all “single- 
node” topological properties of a network, while completely randomizes multi-node con- 
nection patterns. In a directed network one may rewire edges in such a way that both the 
number of outgoing and incoming edges are separately conserved for each node. 

3. When nodes in a network are divided into several mutually exclusive subgroups one may 
rewire its edges in such a way that the total number of neighbors from each of these 
subgroups is separately conserved for every node. This algorithm may prove use l l  if 
some subgroups are known to preferentially connect to some other subgroups and one 
wants to preserve this preferential linking in a randomized network. 

The first rewiring scheme from the list above irrespective of the original form of this distri- 
bution generates an Erdos-Rhyi (ER) random network characterized by a narrow Poisson 
distribution p ( k )  = (k)k exp(-(k))/k! of node connectivities k.  As both percolation prop- 
erties and the abundance of most topological patterns in a network are very sensitive to the 



S.2 Raiidoniizatioii algoritliiii: Coiistructing the proper iiuII model 175 

exact form of the distribution of connectivities [18, 91, they would be dramatically modified 
as a result of the randomization algorithm 1. A much more informative comparison is to a 
randomized network generated by algorithms 2-3, where connectivities of individual nodes 
(and hence their distribution) are strictly conserved. 

The rewiring algorithm giving rise to such random network was proposed in [15, 131. In 
its most general formulation (for a directed network whose nodes are divided into several sub- 
groups) it consists of multiple repetition of the following switch move (rewiring step) (see 
illustration in Fig. 8.2): 

Randomly select a pair of directed edges A+B and C-D where A and C belong to the 
same subgroup (marked blue in Fig. 8.2), and B and D belong to the same subgroup 
(marked red in Fig. 8.2). The two edges are then rewired in such a way that A becomes 
connected to D, while C to B, provided that none of these edges already exist in the net- 
work, in which case the rewiring step is aborted and a new pair of edges is selected. 

A /f 
\ D 

/ 

switch 
partners 

A 

Figure 8.2: One step of the random local rewiring algorithm. A pair of directed edges A+B and C+D 
such that nodes A and C belong to the same subgroup (marked blue), and B and D both belong to another 
subgroup (marked red) are selected. The two edges are then rewired in such a way that A becomes 
connected to D, while C to B, provided that none of these edges already exist in the network, in which 
case the rewiring step is aborted and a new pair of edges is selected. An independent random network 
is obtained when the network is rewired by the above local switch a large number of times, say several 
times in excess of the total number of edges in the system. The above rewiring algoritlim c,onserves both 
the in- and out- connectivity of each individual node as well as the exact distribution of its interaction 
partners among subgroups of nodes. 

The last restriction prevents the appearance of multiple edges connecting the same pair of 
nodes. A repeated application of the above rewiring step leads to a randomized version of the 
original network. The set of MATLAB programs generating such a randomized version of any 
complex network can be downloaded from [17]. 
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A number of nice analytical results for random networks with an arbitrary (in general 
non-Poisson) probability distribution of connectivities were recently reported in [ 18,9]. Also, 
in Refs. [16, 91 a “stub reconnecting” numerical algorithm allowing one to construct such 
networks was proposed. The basic idea of this algorithm was to first generate the set of 
connectivities ki for every node in the system, and create ki “edge stubs“ sticking out of every 
node, which are not yet connected to other nodes. A random network is then generated by 
randomly picking two such edge stubs and joining them together to form an edge between 
the two nodes they emanate from. As this process goes on the number of disconnected stubs 
diminishes until finally all stubs are used up. 

The stub reconnecting algorithm explicitly allows for multiple edges to form between the 
same pair of nodes. On the other hand, the construction principles o f  complex networks dis- 
cussed in this paper prohibit the appearance of such multiple edges, and hence they should 
not be allowed in their random counterparts as well. If one explicitly forbids the formation of 
multiple edges during the stub reconnecting algorithm [ 16, 91, for sufficiently broad distribu- 
tion of node connectivities the algorithm would normally get stuck in a L‘frozen’’ configuration 
in which all nodes with remaining unconnected stubs are already connected to each other. The 
probability to reach such a frozen configuration increases with both the size and the fraction of 
highly connected nodes in the network. In this case it becomes computationally impossible to 
avoid double edges by aborting and restarting the algorithm every time a frozen configuration 
is reached. We would also like to point out that the set of analytical results obtained in [ 18,9] 
apply to an ensemble of random networks generated by the stub reconnecting algorithm in 
which multiple edges are allowed. Therefore, they have to be modified for an ensemble of 
random networks in which such edges are forbidden. 

The above mentioned limitations of the stub reconnecting algorithm forced us to use the 
local rewiring algorithm [ 15, 13, 121 described above. Instead of completely deconstnicting 
a given complex network and then creating the corresponding random network de izovo this 
algorithm modifies it through multiple simple local rearrangements and hence avoids frozen 
configurations. Later on in this section we will show how the basic rules of our local rewiring 
algorithm can be recursively modified to analyze patterns present at higher levels of network 
architecture, while maintaining other established low-level topological properties of the com- 
plex network in addition to connectivities of its nodes. 

The difference in frequencies of appearance of any particular topological pattern j in a 
given complex network and its properly randomized counterpart can be quantified by the fol- 
lowing set of con’elation profiles. In the first profile one computes the ratio 

- 
where N ( j )  is the number of times the pattern j is seen in the real network, and NT(j) is the 
average number of occurrences of the pattern in an ensemble of random networks generated by 
the appropriate null model. Patterns selected by design or evolution of the complex network 
in question would manifest themselves by R(j )  > 1, while suppressed patterns correspond 
to R(j )  < 1. While R(j )  determines the magnitude of the suppressiodenhancement it tells 
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nothing about the statistical significance of the effect. This latter quantity is given by the 
Z-score of the deviation defined as 

where uT ( j )  is the standard deviation of N,. ( j )  measured in a sufficiently large ensemble of 
randomized networks. 

Alternatively the statistical significance of the difference between real and randomized 
networks can be quantified in terms of its P-value. The P-value is defined as the probabil- 
ity that the number of patterns N, ( j )  in a randomized network is larger or equal (or smaller 
or equal in case when N ( j )  < N T ( j ) )  than N ( j ) .  For patterns that are highly statistically 
significant it is often impossible to directly evaluate the P-value in a reasonable number of 
realizations of random networks. In this case one reports an upper bound on such a P-value 
given by the inverse size of the ensemble studied numerically. If one can verify that N, is a 
Gaussian-distributed random variable the Z-score can be easily converted to the P-value. 

- 

Examples of patterns discussed in this work include: 

0 Correlations between connectivities of neighboring nodes quantified as N(K0, K1) - 
the number of edges connecting nodes of connectivity IC0 to those of connectivity IC1 
[13, 121; 

0 The number of small network motifs [I41 such as e.g. the triangular loop (Fig. 8.3A), or 

In case of more complex topological patterns like the double triangle in Fig. 8.3B the 
calculation of R and Z becomes somewhat more involved. Indeed since this pattern contains 
two simple triangles and a square among its sub-patterns, its statistical over- or under- repre- 
sentation in the real network may be caused simply by over- or under- representation of these 
more elementary sub-patterns. One strategy is to deal with this problem recursively and ana- 
lytically [ 141. In this case one has to start computing 2 and R from the simplest “irreducible” 
patterns and gradually work it up toward more complicated composite patterns, each time 
renornializing out trivial “reducible” correlations. Another strategy numerically deteiinines 
the statistical significance of a given high-level topological motif [12]. To this end one first 
generates an ensemble of random networks that have both the same set of connectivities and 
the same number of low-level motifs (such as e.g. triangle loops) as the original network. This 
can be done in several different ways: 

1. One may consider only those local rewiring steps that strictly preserve both node con- 
nectivities and the number of sub-motifs. One example of such specific move is shown 
in Fig. 8.4, which conserves both node connectivities and the total number of simple 
triangular loops. 

the double triangle (Fig. 8.3B). 

2. One may employ the switch move in Fig. 8.2, without constraint, but then limit the 
ensemble generated by the simple rewiring algorithm to include only networks which 
by accident have the observed number of sub-motifs. In most cases this algorithm is 



178 8 Correlation Projles and Motifs in Coinplex Networks 

prohibitively numerically expensive, in particular when the sub-motifs in the real network 
are hugely overrepresented on underrepresented relative to a typical random network. 

3. A way to remedy the numerical inefficiency of the previous algorithm is to use biased 
sampling, which favors the correct number of sub-motifs. This can be done by supple- 
menting the simple switch move with a Metropolis acceptancehrejection criterion based 
on an artificial energy function Hj that favors the same number of sub-motifs j that was 
observed in the real network [12]: 

That is to say for a given temperature T,  the algorithm accepts any local rewiring step 
that lowers the energy Hj or leaves it unchanged, while those steps that lead to a A H  
increase in Hj are accepted with a probability exp(-AHIT).  The temperature should 
be selected low enough to favor the desired number of low-level sub-motifs j yet high 
enough to ensure an ergodic sampling of the phase space. Obviously the T = 0 version 
of this algorithm is equivalent to the algorithm #I. 

The Metropolis algorithm #3 can be easily extended to take care of several independent 
sub-motifs by using the composite energy function H = Hj. Such sampling of networks 
has the advantages of being simple to implement and generalizes easily to several sub-patterns. 
When counting the statistics one can limit the ensemble to include only the random networks 
that have exactly the same number of sub-motifs as the original complex network. 

Figure 8.3: Example of motifs: (A) a simple triangle whose abundance quantifies the level of clustering 
in the network. (B) a somewhat more complex pattern. It contains two triangles and a square among its 
sub-patterns. 
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Figure 8.4: The local rewiring step shown in the panel A is allowed since it preserves the total number of 
triangles in the network, while that in the panel B is forbidden since it decreases the number of triangles 
by one. In the Metropolis algorithm both moves would be allowed albeit with different probabilities: 
move in panel B would be accepted with a lower probability due to the increase in the energy function 
(5.3). 

8.3 Correlation profiles: Yeast molecular networks and the 
Internet 

Methods described in the previous section allow us to define and measure the correlation 
pro$le of a complex network. The correlation profile quantifies correlations between connec- 
tivities of neighboring nodes in the network. We have applied these numerical tools to two 
levels of molecular networks operating in yeast Saccharonzyces cerevisiae, which at present is 
perhaps the best characterized biological model organism: 

The protein interaction network used in this work consists of 4475 physical interactions 
between 3279 yeast proteins as measured in the most comprehensive high-throughput 
yeast two-hybrid screen [19]. To answer the question if proteins A and B interact with 
each other the two-hybrid experimental technique uses a pair of artificially prepared hy- 
brid proteins Ab and BP, which are referred to as the bait and the prey hybrid correspond- 
ingly. In order to better visualize the protein interaction network in Fig. 8.5 we plotted 
a small part of it using the software package Pajek developed by Vladimir Batagelj and 
Andrej Mrvar [2]. The subset used in this figure consists of all proteins known to be 
localized in the yeast nucleus [20] and to interact with at least one other nuclear protein 
in the full set of Ref. [ 191. 

2. The most general definition of the reguulatory network operating in a living cell includes 
all cases when production or degradation of one of its proteins is directly controlled by 
another. Edges of this network correspond to transcription and translational regulation, 
RNA editing, specific targeting of individual proteins for degradation, etc. The YPD 
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Figure 8.5: Network of physical interactions between nuclear proteins in yeast. Here we show the 
subset of the yeast protein interaction network reported in the full set of Ref. [19]. The subset consists 
of 318 interactions among 329 proteins, which are known to be localized in the yeast nucleus [20], and 
to interact with at least one other nuclear protein [19]. Note that most neighbors of highly connected 
nodes have rather low connectivity. This feature will be later quantified in the correlation profile of this 
network (Figs 8.7, 8.9). Nodes are color coded according to how essential they are for the survival of 
yeast cells under laboratory conditions [20]. Green nodes correspond to viable and red ones to non-viable 
null-mutants lacking the corresponding protein. 

database [20] contains 1750 such regulations among 848 yeast proteins. To narrow down 
the range of possible regulatory mechanisms and make the network more homogeneous 
we have constructed correlation profiles of the transcription regulatory network, which 
is the subset of the general regulatory network formed by all positive and negative direct 
transcription regulations. This network shown in Fig. 8.6 consists of 1289 (1047 positive 
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Figure 8.6: Transcription regulatory network in yeast. Apart from an overall apparent lack of modular- 
ity, one notices several striking features related to hub proteins that each regulate many other proteins: 
1) they tend to avoid to regulate each other, 2) each hubs is either a predominantly positive regulator or 
a predominantly negative regulator, and 3) it is much more frequent for a protein to regulate many other 
proteins, than to be regulated by many. It is the first of these features, the separation of hubs from each 
other, that is quantified witlithe correlation profile of this network (Figs 8.8, 8.10.) 

and 242 negative) regulations by 125 transcription factors [20] within the set of 682 
proteins. 

While the regulatory network is naturally directed, the network of physical interactions 
among proteins in principle lacks directionality. However, for poorly understood reasons all 
high-throughput two-hybrid experimental data [22, 191 defining pairs of physically interacting 
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proteins have a significant asymmetry between baits and preys, with bait hybrids being more 
likely to be highly connected than their prey counterparts. This can be seen e.g. in the fact that 
the average connectivity of baits with at least one interaction partner is close to 3, whereas the 
same quantity measured for preys is only 1.8. Since each reported interaction involves exactly 
one bait and one prey protein, this asymmetry needs to be taken into account when selecting 
a proper “null” model for the interaction network. For this purpose in our randomization 
procedure we would treat the two-hybrid data as a directed network with an arrow on each 
edge pointing away from the bait hybrid towards the prey hybrid. 

Randomized versions of these two molecular networks were constructed by randomly 
rewiring their directed edges, while preventing “unphysical” multiple connections between 
a given pair of nodes as described in the previous section. By construction this algorithm 
separately conserves the in- and out-connectivities of each node. Therefore, in a randomized 

. version of the regulatory network each protein has the same numbers of regulators and regu- 
lated proteins as in the original network. Similarly, in a random counterpart of the interaction 
network numbers of interaction partners of the bait-hybrid and the prey-hybrid of every pro- 
tein are individually conserved. The set of MATLAB programs for both the randomization 
and the correlation profile detection and visualization in any complex network are available at 

The topological property of the network giving rise to its correlation profile is the number 
edges N( KO, K1) connecting pairs of nodes with connectivities KO and Kl. To find out if in a 
given complex network connectivities of interacting nodes are correlated, N(Ko,I(1) should 
be compared to its value N,(Ko, K1) .tAN,(Ko, K 1 )  in a randomized network, generated by 
the edge rewiring algorithm. When normalized by the total number of edges E, N(K0,  K-1) 

defines the joint probability distribution P(I<-0, K1) = N(K0,  Kl)/E of connectivities of 
interacting nodes. Any correlations would manifest themselves as systematic deviations of 
the ratio 

~ 7 1 .  

R ( ~ ~ o , K 1 )  = WO,I~l)/PT(KO,I(1) (8.4) 

Z(l(0, K1) = ( W C o ,  Kl) - PT(I(0, I ( 1 ) ) l f l T ( I ( O ,  K1) , 

from 1. Statistical significance of such deviations is quantified by their Z-score 

(8.5) 

where cr,(Ko,K1) = ANT(K0,K1)/N is the standard deviation of PT(Ko,K1) in an en- 
semble of randomized network. 

Figs. 8.7 and 8.8 show the ratio R(K0, K1) as measured in yeast interaction and tran- 
scription regulatory networks, respectively. In the interaction network IC0 and I(1 stand for 
the total number of neighbors of two interacting proteins, while in the regulatory network KO 
is the out-connectivity of the regulatory protein and I(1 - the in-connectivity of its regulated 
partner. Thus by the very construction P(K0, K1) is symmetric for the physical interaction 
network but not for the regulatory network. Fig. 8.9 and Fig. 8.10 plot the statistical sig- 
nificance Z(Ko,  Kl) of deviations from 1 visible in Fig. 8.7 and Fig 8.8 correspondingly. 
To arrive to these Z-scores 100 randomized networks were sampled with connectivities loga- 
rithmically binned in two bins per decade. The combination of R- and 2-profiles reveals the 
regions on the ICo - IC1 plane, where connections between proteins in the real network are 
significantly enhanced or suppressed, compared to the null model. In particular, the blue/green 
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Figure 8.7: Correlation profile of the protein interaction network in yeast. The ratio R(K0, K1) = 
P ( K 0 ,  K1)/P,.(Ko, K I ) ,  where P(K0, KI) is the probability that apair ofproteins with total numbers 
of interaction partners given by KO, K1 correspondingly, directly interact with each other in the full set 
of Ref. [19], while P,(Ko, KI,) is the same probability in a randomized version of the same network, 
generated by the random rewiring algorithm described in the text. Note the logarithmic scale of both 
axes. 

region in the upper right corner of Figs. 8.7-8.10 reflects the reduced likelihood that two hubs 
are directly linked to each other, while red regions in the upper left and the lower right corners 
of these figures reflect the tendency of hubs to associate with nodes of low connectivity. One 
should also note a prominent feature on the diagonal of the Fig. 8.7 and 8.9 corresponding to 
an enhanced affinity of proteins with between 4 and 9 physical interaction partners towards 
each other. This feature can be tentatively attributed to members of multi-protein complexes 
interacting with other proteins from the same complex. The above range of connectivities thus 
correspond to a typical number of neighbors of a protein in a multi-protein complex. When 
we studied pairs of interacting proteins in this range of connectivities we found 39 of such 
pairs to belong to the same complex in the recent high-throughput study of yeast protein com- 
plexes [21]. This is about 4 times more than one would expect to find by pure chance alone. 

When analyzing molecular networks one should consider possible sources of errors in the 
underlying data. Two-hybrid experiments give rise to false positives of two kinds. In one case 
the interaction between proteins is real but it never happens in the course of the normal life 
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Figure 8.8: Correlation profile of the transcription regulatory network in yeast. 
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The ratio 
R(Kout, ITz,) = P(K,,trK,,)/P,(IC,,t, K,,), where P(IC,,t, Kin) is the probability that aprotein 
node with the out-connectivity K,,t transcriptionally regulates the protein node with the in-connectivity 
IC,, in the network from the YF'D database [20], while P,(KoqLt, K,,) is the same probability in a ran- 
domized version of the same network, generated by the random rewiring algorithm described in the text. 
Note the logarithmic scale of both axes. 

cycle of the cell due to spatial or temporal separation of participating proteins. In another case 
an indirect physical interaction is mediated by one or more unknown proteins localized in the 
yeast nucleus. Reversely, in a high throughput two-hybrid screens one should expect a siz- 
able number of false negatives. Primarily a binding may not be observed if the conformation 
of the bait or prey heterodimer blocks relevant interaction sites or if the corresponding het- 
erodimer altogether fails to fold properly. In addition to this 391 proteins out of the potential 
5671 baits in [19] were not tested as possible bait hybrids because they were found to activate 
transcription of the reporter gene in the absence of any prey proteins. 

Fortunately, the qualitative features of the correlation profile are very robust with respect to 
an unbiased set of false positives and false negatives. Indeed, as previously undetected edges 
are added to the network (or falsely detected edges are removed from it) the average connec- 
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Figure 8.9: Statistical significance of correlations present in the protein interaction network in 
yeast. The Z-score of correlations Z(Ko, KI) = (P(Ko,I--l) - P,(Ko, K I ) ) / ~ , ( K o ,  Kl) ,  where 
P(K0, K i )  is the probability that a pair of proteins with total numbers of interaction partners given by 
KO, 1-1 correspondingly, directly interact with each other in the full set of Ref. [ 191, while P, (KO, K1) 

is the same probability in a randomized version of the same network, generated by the random rewiring 
algorithm described in the text, and cr,.(Ko, K1) is the standard deviation of P,(&, K1) measured in 
1000 realizations of a randomized network. Note the logarithmic scale of both axes. 

tivity of its nodes changes. As a result correlation features visible in its correlation profiles 
may shift their positions and intensity, but are likely to preserve their qualitative characteristics 
up to a very high level of false positives or false negatives. 

The data for the protein interaction network used in this work come from a high-throughput 
experiment performed in one lab using a unique experimental technique [ 191. This fact makes 
it a perfect candidate for correlation profiling. Indeed, since almost all pairs of yeast proteins 
were tested as potential interacting partners, the statistical information contained in the re- 
sulting network contains no anthropomorphic bias. On the other hand, when the information 
about edges in a network is obtained from a database, combining results of many experimen- 
tal groups using various techniques, one should wony about a hidden anthropomorphic factor: 
some proteins just constitute more attractive subjects of research and are, therefore, relatively 



186 

100 

30 

.?" 
xo 

10 

3 

1 

8 Cowelatiori Projles and Motgs i?i Conzplen Netw0r.h 

10 30 
Kin 3 

8 

6 

4 

2 

0 

-2 

-4 

-6 

-8 

Figure 8.10: Statistical significance of correlations present in the transcription regulatory network 
in yeast. The ratio Z(KOtLt, Kin) = (P(KolLt,  Kin) - Pr(KOILt, Kin))/ar(KoIrt,ICin)), where 
P(Kout,  Kin)  is the probability that a protein node with the out-connectivity KoTLt transcriptionally 
regulates the protein node with the in-connectivity Kin in the network from the YPD database [20], 
while P, (KOtLt, .Kin) is the same probability in a randomized version of the same network, generated 
by the random rewiring algorithm described in the text, and cr(ICoTLt, Kin) is the standard deviation of 
P,.(K,,t, Kin) measured in 1000 realizations of a randomized network. Noste the logarithmic scale of 
both axes. 

better studied than the others. The level of clustering in networks based on the database 
data may be overestimated due to several reasons: 1) With the exception of systemwide ex- 
periments such as high-throughput two-hybrid screens in yeast [22, 191, experimentalists are 
more likely to check for interactions between pairs of proteins within the same functional 
group. 2) A complete analysis of all possible painvise interactions within a small group of 
proteins would influence the level of clustering in the network. In this case this group would 
manifest itself by a relatively dense pattern of interactions with other members of the same 
group compared to interactions outside of the group. 

A good example to illustrate the danger of indiscriminately using the database data is given 
by the network of physical interactions among yeast protein listed in 1231. This database con- 
tains contributions from several high throughput two-hybrid experiments [19, 221 as well as 
protein interactions determined by other methods such as co-immunoprecipitation technique, 
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and mass spectroscopy of protein complexes. Statistical properties of this network were an- 
alyzed in a recent preprint [24], where it was shown that it has a remarkably high clustering 
coefficient. The clustering coefficient of a network is given by the number of triangles nor- 
malized by the total number of places in the network, where a triangle can be formed. When 
we constructed a correlation profile of this network we found that it contains a pronounced 
red linear region all along the diagonal of the 1io-K~ plane. Such a region corresponds to an 
increased affinity of proteins of a given connectivity to others with approximately the same 
value of connectivity. However, a closer analysis has revealed that this feature is an artifact 
of the way that interactions among complex-forming proteins were reported in this particu- 
lar database. Apparently, an interaction was reported between any hvo proteins which were 
found to belong to the same multi-protein complex. Hence, all members of a given multi- 
protein complex consisting of N, proteins have connectivity close to N,. Needless to say this 
artificial feature would lead to a gross over counting of the clustering coefficient reported in 
Refs. [24]. In reality protein in a large multi-protein complex directly interact with no more 
than a few members of the same complex, which gives rise to a red spot on the diagonal of 
R( KO, K1) for intermediate values of KO and (see Fig. 8.7). 

Correlation profiles similar €0 those presented in Figs. 8.7-8.10 can be constructed for any 
network. In what follows we measure them in the Internet connectivity network on the level 
of so-called Autonomous Systems (AS). An Autonomous System is a group of workstations, 
servers, and routers belonging to one organization such as e.g. a university, a company, or 
an Internet Service Provider. Connections between such Autonomous Systems are achieved 
by the virtue of the Border Gateway Protocol (BGP), which establishes which other AS a 
given AS directly communicates with and what kind of routing information is exchanged in 
the course of these communications. Daily data about connections between individual Au- 
tonomous Systems are available at the website of the National Laboratory for Applied Net- 
work Research (NLANR) [25]. In our analysis we used the information about the network of 
Autonomous Systems collected on January 2,2000. This data set consists of 12572 symmetric 
connections between 6474 AS. It is a scale-free network in which the power law connectivity 
distribution p ( k )  N k-7 withy = 2.2 f 0.1 spans over 3 orders of magnitude in k [5]. 

An ensemble of 1000 randomized networks with the same connectivities of individual 
nodes was generated by the random rewiring algorithm described in the previous section. The 
corresponding R- and Z- correlation profiles are shown in Figs 8.1 1-8.12. From these figures 
one infers that the Internet is characterized by the following set of correlations: 

1. Strong suppression of edges between nodes of low connectivity 3 2 KO, K1 2 1. 

2. Suppression of edges between nodes that both are of intermediate connectivity 100 > 
K O ,  K1 2 10, 

3. Strong enhancement of the number of edges connecting nodes of low connectivity 3 1 
KO 2 1 to those of intermediate connectivity 100 > K1 2 10. 

On the other hand any pair among 5 hub nodes with KO, IC1 > 300 was found to be connected 
by an edge, both in the real network, and in a typical random sample. Hence I?(&, K l )  is 
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Figure 8.11: Correlation profile of the Internet. The ratio R(Ko, Kl) = P(K0, KI)/P,(Ko, KI), 
where P(&, K1) is the probability that a pair of AS with connectivities KO and K1 to be nearest 
neighbors of each other in the Internet, while PT(I<o, Kl)  is the same probability in a randomized 
version of the same network, generated by tlie random rewiring algorithm described in tlie text. Note the 
logarithmic scale of both axes. 

close to 1 in the upper right comer of Fig. 8.1 1. The strong suppression of connections be- 
tween pairs of nodes of low connectivity can in part be attributed to the constraint that all 
nodes on the Internet have to be connected to each other by at least one path. We have explic- 
itly checked that there are indeed no isolated clusters in OF data for the Internet. However, 
when we used an ensemble of randoin networks in which the foilnation of isolated clusters 
was prevented at every rewiring step, we found little change in the observed correlation profile. 

The pattern of correlations observed in the Internet is consistent with a picture of multi- 
level hierarchy among its nodes. Indeed, based on their connectivity Autonomous Systems can 
be loosely separated into several hierarchical levels [26], which starts from “user level” AS 
of very low connectivity connected to regional, national, and international Internet Services 
Providers with increasing ranges of connectivity. From the correlation profile described above 
one infers that user level AS tend to connect to intermediate level AS (regional ISP) and that 
the &ally large ISP are all linked to each other by peer-to-peer connections. 

The Internet is a convenient example to illustrate the difference between randomized ver- 
sion of the network generated by local randomization algorithms [ 15,13,12] in which multiple 
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Figure 8.12: Statistical significance of correlations present in the Internet. The Z-score of correlations 
~ ( K o ,  T i l )  = (P(Ko, K1) - P,(Ko,KI))/G(Ko, K I ) ,  where P(K0, K I )  is the probability that a 
pair of AS with connectivities KO and K1 are nearest neighbors of each other in the Internet, while 
P, (KO, K1) is the same probability in a randomized version of the same network, generated by the ran- 
dom rewiring algorithm described in the text, and o+(&, IC1) is the standard deviation of P,(I<o, IC l )  
measured in 1000 realizations of a randomized network. Note the logarithmic scale of both axes. 

edges are forbidden, and the truly uncorrelated randomized version of the network generated 
by the stub reconnection algorithm [16, 91, which inevitably has multiple edges. In complex 
networks characterized by a broad connectivity distribution the stub reconnection algorithm 
usually results in multiple edges between hub nodes. In a network with E edges in total, the 
probability that the stub reconnecting algorithm would create a multiple edge between a pair of 
nodes with connectivities If0 and Kl becomes substantial if K o K 1 / ( 2 E )  > 1. Since in scale- 
free networks characterized by a power law distribution of node connectivities p (  k )  - k-Y the 
connectivity of a few highest connected nodes in the system scales as N'/(Y-l), the expected 
number of edges between a pair of such hub nodes scales as N2/(Y-')/E N N2/(Y-')-' 
becomes significant for the large number of nodes N provided that y < 3. For example, in a 
randomized version of the Internet generated by this algorithm the expected number of edges 
connecting the two highest connected hubs of respectively KO = 1458 and IC1 = 750 is a 
swooping KoK1/(2E) = 1458 .750/ (2  . 12572) = 43.5! This means that in a randomized 
version of the Internet with no multiple connections between nodes the connectivity between 
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these hub nodes would be suppressed by a factor of 43 relative to a random network allowing 
for multiple edges. Thus the ban on multiple connections between a given pair of nodes gives 
rise to an effective ''repulsion'' between hubs in such a randomized network. To quantify the 
level of this repulsion we measured the average connectivity (Kl)li,  of neighbors of sites with 
connectivity KO as a h c t i o n  of KO in the real Internet network (squares in Fig. 8.13 j as well 
as in an ensemble of random networks with no multiple connections between nodes generated 
by the local rewiring algorithm (circles in Fig. 8.13.) From this figure it is clear that most of 
the ( K ~ ) K ~  K dependence reported in Ref. [27] is reproduced in our random ensemble 
and hence can be attributed to the above mentioned effective repulsion between hubs due to 
the constraint of having no more than one edge directly connecting them to each other. It is 
worthwhile to note that in the random network generated by the stub reconnection algorithm 
( K ~ ) K ~  = (I<1.2)/(K1) 21 165 would be independent of KO. 

Let p (  K )  be the probability distribution of connectivities in the complex network and let us 
consider its random counterpart generated by stub reconnection algorithm [ 16,9]. Since in this 
algorithm each of the two nodes is independently selected to form a connection through one 
of its edge stubs, the probability to pick a node with connectivity K is given by K p ( K ) / ( K ) ,  
and the conditional probability distribution P$"b(l(l [.KO) is independent of KO and equal to 

P,""""K1lKrJ) = Klp(Kl) / (K)  . (8.61 

On the other hand, in an ensemble of random scale-free networks with no multiple edges the 
conditional probability distribution P(I(1 IKo) crosses over between K1/p(l(l) functional 
form for K1 << Kf = 2E/Ko to p(K1) for K1 >> I<-:. We have confirmed numerically that 
P(K1 I KO) in our randomized ensemble has a very similar shape to that observed in the real 
Internet [28] thus once more verifjmg that most of correlation effects visible in the internet 
network can be attributed to the effective repulsion between hubs due to the constraint of no 
multiple connections. The remaining correlations are quantified in the correlation profile in 
Figs. (8.11,8.12). 

8.4 Network motifs: Transcriptional regulation in Exoli 
A fundamental question in understanding a complex network is whether it can be decomposed 
into building blocks. Ideally, such building blocks would be well separated from each other, 
and thus the entire network dynamics could be approximated by a combination of dynamics 
of these basic elements. 

A natural place to examine this question further is the best characterized biological reg- 
ulation network, that of transcription regulation in the bacterium E. coli [29, 301. In this 
network, the nodes are operons (groups of genes transcribed form a single mlZNA). Some of 
the operons encode for regulatory proteins, which regulate the transcription rates of certain 
other operons. Thus, each edge is directed from an operon encoding a regulatory protein to an 
operon regulated by that protein. 

The transcription network of E. coli has a broad scale-free-like distribution of outgoing 
edges, and a compact distribution of incoming edges. The resulting directed graph shown in 
Fig. 8.1 appears quite complex, as seen by plotting it with a standard graph display algorithm 
[2] (the dataset is available at www.weizmann.ac.il/mcb/UriAlon). We note that transcription 
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Figure 8.13: The average connectivity of a neighbor (K1) vs the connectivity of a node KO in the 
Internet (squares) and its randomized version with no multiple edges (circles). The error bars in multiple 
realizations of the randomized network are smaller than the size of the symbol. 

graphs have an additional color for each edge: each regulatory protein can be a positive or a 
negative reguIator, termed activator or repressor respectively (in rare cases a dual regulation 
is found). To detect recurring patterns in this graph that are likely to have a functional role, a 
new approach based on network motifs was recently presented [14]. The approach is simple 
to define: one enumerates the appearance of all types of subgraphs in the graph. The number 
of appearances of each subgraph is then compared to an ensemble of randomized networks, 
generated as discussed in section 2, such that each of the randomized networks preserves the 
incoming and outgoing edge degrees for each node. Network motifs are subgraphs that satisfy 
a statistical-significance criterion: the probability that they appear in a randomized graph 
more often than in the real graph is smaller than a threshold P-value (eg P < 0.01). The 
profile of the network given by the set of such statistically significant network motifs nicely 
compliments the correlation profile described in the previous section. 

a. Type I patterns: Patterns with no free structural parameters. This involves full enumera- 
tion of small subgraphs: all 13 types of 3-node connected, directed subgraphs, and 199 types 

Here we review the representation of 3 particular kinds of patterns: 
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of 4-node subgraphs were enumerated in Ref [14]. The complexity rises exponentially for 
larger subgraphs, and efficient Monte-Carlo sampling methods still need to be devised for 
completely enumerating all types of n-node directed subgraphs. The algorithms for type-I- 
pattern detection can either take into account or ignore the edge colors. As shown below, the 
dynamical behavior of each subgraph may critically depend on the edge coloring. 
b. Type II patterns: Patterns with a free structural parameter. Visual examination of the tran- 
scription network showed a recurring pattern: a set of nodes with only one incoming edge, 
all from the same master node. In Ref. [ 141 such patterns were termed Single Input Modules 
(SIM) since no node other than the master node regulates any of the nodes in this pattern. 
This pattern has a free structural parameter, the number of nodes in the SIM. An algorithm 
that searches for this pattern (and in general for identical rows in the connectivity matrix of 
the graph) was employed for comparison with randomized graphs. Taking edge color into 
account, the definition of SIMs is further restricted to the case where all edges have the same 
color (that is all negative or all positive regulation). 
c. Type IIT patterns: Classes of patterns defined by an extensive characteristic such as edge 
density. In the present case, a clustering approach was defined for cdetecting regions in the 
graph that are more dense then in randomized graphs. This defined Dense Overlapping Reg- 
ulons (DOR). A regulon is a biological term for a set of operons all regulated by the same 
regulatory protein, not necessarily exclusively [3 11. Naturally, other pattern classes can be 
defined in this way. 

First let us summarize the overall findings of this detailed analysis of network motifs: In 
regards to type I patterns it was found that out of 13 possible 3-node subgraphs only one is 
statistically significant. This motif was termed the Feed-Forward Loop (FFL) (Fig. 8.14), 
and the real network had 40 of these as compared to the 7 =k 5 found in an ensemble of 
randomized networks. Of the 4-node subgraphs, only one was significant, a pattern with 4 
edges representing overlapping regulation X i W, 2 and Y + W, 2. This 4-node motif 
hints that dense overlapping regions are extant in the network. This was indeed found to be 
the case, but the dense region broke down into 6 weakly overlapping dense clusters, the type 
111 patterns termed DORs (Fig. 8.14~). Finally, among the the type I1 patterns, large SIMs 
were found to be highly significant (Fig. 8.14b). 

To further validate the motifs it was tested [14] whether they are sensitive to data er- 
rorshncomplete data. As in the case of correlation profiles discussed in the previous section, 
it was found that the statistical significance of the network motif is highly robust with respect 
to data errors. For example, when over 30% of the connections are removed at random, or 
added at random, all 3 motifs remain significant and no new motifs appear in the network. 
This robustness may fail, of course, if the dataset contains systematic errors with a bias for 
certain kinds of patterns. For example, well-known regulatory proteins are investigated by 
inany labs, which may result in a tendency for an increased number of known connections 
for these nodes (an effect similar to searching for the coin under the streetlamp). This inay 
exaggerate the number of SIMs detected. The, existence of SIMs was also hinted at by the 
correlation profile of yeast regulatory network discussed in the previous section. Indeed, the 
abundance of SIMs must be at least partially responsible for the observed preference of highly 
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Figure 8.14: The three network motifs in the E. coli transcription network.. In this figure, the edge 
colors (regulation signs) are not shown. a) Feed-forward Loop (FFL). b) Single Input Module (SIM) 
where X regulates n output nodes. The output nodes have no other incoming edges. All regulations 
are of the same sign. c) Dense Overlapping Regulon @OR). A set of input nodes X1 ... Xm regulates 
a set of output nodes ZI ... Zn, with a resulting cluster of edges that is much denser than those found 
in randomized networks. In [14], a clustering algorithm that clusters nodes according to the number of 
overlapping inputs was presented, and used to compare the DOR structures to the randomized ensemble. 

connected proteins (hubs) to connect to neighbors with lower than average connectivity in this 
network. The fact that the preference of proteins with low and high connectivity to connect to 
each other was also observed in both the protein interaction and regulatory networks in yeast 
indicate that, perhaps, SIMs are a significant feature in all types of bio-molecular networks. 

Over SO% of the nodes in the E.coli transcription network belong to one of the three 
motifs defined above, FFL, SIM or DOR. The remaining nodes usually belong to tiny disjoint 
components of 1-3 nodes. Thus the decomposition of the network into recurrent motifs allow 
us an alternative way to present the data, in terms of its structure, and of the relative position 
of the various motifs (Fig. 8.15). A small set of nodes with an outgoing edge degree much 
larger than average (global regulators) complicates the graph image. An important step in 
visualizing the network is to allow the nodes with high output degrees to appear multiple 
times in the image, acting as inputs to the various DOR structures in which they participate. 
This preserves all of the information but removes many complicating edges. It is seen that the 
transcription network of E. coli is mostly a two-layer feed-forward network. The FFLs and 
SIMs are often at the outputs of the DORs. These two motifs are therefore integrated into the 
DOR structures. 

Dynamical behavior of network motifs: Two of the motifs, FFL and SIM, have been 
shown to carry out distinct information processing functions, using numerical simulations 
[14]. The SIM motif allows the operons to be turned on in a particular temporal order and 
turned off in the reverse order, akin to the “First-In Last-Out’’ (FILO) pipeline. The temporal 
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Figure 8.15: The complete known E. coli transcription network displayed using network motifs. This 
version has several corrected edges and several new nodes as compared to the images in [14]. The 
complete dataset is available at w\.vw.weizmann.ac.il/mcb/UriAlon 
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b. Incoherent feedforward loops 

Figure 8.16: Coherent (a) and Incoherent (b) feed-forward loops. Arrows represent positive 
regulation, and -1  symbols represent negative regulation (repression). 

order is encoded in the relative strengths of the edges to each node (mechanistically, in the 
strength and position of regulatory protein and RNA polymerase binding sites in the regulatory 
DNA region that precedes each operon). To understand the dynamics of the FFL motif, the 
edge coloring becomes important. When taking into account the two edge colors, there are 
8 possible colorings of the FFLs three edges. However, it is sufficient to consider two types 
of FFLs. The FFL is composed of a direct path from node X to node Z, and an indirect path 
through node Y. A coherent FFL has the same sign on the direct path as the net sign of the 
indirect path (Fig.8.16a), while an incoherent FFL has opposing signs in the direct and indirect 
paths (Fig 8.16b). The coherent FFL is the dominant form in E. coli (P < 0.001), while the 
incoherent FFL is only marginally significant ( P  N 0.03). The two types of FFL motifs can 
show very different dynamical behavior. For simplicity we consider here the case where the 
two inputs act as an AND gate to control the output Z, a typical case in transcription systems. 
The coherent feed-forward loop acts to reject rapid input pulses of X that go from OFF to 
ON, responding only to persistent inputs. However, there is a strong response even to short 
reverse pulses from ON to OFF. Thus the coherent FFL can act as a sign-sensitive filter. The 
condition for this is that the level of Y in the OFF state of X is below the activation threshold 
for Z. The typical width of pulses first passed by this filter is given by the time it takes Y to 
cross Z's activation threshold. 
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The incoherent FFL can act as a sign-sensitive differentiator (pulse generator). In a step 
where X goes from OFF to ON, Z is rapidly activated. Then, Y levels build up to cross the 
repression threshold for Z. Thus after a delay, Z becomes inactivated, given that the negative 
effect of Y is strong enough. On the other hand, no response is seen in a step from ON to OFF, 

These two functions, sign-sensitive filtering and temporal transcription programs, may be 
basic tasks in the information processing performed by E. coli. Indeed, it has recently been 
found experimentally .that temporal programs exist in systems such as flagella bio-synthesis 
[32] and SOS DNA repair (Ronen, Rosenberg, Shraiman, Alon, submitted 2002), where the 
temporal order within groups of operons controlled by. the same regulator corresponded to the 
functional order of these genes. The STM mechanism is likely to be at play. 

These findings can point the way to experiments designed to understand the hnctions of 
each motif. Once these functions are understood, one may check whether the dynamics of 
the entire network can be well approximated as a combination of the dynamics of its separate 
motifs. 

.. where Z remains suppressed. 

8.5 Discussion: What it may all mean? 
The large scale organization of molecular networks deduced from correlation profiles of pro- 
tein interaction and transcription regulatory networks in yeast, and the set of statistically sig- 
nificant network motifs in the regulatory network of E.coli is consistent with compartmental- 
ization and modularity characteristic of many cellular processes [33]. Indeed, the suppression 
of connections between highly connected proteins and the abundance of DOR network motifs 
both suggest the picture of semi-independent modules centered around or regulated by indi- 
vidual hubs. On the other hand, the very fact that these molecular networks do not separate 
into many isolated components but are dominated by one “giant component” suggests that 
this tendency towards modularity is not taken to its logical end. It can in fact be described 
as “soft modularity”, in which interactions between individual modules are suppressed but 
not completely eliminated. Thus on sufficiently large scale molecular networks exhibit sys- 
tem properties making their behavior different from that of a set of mutually independent 
modules. Two recent observations independently hint at global interrelations in the overall 
connectivity pattern of molecular networks: 

1. Elena and Lenski [34] studied the cooperativity of regulation in E.coJi by comparing 
changes of the cell cycle length in single-gene null mutants with those in double null 
mutants. They concluded that about 30% of gene pairs exhibited more than additive 
effects on cell cycle length, and thus at least 30% of protein pairs are functionally in- 
terconnected. Such level of cooperativity would be impossible in a regulatory network 
consisting of a large number of independent modules. 

. 

2. C.K. Stover et al. [35] found that the number of transcription factors (Nt,) in procaiyotic 
organisms grows as a square of the number of genes N :  Nt, oc N 2 .  Hence, each 
additional gene (or gene module/regulon) appears to be regulated with respect to all genes 
that are already present. This indicates an overall regulation pattern that on sufficiently 
large scale is neither modular, nor hierarchic. 
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On the other hand, in this work we demonstrated that already on the level of the correlation 
profile (the two point correlation function) these networks exhibit a certain degree of modular- 
ity. A further implication of those modular features manifested by the deficit of connections 
between highly connected proteins (Figs. 8.7, 8.8) is in the suppression of propagation of 
deleterious perturbations over the network. It is reasonable to assunie that certain perturba- 
tions such as e.g. a significant change in the concentration of a given protein (including it 
vanishing altogether in a null-mutant cell) with a ceratin probability can affect its first, sec- 
ond, and sometimes even more distant neighbors in the corresponding network. While the 
number of immediate neighbors of a node is by definition equal to its own connectivity KO, 
the average number of its second neighbors is bound from above by KO ((Kl - 1)}1~, and thus 
depends on the correlation profile of the network. In addition it is sensitive to higher order 
correlation patterns of the network. For example, in the presence of a significant level of clus- 
tering the number of second neighbors can fall well below the above mentioned upper bound. 
Since highly connected nodes serve as powerhl amplifiers for the propagation of deleterious 
perturbations it is especially important to suppress this propagation beyond their immediate 
neighbors. It was argued that scale-free networks in general are very vulnerable to attacks 
aimed at hubs [36,37]. The deficit of edges directly connecting hubs to each other reduces the 
branching ratio around these nodes and thus provides a certain degree of protection against 
such attacks. 

To summarize the above discussion, it is feasible that molecular networks operating in 
living cells have organized themselves in an interaction pattern that is both robust and spe- 
cific. Topologically the specificity of different functional modules is enhanced by limiting 
interactions between hubs and suppressing the average connectivity of their neighbors. Such 
correlations are also evident on a more detailed level of local structural motifs such as SIMs 
and DORs. Each of those network motifs has certain computational properties providing the 
cell with appropriate responses to environmental and internal changes. On a larger scale there 
is evidence for interconnections between these modules, although the principles of such global 
organization of living cells remain unclear from the present day data and analysis tools. 

Correlation profiles and statistically significant network motifs allow one to distinguish 
between different complex networks, even if their connectivity distributions appear identical. 
Thus, for example, the Internet at the level of Autonomous Systems and physical interac- 
tions among yeast proteins are both characterized by power-law connectivity distributions 
with rather similar exponents. However, correlation profiles of these two networks (Figs. 8.7, 
8.1 l), are qualitatively different from each other. First, in the Internet unlike in molecular 
networks, connections between the highly connected nodes were not suppressed. In fact any 
pair of hubs on the Internet was connected to each other by a direct link. Secondly, the pro- 
tein interaction network in yeast is characterized by an enhancement of connections between 
nodes with intermediate connectivities , as opposed to the Internet, where such connections 
were found to be strongly suppressed. Also, unlike protein interaction networks the Internet 
has a deficit of edges connecting nodes of very low connectivity to each other. This all indi- 
cates that the information processing mechanisms relevant to protein interaction networks are 
qualitatively different from those relevant to the Internet. 
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The main goal of the present work was to introduce a number of statistical tools necessary 
for analyzing topological patterns and correlations in networks. These tools allowed us to 
identify the set of different topological patterns and characteristic building blocks (motifs) 
present in a broad range of complex networks, which may help to better understand possible 
mechanisms for their function and evolution. The advantage of our approach lies also in it 
iterative nature in which the understanding of more and more complex topological properties 
of the network gradually builds up on the analysis of its lower level featurgs, Work 
s6pporTed by the U.3: Department oFEnergy under Contract No. DE-AC02-98CH10886. 

- -- - - 
- -  
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