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Abstract We studied the optical conductivity of electron doped Prl-,Ce,Cu04 from the 
underdoped to the overdoped regime. The observation of low to high frequency 
spectral weight transfer reveals the presence of a gap, except in the overdoped 
regime. A Drude peak at all temperatures shows the partial nature of this gap. 
The close proximity of the doping at which the gap vanishes to the antiferro- 
magnetic phase boundary leads us to assign this partial gap to a spin density 
wave. 
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1. Introduction 
The electron and hole doped cuprates phase diagram shows a global sym- 

metry. However, many aspects of the electron doped conipounds, includ- 
ing the nature of the superconducting gap, the behavior of the normal state 
charge carriers, and the presence of a normal state (pseudo)gap are still un- 
clear. A pseudogap phase is now well established on the hole doped side [l]. 
In Bi2Sr2CaCu208+6, angle resolved photoemission spectroscopy measure- 
ments (ARPES) indicate a pseudogap opening along the (0, n) direction in k 
space [2]. However, the in-plane optical conductivity does not show any direct 
evidence of this pseudogap [3]. The optical conductivity of non superconduct- 
ing Nd2-,Ce,Cu04 (NCCO) single crystals (z = 0 to 0.125) suggests the 
opening of a high energy partial gap well above T N ~ ~ ~  [4]. Low temperature 
ARPES reveals a Fermi surface characterized by the presence of pockets [5 ] .  

We determined the temperature evolution of the optical conductivity in a set 
of Pr2_,CezCuO4 thin films. Our data reveals the onset of a “high energy” 
partial gap below a characteristic temperature Tw which evolves with doping. 



f' 

2 

It is clearly detected for 0.13, it is absent down to 20 K for z = 0.17 and it 
has a subtle signature for IC = 0.15 (optimal doping). The proximity of our 
samples to the antiferromagnetic phase makes a spin density wave (SDW) gap 
the natural interpretation for our observations, consistent with ARPES [5]. 

2. Experimental 
The thin films studied in this work were epitaxially grown by pulsed-laser 

deposition on a SrTiOz substrate [6]. The samples studied are (i) z = 0.13 
(underdoped) T, = 15 K (thickness 3070 A), (ii) z = 0.15 (optimally doped), 
Tc = 21 K (thickness 3780 A) and (iii) z = 0.17 (overdoped) T, = 15 K 
(thickness 3750 A). All Tc's were characterized by electrical resistance mea- 
surements. We checked the z = 0.15 sample homogeneity by electron mi- 
croscopy analysis (using the micron scale X-ray .analysis of an EDAX system) 
and found no dispersion at the micron scale in the Pry Ce or Cu concentra- 
tions. Thin films are easy to anneal but, most important, they can be made 
superconducting in the underdoped regime, whereas this seems difficult for 
crystals [4]. Infrared-visible reflectivity spectra (at an incidence angle of SO), 

were measured for all the films in the 25-21000 cm-I spectral range with a 
Bruker IFS-66v Fourier Transform spectrometer within an accuracy of 0.2%. 
Typically 12 temperatures (controlled better than 0.2 K) were measured be- 
tween 25 K and 300 K. The far-infrared frequency range (10-100 cm-l) was 
measured for samples (ii) and (iii) utilizing a Bruker IFS-113v at Brookliaven 
National Laboratory, 

3. Results and Discussion 
Figure l(a) shows the raw reflectivity (R) from 25 to 6000 cm-' for a set 

of selected temperatures. As the temperature decreases, an unconventional 
depletion of R appears for 2 = 0.13. This feature, denoted by an arrow, is 
still visible for z = 0.15 as a subtle change in E. Conversely, the reflectivity 
of the z = 0.17 sample increases monotonously with decreasing temperature 
over the whole spectral range shown. We applied a standard thin film fitting 
procedure to extract the optical conductivity from this data set [3]. The real part 
n1(w) of the optical conductivity is plotted in Fig. 1 (b). At low energies, for 
all concentrations, the Drude-like contribution narrows as the temperature is 
lowered in the normal state from 300 K to 25 K (Fig. 1 inset). This corresponds 
to a quasiparticle lifetime increasing in agreement to the metallic behavior of 
the resistivity. Figure l(b) shows that the feature in the reflectivity of the z = 
0.13 sample produces a diphump structure in 01 with a peak at N 1500 cm-'. 
For z = 0.15 the reflectivity behavior is not clearly seen in n1. A similar 
feature was observed in NCCO single crystals only for doping levels where 
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Figure 1. (a) Infrared reflectivity of 5 = 0.13, 0.15 and 0.17 samples. .Curves are shifted 
from one another by 0.1 for clarity. (b) Real part of the optical conductivity from 400 to 6000 
cm-l. Curves are shifted by 400 S2-1 cm-l. The inset shows the low energy (0-1000 cm-') 
free carrier contribution to ( T ~ ( w )  of the z=O.13 sample at 300 K and 25 K. In both panels the 
temperatures shown are 300 K (dash-dotted); 200 K (dashed), 100 K (dotted) and 25 K(so1id). 

such crystals are not superconducting [4], whereas we observe it in the x=O. 13 
sample. 

4. Partialgap 
To understand the dipihump structure, we define the partial sm rule W ( w )  = 
C T ~  (w')dw'. Making w -+ 00 yields the standard f-sum rule W = 7rne2/2m. 

When integrated over our full measured spectral range, we find a temperature 
independent W in all samples. Figure 2(a) shows the nonnalized temperature 
dependence W(2000 cm-l, T)/W(2000 cm-l, 300 K) for all films. The con- 
tinuous increase of W with decreasing T observed in the x = 0.17 sample is a 
signature of decreasing scattering rate. In the 2 = 0.13 sample W(2000 cm-') 
decreases for T < 150 K, corresponding to the opening of a gap. As a Dmde 
peak is present at all T's, we conclude that the gap covers only part of the 
Fermi surface. The behavior of the x = 0.15 sample is intermediate, suggest- 
ing a small or broadened gap. 

A possible interpretation for the origin of the gap is a commensurate (T, 7r )  

spin density wave. It induces a symmetry breaking, folding the Fermi surface 
upon itself, and a partial gap A s ~ w  opens at the intersection of the antiferro- 
magnetic Brillouin zone, creating pockets in the Fermi surface [5 ] .  
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Figure 2. (a) Temperature dependence of partial sum rule for samples with 2 = 0.13, 0.15 
and 0.17 integrating cr1 up to 2000 cm-'. @) Optical conductivity calculated by a spin density 
wave model for z = 0.125. 

Figure 2(b) shows calculations [7] using a Marginal Fermi liquid with pa- 
rameters chosen to reproduce p(T) for T > 200 K, combined with a commen- 
surate (n,n) SDW gap opening for T < 200 K. The T = 0 gap magnitude 
was adjusted to correctly locate the maximum in c at T = 0. The calculation 
is seen to reproduce the data fairly well [compare to Fig. 2@)]. 

5. Summary 
We have measured with great accuracy the reflectivity of electron doped 

Pr2-zCezCu04 at various Ce doping levels. An optical conductivity spec- 
tral weight analysis shows that a partial gap opens at low temperatures for Ce 
concentrations up to z = 0.15. A spin density wave model reproduces satis- 
factorily the data. 
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