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Abstract 

We propose statistical models of uncertainty and error in numerical solutions. To 
represent errors efficiently in shock physics simulations we propose a composition law. 
The law allows us to estimate errors in the solutions of composite problems in terms 
of the errors from simpler ones as discussed in a previous paper. In this paper, we 
conduct a detailed analysis of the errors. One of our goals is to understand the relative 
magnitude of the input uncertainty us. the errors created within the numerical solution. 
In more detail, we wish to understand the contribution of each wave interaction to the 
errors observed at the end of the simulation. 

1 Introduction 
We are concerned with the identification and characterization of solution errors in spherically 
symmetric shock interaction problems. This issue applies to the study of supernova and the 
design of inertial confinement fusion (ICF) capsules. In the first case, theory and siinulations 
contain a number of uncertainties, and comparison to observations is thus not definitive. A 
systematic effort to remove or quantify some of the uncertainties associated with siniulation 
will thus be a useful contribution. In the second case of ICF design, concern over solution 
accuracy has led t o  mandates of formal efforts t o  assure solution accuracy. 

In previous papers, we have developed a general approach to uncertainty and numerical 
solution error 114, 51. We have analyzed shock interactions in planar [l, 21 and in spherical 
[3] geometries. Here we focus specifically on determining the contributions of each wave 
interaction to the total error at any given stage in the simulation. 

We studied repeated interactions of a spherically symmetric shock wave with a spherical 
density discontinuity layer. We performed numerical simulations on an ensemble of 200 
initial conditions perturbed from a base case. The numerical solutions are obtained with 
mesh sizes 100, 500, and 2000. We use the difference between the fine grid solutions (2000 
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Figure 1: Left: space time density contour plot for the multiple wave interaction problem 
studied in this paper, in spherical geometry. Right: type and location of waves determined 
by the wave filter analysis with labels for the interactions. Here I.S., C, O.S., I.R. denote 
the inwa.rd moving shock, the contact, outward moving shock and inward moving rarefaction 
respectively. 

mesh) and the two coarse grid solutions to represent the numerical simulation errors at the 
two coarse grid levels. The created solution errors in wave strength, wave width and wave 
positions are modeled statistically with siniple linear regression models in which the input 
conditions are the predictors. Errors associated with the linear regression model, studied 
previously [l, 21, are small. Then we use a composition law, also developed previously [a,  31, 
to combine the statistical models for uncertainty and error at each wave interaction. We 
predict both the mean (bias) and standard deviation o of the errors. Following conventional 
ideas in statistics, we regard f 2 a  as the length of a statistical error bar for the simulation, 
and the mean error as giving an offset of the error bar from the coarse grid simulation. In 
this way we have a systematic method for the introduction of error bars for numerical errors 
(including input uncertainty) into numerical simulations. Here we focus on the output of 
the third wave interaction, i.e. after the reshock. See Fig. 1. Our predictions are compared 
with errors obtained directly through numerical simulation of the entire sequence of repeated 
shock wave interactions. Our prediction method, although simple, gives one to  two significant 
digits in the mean solution error in all the cases except for the case of wave position errors 
in the 100 mesh simulation. The errors come from two sources, numerical simulation and 
input uncertainty, propagated and transmitted through wave interactions. We call these the 
created and transmitted errors for short. Note that the created errors may be created at any 
earlier interaction, and are then transmitted to some later interaction, where they contribute 
to the total error at that space time location. 
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2 The Multipath Error Analysis Formula 
We develop a general formula for the error at the output to interaction j ,  in terms of the 
input to this interaction. By composing this formula over all previous interactions, we obtain 
the error at the output to interaction j in terms of the initial uncertainty and the created 
errors at each interaction i 5 j .  The formula thus has individual terms associated with each 
of the contributing wave interaction diagrams [2]. We call it the Multipath Error Analysis 
Formula. 

Figure 2: Schematic graphs, showing all six wave diagram contributions to the errors or 
uncertainty in the output from a single Riemann solution, namely the reshock interaction 
(numbered 3 in the right frame of Fig. 1) of the reflected shock from the origin as it crosses 
the contact. The numbers labeling the black circles refer to  the Riemann interactions con- 
tributing to  the error. The letter Z in the first two diagrams indicates input uncertainty. 

We first appeal to the fine grid simulation data (as a stand in for the exact solution) to 
develop or parameterize an affine linear model for the output wave strengths at interaction 
j in terms of the input wave strengths. This formula, considered variationally, also yields 
a model for the transmission of error/uncertainty through interaction j .  We additionally 
initialize comparable input on the fine and coarse grids at interaction j ,  so that the difference 
between the fine and coarse grid solutions is the created error at interaction j .  The created 
error, e?), in the wave strength w at  interaction j is thus defined as 

Here the three output waves are indexed form left to  right by s,  1 5 s 5 3. The superscripts o 
and i represent output and input strengths respectively, and the subscripts f and c represent 
fine and coarse grid solutions. 

The linear regression, or linear approximate formula for the output wave strength at 
interaction j is obtained from the fine grid simulation data, 
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We . .  use this formula variationally to obtain a formula for the transmission of input error 
6 w p ) .  The input error itself is a combination of transmitted input uncertainties Zc,Zs and 
created errors Cp) also transmitted from interactions i < j ,  

A source Sp) of errors contributes to the output error through wave interaction diagrams 
g E $$, which connect the r th  source at interaction i to the s th  output at the interaction j .  
Such diagrams were introduced in [2]. A shock wave as input to an intermediate interaction 
m with radius dm) in a diagram g E 4 is propagated from the previous interaction m/ 
occurring at the radius dm’) according to a power law. The power law gives the definition 
of a propagator with a proper power drn>9)  for the rn/ m bond of the diagram g, 

We define 7;:) for the sth output and the kth input at interaction m as the multiple of a 
coefficieiit and a propagator, which are defined by a bond in the diagram g (i.e.p is related 
to g and P to g) 

The coarse grid output error is the sum of the transmitted errors from (2) and the error 
created at interaction j ,  

(m) = (rn) (4 
~ s k  P s k  ‘(ml) a 

where Cg = n 
that the created error at interaction j is included in the i = j ‘term in (4). 

mean, 

7::) and the product runs over all bonds B(g) of the diagram g. Observe 

At the output to the interaction 3 ,  we have the following closed form expression for the 

B ( 9 )  

Observe that (Z,) = (Ic) = 0, so that with a linear propagation model and assumed mean 
zero initial uncertainty, the two initial uncertainties do not contribute to the mean error. 
We assume statistical independence of the sources, to obtain a closed form expression for 
the variance of the error, 
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3 Results 
In Figs. 3, 4, we present three pie charts representing fractional contribution from each of the 
six interactions to the error variance for the inward rarefaction, contact and outward shock, 
respectively, as output to  interaction 3. From these charts, we can infer the relative impor- 
tance between the input uncertainty and the solution error and determine the contribution 
of each interaction to the total error variance. 
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Figure 3: Pie charts showing the contribution of each wave interaction diagram to the error 
variance of the wave strength at the output of interaction 3, for a solution using 500 mesh 
units. 
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Figure 4: Pie charts showing the contribution of each wave interaction diagram to the error 
variance of the wave strength at the output of interaction 3, for a solution using 100 mesh 
units. 

We also show the contributions of each interaction to the mean value of the final total 
error. See Table. 1. We only show the values corresponding to diagram 3 to 6, a.s the 
contribution of the first two diagrams (input uncertainties) is observed to be zero. 
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Wave Diagram 
Number 

3 
4 
5 
6 

Total Prediction 
Total Simulation 

References 

I.R. C. O.S. 
100 500 100 500 100 500 

0.10 -0.01 -0.01 0.001 0.09 -0.009 
0.05 0.009 0.1 0.02 -0.02 -0.004 

-0.05 -0.005 0.006 0.0006 -0.04 -0.004 
-0.07 0.015 0.03 0.01 -0.05 0.01 
0.03 0.009 0.12 0.03 -0.02 -0.007 
0.04 0.01 0.14 0.03 -0.02 -0.006 
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