
BRiOOKEi EN
MAT I O N& L LAB 0 RAT0 RY

BNL-NUREG-72381-2004-CP

Awues Associated with Probabilistic Failure
Modeling of Digital Systems

T. L. Chu, G. Martinez-Guridi, J. Lehner
Brookhaven National Laboratory
Building 475C, P.O. Box 5000

Upton, New York 1 1973
Chu@bnl.gov, Martinez@,bnl.gov, Lehner@bnl.gov

D. Overland
US. Nuclear Regulatory Coinmission

Washington, DC 20555-0001
DHO 1 @nrc.gov

Presented' at. the 4"' American Nuclear Society International Topical Meeting on Nuclear
Plant Instrumentation, Controls, and Human-Machine Interface Technologies

Columbus, Ohio
September 19-22,2004

June 2004

Energy Sciences and Technology Department

B roo kh aven Nation a I Laboratory
P.O. Box 5000

Upton, NY I 1 973-5000
www. bnl.gov

Managed by
Brookhaven Science Associates, LLC

for the United States Department of Energy under
Contract No. DE-AC02-98CH10886

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made
before publication, this preprint is made available with the understanding that it will not be cited or reproduced
without the pisrmission of the author.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontrstctors, or their employees, makes any warranty, express or implied, or
assumes imy legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute: or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof

FOR UNCLASSIFIED, UNLIMITED STI PRODUCTS

Available: electronically at:

OSTI:

http ://www . o sti . govlbridge

Available for a processing fee to U.S. Department of Energy and its contractors,
in paper from:

U.S. Department of Energy
Office of Scientific and Technical Iriformation
P.O. Box 62
Oak Ridge, TN 3783 1
Phone: (865) 576-8401
Facsimile: (865) 576-5728
E-mail: reports@adonis.osti.gov

National Technical Information Service (NTIS):

Available for sale to the public from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 221 3 1
Phone: (800) 553-6847
Facsimile: (703) 605-6900
Online ordering: http://m.ntis.gov/ordering.htni

BNL-NU.REG-72381-2004-CP
Fourth American Nuclear Society International Topical Meeting 011 Nuclear Plant Instrumentation, Controls

and 13uman-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

ISSUES ASSOCIATED WITH PROBABILISTIC FAILURE MODELING OF
DIGITAL SYSTEMS*

T. L. Chu, G. Martinez-Guridi, and J. Lehner
Brookhaven National Laboratory
Building 475C, P. 0. Box 5000

Upton, New York 1 1973
Cliu@bnl.gov, Martinez@bnl.gov

D. Overland
U. S. Nuclear Regulatory Coinmission

Rockville, Maryland 20852-273 8
DHO 1 @nrc.gov

Keywords: Probabilistic Risk Assessment, Digital Systems, Safety-Critical Systems

ABSTRACT

I

The current U.S. Nuclear Regulatory Commission (NRC) licensing process of
instrumentation and control (I&C) systems is based on deterministic requirements, e.g.,
single failure criteria, and defense in depth and diversity. Probabilistic considerations can
be used as supplements to the deterministic process. The National Research Council has
recommended development of methods for estimating failure probabilities of digital
systems, including commercial off-the-shelf (COTS) equipment, for use in probabilistic
risk assessment (PRA). NRC staff has developed informal qualitative and quantitative
requirements for PRA modeling of digital systems.

Brookhaven National Laboratory (BNL) has performed a review of the-state-of-
the-art of the methods and tools that can potentially be used to model digital systems.
The 0bjective:s of this paper are to summarize the review, discuss the issues associated
with probabilistic modeling of digital systems, and identify potential areas of research
that would enhance the state of the art toward a satisfactory modeling method that could
be integrated with a typical probabilistic risk assessment.

1. INTRODUCTION

0

At the request of the U.S. NRC, the National Research Council formed a
committee to conduct a study on application of digital I&C technology to commercial
nuclear power plant (NPP) operations (USNRC, 1997). In the study, the committee
investigated t’he important safety and reliability issues and provided recommendations on
the issues. On the issue associated with safety and reliability modeling methods, the
recommendat ions include: (1) development of methods for estimating the failure
probabilities of digital systems for use in PRA, (2) inclusion of the relative influence of
software failure on system reliability in PRAs of systems containing digital components,
(3) development of expertise to understand the requirements for gaining confidence in
digital systems and the limitations of quantitative assessment, and (4) development of
advanced techniques for analysis of digital systems that would increase the confidence
and reduce the uncertainty in quantitative assessments.

* This work was performed under the auspices of the U.S. Nuclear Regulatory Coinmission.

In 2000, NRC started a research plan on digital I&C. NRC staff prepared a paper
on “What PRA Needs From a Digital Systems Analysis,” (Arndt, 2002) which specifies
the qualitative and quantitative modeling requirements of digital systems, including
compatibility with existing PRAs, level of detail of internal structure, modeling of
dependency, modeling of software failures, and diversity of digital systems. The research
subjects related to PRA modeling include software requirement specification, operating
experience, survey of reliability methods, fault injection and Markov modeling, and
software reliability modeling. In addition, BNL has performed a literature review on
issues associated with probabilistic failure modeling of digital systems, a review of the
current NRC guidance and regulation associated with reliability modeling of digital
systems, a review of existing methods and tools for modeling digital systems, an failure
mode and effects analysis (FMEA) of a hypothetical reactor protection system (RPS)
based on the Tricon platform, and a review of the existing failure databases of digital
components.

The objectives of this paper are to summarize the issues associated with
probabilistic Failure modeling of digital systems, review the methods for modeling digital
systems, and provide suggestions on additional research that should be performed in
developing a coinmonly acceptable method for modeling digital system.

2. ISSUIES ASSOCIATED WITH FAILURE MODELING OF DIGITAL
SYSTEMS

A PRA is an integrated model of a NPP, and digital systems at the plant have
extensive interfaces with the rest of the plant. Therefore, it is important that the
interfaces between the digital systems and the rest of the plant be properly accounted for.
Adequate supporting analyses, e.g., FMEA, have to be performed to determine the
impacts of digital systems. For a digital control system that is normally operating, e.g.,
feedwater control system, its failure could cause an initiating event, e.g., loss of
feedwater. Therefore, a model that estimates the frequency of such an initiating event is
needed. For a protection system, e.g., RPS and engineered safety features actuation
system (ESFAS), a model that estimates the probability that the system would fail to
perform its function for different initiating events and different accident sequences is
needed. Spurious actuation of these systems could also contribute to initiating events.
For instrumentation systems, e.g., indications of physical conditions of the plant, a model
for estimating, the probability of incorrect indication or spurious actuation is needed.

A realistic model of a digital system should be able to capture the unique features
of the system. The unique features may include software, diagnostics, self-correction,
signal validation, synchronization, and unique communication means, e.g., buses, LAN,
and fiber optic connections. Fault tolerant features tend to improve the reliability of
digital systems and should be accounted for in the model. Digital systems have unique
failure mode:; and causes that could affect the system adversely and should also be
accounted for in the model. For example, software failures are known to be dominated
by errors associated with requirement specification (Hecht, 2001 a) and are potential
common cause failures (CCFs) of a redundant system. Unique features of digital systems
could be implicitly captured in the data used in a model, or explicitly modeled, depending
on the level o F detail of the model. In either case, good applicable data has to be used.

2.1 Are Sloftware Failure Rates Meaningful?

Model.ing of software failures in terms of failure rates or equivalently mean times
to failure has been very common, e.g., reference (Lyu, 1996). The methods for
estimating software failure rates use test data and are extensions of hardware reliability

methods to software. In testing hardware, e.g., starting of a pump, identical tests are
performed, and the results are used to estimate the failure probability. In software testing,
different samples from the input domain of the software are taken as input to the
software, bugs are fixed when they are identified, and the test results are used to estimate
failure rates in the same way the hardware test results are used. Reliability growth
methods use the data collected, usually in the form of successive execution times between
failures, to estimate current reliability and predict future reliability growth. Due to the
high reliability of the safety-critical software, a very large number of tests would be
needed to obtain high confidence of the low failure probabilities (Littlewood, 199 1).

Some experts (Leveson, 1991 ; Singpuwalla, 1995) have the opinion that software
is determinislic, i.e., given the same input, it will always produce the same output, and it
may not be meaningful trying to model it probabilistically. Some even argue that
software does not fail, because they always do what they are designed to do. Unlike
hardware, which may fail due to physical degradation of the components themselves,
software does not age. Either a software fault exists at the beginning of life, or it doesn’t.
It does not come into existence at some point in time. This argues against the use of
aleatory models for random failures that quantify the fraction of times the software fails.
Instead, it implies an epistemic model in which the software is always failed (with some
probability) or always good (with the complementary probability). That is, we do not
know if the software would fail, and represent our knowledge about the software failure
in terms of a probability.

The “error forcing context” (EFC) concept of (Garrett, 1999) is consistent with
the idea that :software is deterministic. The Dynamic Flowgraph Methodology (DFM) is
used to identify the EFCs in the forin of fault tree prime implicants. The prime
implicants generated using the DFM method are equivalent to the cutsets generated by
standard fault tree method, except that they represent a more detailed model of the system
including explicit modeling of timing and software. The quantification of software
failures would involve a quantification of the likelihood of the EFCs in the form of prime
implicants. IJnlike hardware failures, the EFCs are external to the software and do not
represent any changeddegradations of the software. This is similar to the “EFC” concept
of human reliability analysis (USNRC, 2000), where the EFCs increase the likelihood of
human diagnosis errors. Having found.the EFCs for software, one would like to correct
them by fixing the software bugs, unless the likelihood of the error-forcing context is low
enough not to justify fixing.

The “EFCs” concept appears to contradict the typical assumption of fault tree
analysis, that the basic events are independent and the same basic event representing a
software failure is applicable to many different boundary conditions or scenarios defined
in the event trees. In reality, the context or boundary condition defined in a PRA is never
detailed enough to specify a single input point from the doinain of the software. Instead,
a region in the input domain is used and it may contain the comer of the domain that the
software is not designed for. The software failure probability used in a fault tree can be
considered as the probability that the region of the domain contains the unknown EFC.

The EFCs of DFM can be Considered the dark corners of the input space of the
software that the software designer did not take into consideration. The identification and
correction of the EFCs would eliminate these dark corners. An obvious question is
whether or ncit DFM would identify all dark corners and make the software perfect. The
answer is probably no. We could consider DFM as another method for
checking/debugging software. Similarly, software testing and other methods of software
hazard analysis would identify and eliminate some dark comers. Identification and
elimination of the dark corners lead to a reduction in the likelihood that any of the

remaining dark corners would .be triggered. It is the realization of the dark corners of the
input space that causes software to fail. The realization depends on the operating
environment of the software including the hardware it runs on and its input, and is
aleatory.

2.2 How Diverse Is Diverse Enough?

Defense in depth and diversity (D3) is a very important consideration of the NRC
regulation of digital systems. For a replacement of the W S or ESFAS, a D3 analysis is
required. In a D3 analysis, CCFs are postulated one at a time, and diversity has to be
demonstrated for each of the accidents in the safety analysis report (Preckshot, 1994). The
assumption that the CCFs occur without considering their likelihood is very conservative
and is a situation which PRA considerations could help. In PRA space, diversity would
mean that the systems or components would fail independently, i.e., their failure
probabilities can be multiplied. A question is how diverse is diverse enough to do so.

Use of the same microprocessor. and operating system is an example of the factors
that may contribute to CCF of digital systems. Both inter-system and intra-system CCFs
should be considered. For example, WS and ATWS mitigation system are required to be
diverse. Systems manufactured by different companies are often considered diverse.
What if they use the same CPU? Often, a safety critical digital system consists of
channels with identical hardware and software. CCF of both hardware and software has
to be considered. In the case of hardware, in general, standard CCF methods could be
used, and the hardware made by different manufacturers can probably be considered
diverse. For identical software in identical channels, complete dependence has to be
assumed. The defect found in the sequencer logic of the Turkey Point NPP (FPL, 1994)
could affect all four sequencers at the plant and is an example of such type of CCF.

Diversity of software is difficulty to demonstrate. Knight and Leveson (Knight,
1986) performed an experiment using 27 versions of a program, and the results show that
the independence assumption is. rejected with 99% confidence. The dependence came
from programmers making equivalent logic errors.

2.3.1 Adequacy of Modeling and Analysis Methods

Different modeling and analysis methods serve different purposes. Some methods
are supporting analyses that would identify different ways digital systems could fail
which provides information on how the system should be modeled, e.g.? FMEA and
hazard analysis, or verify the assumption used in modeling, e.g., independence
assumption. Some represent models of the behavior of digital systems, e.g., fault
injection simulation and Petri net. They are useful tools for evaluating the design. Some
are probabilis,tic failure models, e.g., fault tree and Markov model. Some methods are
used in perfoirming quantitative assessment of software reliability. These modeling and
analysis methods are evaluated below based on the previously discussed requirements
and issues.

2.3.1 Supporting Analysis Methods

Probalilistic modeling of digital systems requires that dependencies be modeled
properly. In particular, synchronization, voting, data communication are physical
interactions b'etween processors and redundant channels, and can potentially introduce
dependent failures. The incident at Southern California Edison in which communication
failure caused loss of both primary and backup security systems (Hecht, 2001b) is an
example of dependent failures caused by communication between redundant systems. It

is desirable that deterministic evaluations be performed to develop guidance on how such
dependencies should be modeled. .

In the life cycle of a digital system, many activities/analyses take place in an attempt
to make sure that the system is free from faults. The information gathered and the results
of the analysis are essential to probabilistic failure modeling. For example, IEEE
Standard 7-4.3.2-2003 (IEEE, 2003) has an annex that discusses software hazard analysis
and identification of abnormal conditions and events. The methods discussed include
preliminary hazard analysis, fault tree analysis, FMEA, system modeling, software
requirement hazard analysis, design reviews and code reviews, and simulator/plant niodel
testing. Similar to other guidance documents, the methods are only briefly described.
They are also briefly explained with simple examples provided in textbooks (Lyu, 1996;
Leveson, 19!35). The concepts of the methods are simple but the quality of their
application depends on how carefully they are carried out, the level of detail of the
analysis, the availability of detail information, the qualification and experience of the
analysis tearrt, and the resource limitations. For important systems, extensive analyses
may have been performed, but the analyses are typically proprietary and not available to
the public. On the other hand, it is commonly believed that it is not possible to prove that
software of moderate or high complexity is fault free.

2.3.2 Fault Injection Simulation

Fault injection method has been used to validate the fault handling mechanisms of
systems as well as to provide a model. for system-level manifestation of faults. The
University of‘ Virginia (UVA) has developed a generic processor fault model of digital
processors to the level of individual bits (Cutright, 2003). The method performs fault
injection experiments on the model of a processor including the software that runs on it
and determines the coverage of the processor, which is then used as a parameter of the
Markov model of the processor. In general, the approach can also be extended to model a
system with rnultiple processors. .

The fault injection method appears to be a good approach for modeling the behavior
of a digital processor, and can be used to evaluate its design. The UVA model can
probably be used to support a PRA in providing an estimate of fault coverage of a
processor. An important issue is whether or not all possible failures of a processor
manifest themselves in the form of a single “stuck-at” type of faults. The model’s ability
to capture software failures is limited due to its limited variability in the input to the
software. Whether or not an integrated simulation model of a digital system, e.g., a
reactor protection system, would generate meaningful reliability results, Le., probability
of failure on demand, remains to be evaluated.

2.3.3 Petri-Net

The Petri-net method has been used as a modeling method for the behavior of
software. The advantage of Petri-net is its ease of modeling the behavior of a dynamic
system. A Petri-net model can be analyzed to show the presence or absence of safety
properties, such as hazardous conditions, system deadlock, or unreachable states. The
method has been used as a tool for an FMEA (Goddard, 1996) to identify failures and
their effects. It has not been commonly used by the nuclear industry but has been used
for reliability modeling of computer-based systems (Malhotra, 1995). Stochastic Petri-
net is a Petri-net whose time of firing is exponentially distributed. The model is similar
to a Msirkov rnodel and has to be converted into a Markov model in order to be solved.

Petri-net method has the capability of modeling the unique features of digital systems at a
level higher Ihan that of the fault injection method of UVA. Its use as a tool for FMEA
and hazard analysis probably should be further explored. Its value as a probabilistic
modeling method is probably limited by the limitations that apply to a Markov model.

2.3.4 Fault Tree Analysis

Fault trees and event trees are the basic logic structures of a PRA. Therefore, it is
very desirable to model every relevant system, including digital systems, within this
framework. Even if a more sophisticated model has to be used, it is desirable to convert
the results of the analysis into a fault tree format. A few methods and analysis that can be
considered variations of the standard fault tree methods are discussed here.

Parts Count and Part Stress Method - The military handbook on reliability prediction of
electronic equipment MIL-HDBK-2 17F (RAC, 199 1) contains two methods for
estimating failure rates of boards/systenis, the parts count method, and the part stress
method. The methods are applicable to systems/channels with components in series, and
any redundancy of a system has to be modeled using other methods, e.g., Markov model.
They have been used mainly in the defense industry.

Traditional Fault Tree Method - AP600 (Westinghouse, 1996) is an advanced design that
has been reviewed and approved by the NRC. It has an integrated digital I&C
architecture. The fault tree models of the AP600 PRA follow the method of standard
fault tree analysis. CCF was modeled for most of the digital components. It is not
known how the CCF probabilities were estimated. The CCF probabilities for software
failures do not seem to have a good basis. They range from 1E-5 to 1E-6 and are
considered thle goals of the design.

It is not clear how digital features, such as voting, synchronization, and data
communication, are accounted for. The modeling of software CCF as basic events
requires that a philosophical framework be developed. As discussed earlier, software
failures are sensitive to the contexts or boundary conditions. Modeling them simply as
basic events seems to contradict the concept, because the same software CCF event
would be ANDed with many different combinations of basic events, which define many
different contlexts.

Dynamic Fault Tree - The word “dynamic” has been used in different applications to
represent diffkrent meaning. In general, it represents a model being better able to account
for timing of events. The dynamic fault tree method of Dugan (Dugan, 1992) is an
extension of the standard fault tree method. It introduces special gates that handle the
order in whieh events occur, e.g., a priority AND gate generates an output only if the
inputs occur in a particular sequence. The method is a straightforward extension of the
standard fault tree analysis method.

Dynamic Flowgraph Methodology - The DFM method (Garrett, 1999) is capable of
modeling timing and software and has been proposed as a tool for safety analysis of
digital systems. An important contribution of the paper is the concept of EFCs. The
simple models of example systems in the papers were used to demonstrate the method.
They demonstrated that the method is modeling digital systems at a level much higher
than that of the fault injection siinulators of UVA. i.e., only the algorithms of application
software are modeled. Its use as a behavior model of application software for the
purposes of identifjring EFC is a reasonable application of the method, subject to the
limitation of software complexity. Its use as a probabilistic failure analysis method, i.e.,
integration with a PRA, has not been demonstrated. It appears that such an application

would require all possible contexts be identified and evaluated, which may not be
realistically clone. A realistic model would require that the world outside the system be
modeled, e.g., deterministic and probabilistic model of the reactor coolant system.

2.3.5 Mark.ov Model

Markov model is a well-established method for modeling systems and has been
used by the process industry to model digital systems. It has also been used in modeling
non-digital systems at NPPs, but its integration with existing PRA models may not be
straight forward. It is suitable for modeling digital design features, such as fault
detection, recovery, and reconfiguration, by assuming' that software works perfectly. Its
capability to capture the contribution of software failures to system reliability is limited.

Application of Markov model method to digital I&C systems depends on whether
or not the model realistically represents the system, whether or not good data is available
to support the quantification, and whether or not good physically meaningful reliability
measures are derived. Realistic modeling depends on the supporting deterministic
analysis to determine the failure modes and dependencies that have to be taken into
consideration.

2.3.6 Quantification of Software Reliability

Current methods for quantitative assessment of software failure rates or
probabilities require test results and sometimes, expert judgment. For example, Smidts
and Li (Smiclts, 2002) used the number of detected defects with the PIE method to
estimate the probability of failure of a persoimel access control system, and AIAA
standard (AIM, 1992) uses reliability growth models to determine the number of tests
needed to reach the desired confidence on satisfying: reliability requirements. PRISM
(RAC, 1998) uses field data in a reliability growth model to estimate software failure
rates. Dahll (Dahll, 2002) proposed estimating software failure probabilities using the
Bayesian Belief Network (BBN) method which combines expert judgment with available
data.

Due to inadequate data, the quantitative methods probably are not adequate to
demonstrate the expected low failure probability/rate ,of safety-critical software. Their
implementation into a PRA also requires a technical basis be established.

2.4 Adequacy of Failure Data

In general, a failure database should include. the data needed for the specific
modeling methods. For example, a database in support of a Markov model should
contain data for all the transition rates of the model. In particular, it is desirable that the
data needed to model unique features of a digital system be available. Different features
may be implemented at different levels of detail in the design of a digital system and
require data at different levels of detail.

BNL reviewed available information of the some 'of the available failure databases,
including MIL-HDBK-217F (RAC, 1991), PRISM (RAC, 1998), Telcordia,
NUREG/CR-6734 Volume 2 (Hecht, 200 1 b), and Government-Industry Data Exchange
Program (GIDEP). The review seems to indicate the following weaknesses of the
existing databases:

e

e

3.

The failure rates were estimated by grouping failure data of components from
diverse sources, and the raw data and failure descriptions are generally not
available. Therefore, fault tolerant features of'the digital systems are built in the
failure rate estimates. For example, a design with better cyclic redundant check
(CRC) cannot be differentiated from one that has an inferior CRC.
The failure rate estimates are not broken down into failure modes and causes. The
level (of detail at which failure rates were estimated and the completeness of the
component types remain to be further evaluated for specific modeling methods.
The reported failure events used in estimating failure rates are those that the
systems were not able to diagnose and correct. That is, faults that are detected
and corrected are not considered failures. This means no additional credit for
detection and correction should be given to a mbdel using the failure rates.
Software failures are not adequately captured'in the databases. Due to lack of
event descriptions in the databases, experience of software CCF in redundant
systems is in general not available.
Diagnostics coverage is a parameter that depends on the specific design of the
diagnostic software. It is probably difficult to collect generic estimates of
diagnostic coverage.

CONC'LUSIONS

Current methods, e.g., fault tree analysis and Markov model, were developed for
hardware failures, are probably adequate for modeling hardware failures of digital
systems and do not adequately capture software failures. No commonly accepted method
to include software failures in a reliability model exists. A philosophical framework for
software failures has to be developed to provide the basis of an acceptable method. It
should address the issues on the meaningfulness of software failure rates and interactions
between hardware and software. A method -for modeling software failures that takes into
consideration CCF of software as well as hardware is dtsirable.

Digital systems extensively use features, such as data communication, voting, and
synchronizatilon, which are physical interactions between redundant channels/
components. These features could introduce dependent failures among redundant
channels. Supporting analysis should be performed to verify independence. Guidance on
what is acceptable, Le., the channels can be considered independent, should be developed.
Guidance on how such dependencies should be modeled should be developed.

Modelling digital systems at the level of individual processors is needed to capture
some importiant digital features, e.g., diagnostics and reconfiguration. Case studies
should be performed to demonstrate the feasibility and capability of different methods,
and identify the data needed to support the analyses.

,

The review of failure rate databases found that software failures are not
adequately captured in the databases. Failure rates are not broken down into failure
modes and c;iuses. Fault tolerant features, such as CRC, are built in the failure rate
estimates, and faults that are detected and corrected are not reported. They have a
significant implication on how the rates should be used in modeling.

REFERENCES

American N,ational Standards Institute and American Institute of Aeronautics and
Astronautics, “Recommended Practice for Software Reliability,” ANSUAIAA R-0 1 3 -
1992.

Arndt, S. A., Thornsbwy, E. A., and Siu, N. O., “What PRA Needs from a Digital
Systems Analysis,” Proceedings of the 6th International Conference on Probabilistic
Safety Assessment & Management, San Juan, Puerto Rico, June 2002.

Cutright, E., Delong, T., and Johnson, B., “Generic Processor Fault Model,” University
of Virginia, Technical Report UVA-CSCS-NSE-004, Revision 00, August 1,2003.

Dahll, G., Grm, B.A., and Liwang, B., “Decision Support for Approval of Safety Critical
Programmable Systems,” NEA/CSNI/R(2002) 1/VOL 1.

Dugan, J. B ., et al., “Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems,”
IEEE Transactions on Reliability, Vol. 41, N. 3, September 1992.

Florida Power and Light Company, Licensee Event Report, 94-005, 1994.

Garrett, C., and Apostolakis, G.A., “Context in the Risk Assessment of Digital Systems,”
RiskAnalysis., Vol. 19, No. 1, 1999.

Goddard, P. Id., “A Combined Analysis Approach to Assessing Requirements for Safety
Critical Real-Time Control Systems,” Hughes Aircraft Company, IEEE Proceedings,
Annual Reliability Maintainability Symposium, 1996.

Hecht, M., and Hecht, H., “Digital Systems Software Requirement Guidelines,
Guidelines”, 1WREGKR-6734, volume 1, August 200 1 a.

Hecht, M., and Hecht, H., “Digital Systems Software Requirement Guidelines, Failure
Description”, NUREGKR-6734, volume 2, August 200 1 b.

“IEEE Standiud Criteria for Digital Computers in Safety Systems of Nuclear Power
Generating Stations,’’ IEEE Std. 7-4.3.2-2003.

Knight, J.C., and N. G. Leveson, “An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming,” IEEE Transactions of Sofhvare
Engineering, 12(1) 96-109, 1986.

Leveson, N., “Software Safety in Embedded Computer Systems”, Communications of the
ACM, 34,3446, February 1991.

Leveson, N.G., Safeware, System Safety and Computers, University of Washington,
Addison-Wesley Publishing Company, 1995.

Littlewood, IB ., “Software Reliability Modeling: Achievements and Limitations,”
CompEuro ‘9 1. ‘Advanced Computer Technology, Reliable Systems and Applications’.
5th Annual European Computer Conference, 13- 16 May 199 1.

Lyu, M. R., Handbook of Software Reliability Engineering, IEEE Computer Society
Press, 1996.

Malhotra, M., and Trivedi, K.S., “Dependability Modeling Using Petri-Net,” IEEE
Transaction on Reliability, Vol. 44, Issue 3, September 1995.

National Research Council, “Digital Instrumentation and Control Systems in Nuclear
Power Plants, Safety and Reliability Issues,” Final Report, Committee on Application of
Digital Instrumentation and Control Systems to Nuclear Power Plant Operations and
safety, National Research Council, National Academy Press, 1997.

Preckshot, G., “Method for Performing Diversity and Defense-in Depth Analyses of
Reactor Protection Systems,” Lawrence Livermore National Laboratory, NUREGKR-
6303, December 1994.

Reliability Analysis Center, ‘‘Reliability Prediction of Electronic Equipment,” Rome
Laboratory, MIL-HDBK-217F, December 1991.

Reliability Analysis Center, and Performance Technology, “New System Reliability
Assessment Method,” IITRI Project No. A06830, June 1, 1998.

Singpurwalla,. N.D., “The Failure Rate of Software: Does It Exist?” IEEE Transactions
on Reliability, Vol. 44, No. 3, September 1995.

Smidts, C., and Li, M., “Validation of a Methodology for Assessing Software Quality,”
Draft Complete on February 2002.

USNRC, “Technical Basis and Implementation Guidelines for A Technique for Human
Event Analysis (ATHEANA), NUREG-1624, Rev. 1, May 2000.

Westinghouse, “AP600 Probabilistic Risk Assessment,” Westinghouse Electric
Corporation, IZNEL, Revision 7, June 28, 1996.

