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We consider the collinear limit of QCD amplitudes at  one-loop order, and their factorization properties directly 
in colour space. These results apply to the multiple collinear limit of an arbitrary number of QCD partons, and 
are a basic ingredient in many higher-order computations. In particular, we discuss the triple collinear limit and 
its relation to flavour asymmetries in the QCD evol.ution of parton densities at three loops. As a phenomenological 
consequence of this new effect, and of the fact that the nucleon has non-vanishing quark valence densities, we 
study the perturbative generation of a strange-anicistrange asymmetry s(z) - 8(z) in the nucleon's sea. 

. 

1. INTRODUCTION 

The high precision of experiments at past, 
present and future particle colliders (LE:P, 
HERA, Tevatron, LHC, e+e- linear colliders) de- 
mands a corresponding precision in theoretical 
predictions. As for perturbative QCD predic- 
tions, this means calculations beyond the next- 
to-leading order (NLO) in the strong coupling CIS. 

Recent years have witnessed much progress in tliis 
field. In particular, a great deal of work has been 
devoted to study the properties of QCD scattcsr- 
ing amplitudes in the infrared (soft and collinear) 
region [1]-[12]. 

The understanding of the infrared singular be- 
haviour of QCD amplitudes is a prerequisite ifor 
the evaluation of infrared-finite cross sections 
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(and, more generally, infrared- and collinear-safe 
QCD observables) at' higher orders in pertur- 
bation theory. Moreover, the information on 
the infrared properties of the amplitudes can be 
exploited to compute large (logarithmically en- 
hanced) perturbative terms and to resum them 
to all perturbative orders [13]. Those investiga- 
tions are also valuable for improving the physics 
content of Monte Carlo event generators (see e.g. 
Ref. [14]). In addition, these studies prove to be 
useful even beyond the strict QCD context, and 
can provide hints on the structure of highly sym- 
metric gauge theories at infinite orders in the per- 
turbative expansion (e.g. N=4 super-Yang-Mills, 
see Ref. [15]). 

Another important application is the calcula- 
tion of the Altarelli-Parisi (AP) kernels, that 
control the scale evolution of parton densities 
and fragmentation functions. The calculation of 
the next-to-next-to-leading order (NNLO) kernels 
has been completed very recently [16]. Collinear 
factorization at the amplitude level (see Sect. 2) 
can be used [17] as an alternative and indepen- 
dent method to perform that calculation. To this 
purpose, the one-loop triple collinear splitting [ll] 
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(see Sect. 3) is one of the necessary ingredients. 
Two other ingredients are the tree-level quadru- 
ple collinear splitting [SI and the two-loop double 
collinear splitting [la]. 

Besides increasing the quantitative precision 
of the theoretical calculations, the evaluation 
of higher-order contributions can reveal qualita- 
tively new quantum effects. An interesting ex- 
ample is the perturbative generation of charge 
asymmetries in the nucleon's sea [lS] (see Sect. 4), 
which arises from the NNLO evolution of parton 
densities. 
2. COLLINEAR FACTORIZATION IN 

, 

COLOUR SPACE 
We consider a generic scattering process in- 

volving final-state QCD partons (massless quarks 
and gluons) of flavour a l ,  u2, . . . and momenta 
p l  , p?, . . ., which is described by the matrix ele- 
ment Mal,,, ,... ( p l ,  pa, . . .); the external legs are 
on shell (pi2 = 0) and have physical spin polariza- 
tions. Up to one-loop order, one can write 

M = (gs)' [ M(O) + M( ' )  + ~ ( L Y ; ) ]  , (1) 

where the overall power q is integer. The one-loop 
amplitude M ( l )  contains ultraviolet and infrared 
singularities that are regularized by using dimen- 
sional regularization in d = 4 - 26 space-time 
dimensions ( p  is the dimensional-regularization 
scale). 

The multiple collinear limit is approached when 
the momenta p1,  . . . , p ,  of m partons become 
parallel. In this limit all the particle subenergies 
sij = (pi + p j ) ? ,  with i, j = 1 , .  . . m, are of the 
same order and vanish simultaneously, and the 
matrix element M (PI, . . . , p,, pm+l . . .) becomes 
singular. At the tree level, the dominant sin- 
gular behaviour is M(O)(pl . . . , p,, p,+l, . . .) - 
(l /f irn-ll  where s generically denotes a two- 
particle subenergy sij , or a three-particle suben- 
ergy S i j k ,  and so forth. At one-loop order, 
this singular behaviour is simply modified by 
scaling violation, M(')(pl ,  . . . , pml p,+l, . . .) N 

(l/&)m-l(s/pz)-E. The dominant singular 
behaviour is captured by universal (process- 
independent) factorization formulae, that are 
usually presented upon decomposition in colour 
subamplitudes [5]-[9]. Collinear factorization is 

2n 

a, a, 

Figure 1. Factorization of tree-level amplitudes 
in the multiple collinear limit. 
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Figure 2. Factorization of one-loop amplitudes in 
the multiple collinear limit. 

nonetheless valid directly in colour space [ll]. 
The colour-space factorization formulae for the 

multiple collinear limit of the tree-level and one- 
loop amplitudes M(O) and M ( I )  are: 

IMal (0) ,..., a,,a,+l ,... ( P I ,  . * * , P ~ > P ~ + I ?  . . .I> fi 
Spa1 (0) ... a,(pl, ...,P,) I M ~ ~ , + ~ , . . . ( P ~ P ~ + ~ ,  . . . I>  > 

(2) - 

/Mal (1) ,..., arnram+l ,... ( P I , . * * , P ~ , P ~ + I  . . * I )  E 

Spa, ( 1 )  ... a ,  ( ~ 1 ,  * * * t P,) IMa,a,+l (0) 

SPa,...,,(Pl>. (0) . . ,P?n)  lMi:im+l,...(P,Pm+l,. . .)> * 

(3) 

... ( P  , ~,+1 > . .I> + 
- 
- 

These factorization formulae are valid in any 
number d = 4 - 2~ of space-time dimensions. 
The only approximation involved on the right- 
hand sides amounts to neglecting terms that are 
less singular in the multiple collinear limit. A 
graphical representation of the factorization for- 
mulae is shown in Figs. 1 and 2. Equations (2) 
and (3) relate the original matrix element (on the 
left-hand side) with m+ k partons (where k is ar- 
bitrary) to a matrix element (on the right-hand 
side) with 1 + IC partons. The latter is obtained 
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from the former by replacing the m collinear par- 
tons Fith-a single parent parton, whose momen- 
tum P ( P 2  = 0) defines the collinear direction 
and whose flavour a is determined by flavour con- 
servation in the splitting process a + a1 + . . . + 
am. The derivation of Eq. (2) in colour space is 
quite straightforward [4]. Its one-loop extension, 
Eq. (3),  follows, in particular, from colour coher- 
ence of QCD radiation [19]. 

The process dependence of the factorization 
formulae is entirely embodied in the matrix el- 
ements. The tree-level and one-loop factors 
S P ~ ? . . ~ ~ ,  and S P ~ ? . . ~ ,  , which encode the singu- 
lar behaviour in the multiple collinear limit, are 
universal (process-independent) . They depend 
on the momenta and quantum numbers (flavour, 
spin, colour) of the m partons that arise from the 
collinear splitt,ing. The splitting mutrix Spal .,.a, 
is a matrix in colour+spin space, acting onto the 
colour and spin indices of the m collinear partons 
on the left and onto the colour and spin indices 
of the parent parton on the right. 

summed over final-state colours and spins and 
averaged over colours and spins of the parent 
parton, defines the m-parton splitting function 
( P a  l . . .am),  which is a generalization of the CUS- 

tomary (i.e. with m = 2) AP splitting func- 
tion [20]. The normalization of the tree-level 
(Pa l . . .a,) and one-loop (Pa l...a,) splitting func- 
tions is fixed by 

The sqpare of the splitting matrix 

(0) A ( 1 )  

m- 1 

(") 2 p2E 
[(Splp,!. ..,)I sPg)...a, + h . 4  

The one-loop amplitude M ( l )  and, hence, 
S p ( l )  have ultraviolet a.nd infrared divergences 
that show up as E-poles in dimensional regular- 
ization. The one-loop splitting matrix can be de- 
composed as 

(5) 
(1) - S p ( l ) d i V .  ( 1 )  fin. 

Spa l...a, - al...a, + SPal . . .am 

where Spk!.!:; contains all the E-poles and 
S P ~ ~ . . . ~ ,  is finite when E + 0. In Ref. [ll] (1) fin. 

we have presented the explicit expression of 
Spg?.!:; for an arbitrary number m of final-state 
collinear partons. 

3. ONE-LOOP TRIPLE COLLINEAR 
SPLITTING 

The one-loop splitting amplitudes for the dou- 
ble collinear limit a -+ a1 + a2 are known [5,6,7]. 
As a first step beyond the double collinear limit, 
we have considered [ll] the triple collinear split- 
ting process q + q + ij' + q', where q and q' de- 
note quarks of different flavours. To evaluate the 
one-loop splitting matrix we have used a process- 
independent method [4,7,19]. Considering physi- 
cal spin polarizations, the splitting matrix is cal- 
culated from the sole Feynman diagrams where 
the parent parton emits and absorbs collinear ra- 
diation. In the case q + q + if + q', one has to 
consider, for instance, the one-loop diagram de- 
picted in Fig. 3(a). 

Our computation of S p ( l )  requires the evalua- 
tion of a set of basic one-loop (scalar and tensor) 
integrals. Besides the customary one-loop inte- 
grals, new integrals with additional propagators 
of the type l / (n  q )  . ( q  is the loop momentum and 
n is an auxiliary light-like vector), which come 
from the physical polarizations of the virtual glu- 
ons, have to be calculated. Some of these inte- 
grals, which resemble those encountered in axial- 
gauge calculations, were evaluated in Ref. [7] in 
the context of the calculation of the one-loop 
double collinear splitting a -+ a1 + a2. More 
complicated integrals (higher-point functions) of 
this type are involved in triple collinear split- 
ting processes. We have computed (to high or- 
ders in the E expansion) all the basic one-loop 
integrals that appear in any triple collinear split- 
ting. These results can be applied to evaluate the 
one-loop splitting matrix of any splitting process 
a + a i  + a2 + a3 [19]. 

The explicit expressions up to O(EO) of the 
splitting matrix Sp4q141 and of the corresponding 
splitting function (P$,)q.,) (see Fig. 3(a)) are pre- 
sented in Ref. [ll]. It is important to observe that 

has a contribution (which is proportional 
to the color factor dabcdabc) that changes sign by 
exchanging the momenta of the evolved quark and 
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antiquark q‘ and 4‘. This charge asymmetry is a 
new quantum effect produced by the exchange of 
three gluons in the t-channel. When the charge 
asymmetry of (P$)q,) is combined with the cor- 
responding tree-level contribution (see Fig. 3(b)), 
it leads to a non-vanishing value of the NNLO AP 
kernel Pqql - Pqqt. The main physical consequence 
of this effect is discussed in Sect. 4. 
4. STRANGE-QUARK ASYMMETRY 

Strange quarks and antiquarks play a funda- 
mental role in the structure of the nucleon [21]. 
Among the various strangeness-related proper- 
ties of the nucleon, the strange “asymmetry”, 
s (s )  - S(a:), in the densities of strange quarks 
and antiquarks, s being the light-cone momen- 
tum fraction they carry, is of particular interest. 
Since the nucleon does not carry any strangeness 
quantum number, the integral of the asymmetry 
over all values of s has to vanish: 

IN THE NUCLEON 

( s  - S) = da: [s(z) - S(s)] = 0 . ( 6 )  I’ 
However, there is no symmetry that would pre- 
vent the s dependences of the functions s ( ~ )  and 
S(s) from being different. Therefore one can ex- 
pect s(x) # S(s), in general. 

S tr ange-ant is t r ange asymmetries have been ex- 
tensively discussed in the literature. Various non- 
perturbative models of the nucleon structure [22] 
predict a fairly small value of the second moment 
of the strange-antistrange distribution, I(s(s - 
5))l N lo-*. A global analysis of unpolarized 
part on distributions [ 231 reported improvements 
in the data fit if the asymmetry s(z) -5(z) is pos- 
itive at high s. However, a recent update [24] of 
this analysis reduces the asymmetry significantly. 
The most recent global QCD fit [25] finds a large 
uncertainty for that asymmetry and quotes a 
range -0.001 < ( ~ ( s  - 5) )  < 0.004. The strange 
asymmetry in the nucleon has become particu- 
larly relevant in view of the “anomaly” seen by 
the NuTeV collaboration in their measurement of 
the Weinberg angle [26]. The anomaly could be 
partly explained [27,28] by a positive value of the 
second moment (x (s - S)) . 

The discussion reported so far regards strange- 
antistrange asymmetries that are generated by 

qi 

f i  
(b) 9i 

(a> 
Example of (a) virtual and (b) real 

yi 

Figure 3. 
contributions to P,, (2)s . 

non-perturbative mechanisms. Then, because of 
the customary scaling violation, the asymmetry 
becomes dependent on the hard-scattering scale 
Q at which the nucleon is probed. 

Perturbative QCD alone, however, definitely 
predicts a non-vanishing and &-dependent value 
of the strange-antistrange asymmetry [MI. The 
effect arises because at NNLO in perturbation 
theory the probability of the inclusive collinear 
splitting (evolution) q + q’ becomes different 
from that of q + $, and because the nucleon 
has u and d valence densities. 

Owing to charge conjugation invariance and 
flavour symmetry of QCD, the AP kernels that 
control the parton evolution of quark-antiquark 
asymmetries can be written as (see e.g. Ref. [29]) 

Pq,q, - Pq& = p- q143 - - Pq4  
= Sij d-) + (Pqq/ - Pqql) . (7) 

The AP kernels Pqq/ and Pqg describe splittings 
in which the flavor of the quark changes, and 
Pqq) # Pqq/ starting from NNLO [29,30]. In 
particular, as discussed at the end of Sect. 3, 

charge asymmetry produced by quantum effects 
at order a:. The explicit expression of P,$:)’ is 
now available thanks to the recent computation 
by Moch, Vermaseren and Vogt [16]. 

The solution of the AP equations for the evo- 
lution (between the scales Qo and Q) of the N -  
moment, ( s - ~ ) N  = (sN-’(s-E)),  of the strange- 
quark asymmetry reads [18] 

( s  - S ) N  (Q2) = UN(Q, Qo) [ (s  - S ) N  (Qi) 
(2) 2 (VI 2 + ~ P N  ( a s ( & )  - ag(Qo)) qiv ( Q o )  1 , 

pqq/ - p  qq -/ = (a~/(47r))~P,$3”/Nj ,  because of the 

(8) 

where z xzl(qi - &) is the valence den- 
sity of the nucleon, UN is the evolution operator 
controlled by P(- ) ,  and SP:) is proportional to 
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the NNLO kernel Pi:)’ [IS]. At LO and NLO, 
dP$) = 0, and thus any asymmetry can only be 
produced by a corresponding asymmetry at the 
scale Qo. Starting from NNLO, the degeneracy of 
Pqqi and Pqg is removed, and perturbative QCD 
necessarily predicts a non-vanishing s - s asym- 
metry driven by the valence density. 

Predictions for (s - .?)(e, Q2) based on Eq. (8) 
have been presented in Ref. [MI. The asymme- 
try, s - 5, is set to  zero at  a given low scale &a, 
and then evolved upwards. The generated asym- 
metry is fairly sizable and turns out to be pos- 
itive at small and negative at large e. Using 
Qo N 0.5 GeV (as in the ‘radiative’ parton model 
analysis of Ref. [31]), a negative second moment 
is found: 
( ~ ( s  - 3 ) )  M -5 x (Q2 = 20GeV2) . (9) 
The analysis has also be extended [l8] to predict 
the asymmetries of heavy flavours c and b .  
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organization of the workshop. 
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