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Abstract 
In specifying the magnets for an accelerator, one must 

be able to determine the aperture required by the beam. In 
some machines, in particular WAGS, there is a significant 
variation in the closed orbit and beta functions over the en- 
ergy range of the machine. In addition, the closed orbit 
and beta functions may vary with the longitudinal position 
in the magnet. It is necessary to determine a magnet aper- 
ture which encloses the beam ellipses at all energies and 
all positions in the magnet. This paper describes a method 
of determining the smallest circular aperture enclosing an 
arbitrary number of midplane-centered ellipses. 

INTRODUCTION 
The size of magnet apertures has a strong effect in de- 

termining the cost of an accelerator. Thus, it is generally 
important to determine the smallest magnet aperture which 
will still meet beam transmission requirements. For pro- 
ducing numerically optimized designs, it is necessary to 
have a systematic algorithm for computing the aperture. 

A particular application of interest is fixed field alternat- 
ing gradient (FFAG) accelerator design, where a very large 
energy range leads to a significant variation of the closed 
orbit with energy. In these cases, it is never a safe to assume 
that the beam ellipses are centered in the beam pipe. Thus, 
the algorithm for finding the beam pipe aperture must take 
into account both the axes of the ellipses and the position 
of the ellipse centers. 

This paper presents an algorithm for computing the mag- 
net aperture under the following assumptions: 

0 The magnet aperture is circular. 
0 The magnet must enclose a number of ellipses. 
0 The ellipse axes are horizontal and vertical. 
0 The ellipses are all centered vertically. 

A circular magnet aperture is the most straightforward 
shape for a high-field superconducting magnet, so for some 
cases that is a good approximation. That assumption turns 
out to make the algorithm particularly simple. The assump- 
tion of upright, vertically centered ellipses translates into 
having no vertical dispersion, no coupling, and ignoring 
nonlinear effects which would distort the ellipses into other 
shapes. Many machine designs try to eliminate vertical dis- 
persion and coupling, and mild nonlinear distortions gen- 
erally leave the beam in a roughly elliptical shape anyhow. 
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ALGORITHM 
Imagine a series of ellipses, index by A, described by the 

eauations 

The goal of the algorithm is to find a circle which encloses 
all of these ellipses. For a given center of the circle, it is 
generally desirable to have the circle of smallest radius. 
Thus, the circle in question will be tangent to at least one 
of the ellipses. 

The square of the radius of a circle, centered at ( z ,  0), 
which is outside of ellipse k and tangent to it, is RE(z), 
given by 

RZ+(z) = ( z  - Ck + a d 2  

The goal of the algorithm is to find the function 

~ ' ( z )  = max{R$(z)}. k (3) 

One can then minimize R2(z) with respect to z if one 
wishes to find the smallest aperture, or minimize some cost 
function (e.g., a magnet cost) with respect to z. 

Define Mk to be the set of values for z (the horizontal 
coordinate of the circle's center) for which the circle with 
smallest radius that is outside all of the ellipses is tangent 
to ellipse k .  If multiple ellipses are tangent to that circle, 
z E M I ,  only if k is the lowest index for which that holds: 

Mk = {Z : (Vj)(Rk(z) > R j ( z )  
or [Rk(z )  = Rj(z )  and k < j ] ) } .  (4) 

From the definition, 



In software. the M I ,  are each stored as a sequence of 
intervals. Each ellipse is stored as its triplet of values 
(ah, b k ,  CI,) plus the list of pairs of points describing the 
intervals in Mk. 

A list (henceforth “the list”) of ellipses and their corre- 
sponding list of intervals is kept by the algorithm. If M I ,  
becomes empty, it is removed from the list. The algorithm 
attempts to add a number of ellipses to the list. The first 
ellipse is added to the list with M I  = { (-m, co)}. Each 
subsequent ellipse, call its index m, is compared to each 
ellipse (index k) still in the list. Before going through the 
list of ellipses, M ,  starts out empty. R;(z) = R&(z) at 
two or fewer values of z (henceforth called the breakpoints; 
see next section for proof). Furthermore, as z i -m, 
R&(z) > R,?(z) if c, + a, > CI, + a~,, and as z + m, 
Rg(z)  > ~ : ( z )  i f c ,  -a, < ck - ak. 

If there are no breakpoints and Rk(z)  > Rz(z ) ,  then 
M = M ,  U M k ,  and ellipse k is removed from the 
list. If there are no breakpoints and Rk (z) 6 Rz ( z ) ,  we 
are finished processing ellipse m, and it is not added to the 
list. If there are one or more breakpoints, the intervals in 
Mk are examined in order, determining whether any of the 
breakpoints lie inside that interval. For this purpose. it is 
useful to keep the intervals sorted by their lower (or upper) 
bounds. If the breakpoint is outside the interval, the inter- 
val is completely removed from M I ,  and added to M ,  if 
Rk ( z )  > RE ( z )  for z in the interval. If one breakpoint lies 
in the interval, the interval is split in two, the part where 
Rk(z )  > R:(z) is added to M,, and the other part re- 
places the original interval. If two breakpoints lie in the 
interval, the part@) where Rg(z)  > R:(z) is(are) added 
to M,. and the original interval is removed from M I ,  and 
is replaced by the remaining part(s). This procedure guar- 
antees that the conditions in Eq. (5) continue to hold. 

In practice, the list of intervals generally consists of 
fewer than 5 intervals, and so this algorithm is extremely 
fast. In addition, R2(z)  can be evaluated rapidly by go- 
ing through the intervals in Mk for each ellipse in the list, 
determining whether z lies in that interval, and if it does re- 
turning Rz(z).  One could speed this somewhat by forming 
a list of intervals and the the ellipse that they correspond to. 
One could even do a binary search in that full list of inter- 
vals. The ability to evaluate R2 (z) is useful for performing 
minimizations with respect to the placement of the center 
of the beam pipe. 

In most cases. however, one is looking for the minimum 
value of R2(z) .  This occurs either at the boundary be- 
tween intervals, or inside of a single interval. The min- 
imum of Rz(z)  always occurs at CI,. so the minimum of 
R2(z)  is found simply by searching determining whether 
CI, E M I ,  for some k, and if not. searching through all the 
intervals and determining which interval boundary has the 
smallest value of R2 (2). Note that the derivative of R2 (2) 

is monotonically increasing (but not cbntinuous), so if the 
intervals are examined in order, once the value of R2 ( z )  in- 
creases. one knows that one has found that minimum. Fig- 
ure 1 shows an example where the smallest circle enclosing 
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Figure 1: Results of the algorithm finding the smallest cir- 
cle enclosing all ellipses. 

a group of ellipses is found using this algorithm. 

PROOF OF TWO OR FEWER 
INTERSECTIONS 

We want to prove that the function 

has two or fewer zeros in z. If bl < a1 and b2 < a2, then 
d(z )  is piecewise linear, and can only be zero when either 
z < c1 and z > c2 or z > c1 and z < CZ,  and thus at only 
one point. 

Let’s now take the case where bl > a1 and bz > a2. 
It is easy to verify that the first derivative of d is con- 
tinuous and piecewise linear in this case. Without loss 
of generality, assume that z1- < z2-. If 21- > z2-, 

exchange the 1 and 2 subscripts and change the sign of 
z ,  and you have the case 21- < zz-, and d(z) has the 
same zeros. d”(z)  is a piecewise constant function, and is 
zero for z < z1- and z > rnax{zl+,zz+}. d”(z)  only 
changes value at the points z1-. z1+, z2-, and z2+. Fur- 
thermore, d’(z) = 2(c1 + a1 - c2 - a2) for z < 21- and 
d’(z) = 2(c1 - a1 - cz + u2) for z > max{z1+, z2+}. 

Since z1- < z1+, z2- < z2+, and z1- < z2-, there are 
only three possible sequences of the points zl- ,  zl+, z2-, 

and z2+: 

For the sequence (z l - ,  zl+, 22- ,  zp+) ,  d“(z)  looks like 
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Y 
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and d'(z) looks like 

Note that the signs in d"(z) and the signs of the slopes 
in d'(z) must be as shown. For d ( z )  to have three zeros, 
d'(z) would need to have two zeros. This would require 
thatc1+al-c2-a2 > O a n d c ~ - u ~ - e ~ + a 2  > 0. These 
two equations together imply that e1 - e2 > la1 - a2 I. But 
since z1- < e1 < z1+ and 22- < c2 < z2+, we know that 
e1 < c2. Thus, d(z )  must have two or fewer zeros in this 
case. 

For the sequence (zl-, z2-, zl+, z2+). d"(z) looks like 

and d' (2) looks like 

and d'(t) looks like 

The signs in d"(z) must be as shown except for the central 
region. However, if d"(z) is not positive in that central 
region, d'(z) will clearly have at most one zero, and d ( z )  
will therefore have at most two zeros. It appears that d'(z)  
as shown could have 0, 1, 2, or 3 zeros. If it has 2 or 3 
zeros, any zeros occurring in the intervals (z1-, z2-) and 
(z2+, .I+) will be maxima. We can evaluate d(z )  at those 
maxima. In the interval (zl-, z2-), the zero of d'(z) would 
occur when 

and d( z )  takes on the value 

b f -(e?, + a2 - c1 - a1)(c2 + a2 - e1 + a1) 4 (9) 

at that point. If z is in the interval (zl-, za-), e2 + a2 - 
e1 - a1 < 0 and e2 + a2 - c1+ a1 > 0, and thus d(z) < 0 
at that maximum. Similarly, if there is a local maximum 
in the interval (22+,z1+), d(z)  < 0 at that maximum as 
well. Since all the local maxima are negative, if d ' ( z )  has 
2 zeros, d ( z )  will have one zero, and if d'(z)  has 3 zeros, 
d(z)  will not have any zeros. If d'(z)  has 0 or 1 zero, d ( z )  
will have two of fewer zeros.. 

If br < a1 and b2 > a2, there are three cases: 

1. c1 < z2-: corresponds to (zl-, z1+, z2-, z2+). 
2. 22-  < e1 < z2+: corresponds to 

3. e1 > z2+: corresponds to (zL-, z1+, 22-, 22+). 
(Zl-, %-, z2+, .I+). 

The proofs are nearly identical to those for the case where 
b l  > a1 and b2 > a2, and the correspondences given in the 
list indicate the appropriate case above to use for the proof. 
The case where bz < a2 and b l  > a1 clearly is simply an 
exchange of indices, and thus since there are at most two 
zeros of d( z )  in this case as well. 

As before, having three zeros of d(z )  requires two zeros 
in d'(z), which in turn requires that c1 - e2 > la1 - a2). 
Since z1- < 22-  and z1+ < z2+, 

CONCLUSIONS 

This is a contradiction, so again d( z )  has two or fewer ze- 
ros. 

For the sequence (zl-, z2-, z2+, zl+), d"(z) looks like 

r l  

I have described a very efficient algorithm for finding a 
circular beam pipe which encloses a group of ellipses. The 
algorithm is used in practice for lattice design optimiza- 
tion, and consumes a negligible amount of computational 
resources compared to other parts of the optimization. It 
would be interesting to improve the algorithm to find other 
shapes of beam pipes (elliptical, for example), but the al- 
gorithm would likely be much more complex since it is un- 
likely that one could use the simple linear interval searches 
done here. 




