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Abstract 
In most cases, nonlinearities from magnets must be prop- 

erly included in tracking and analysis to properly compute 
quantities of interest, in particular chromatic properties and 
dynamic aperture. One source of nonlinearities in magnets 
that is often important and cannot be avoided is the nonlin- 
earity arising at the end of a magnet due to the longitudinal 
variation of the field at the end of the magnet. Part of this 
effect is independent of the longitudinal of the end. It is 
lowest order in the body field of the magnet, and is the re- 
sult of taking a limit as the length over which the field at the 
end varies approaches zero. This is referred to as a ”hard 
edge” end field. This effect has been computed previously 
to lowest order in the transverse variables. This paper de- 
scribes a method to compute this effect to arbitrary order in 
the transverse variables, under certain constraints. 

INTRODUCTION 
This paper computes the effect of the magnet end fields 

to first order in the magnitude of the magnetic field in the 
body of the magnet. Thus, at all points in this computation 
any effect which is of higher than first order in the magni- 
tude of the magnetic field will be dropped. In addition, the 
fields are assumed to be varying only over a short distance. 
The computation will be done in the limit that this distance 
goes to zero. This effect will be shown to be independent 
of the longitudinal of the end field. 

Computing this “hard-edge’’ end effect can be an impor- 
tant design tool. Computing the end field profile for a real 
magnet is very time-consuming. But a lattice design pro- 
cess must progress rapidly, and cannot re-design magnets 
every time the lattice parameters change. The hard-edge 
end effect allows one to have a reasonable estimate for 
the effects of the ends without knowing the details of the 
magnet construction. One can thus compute chromatic ef- 
fects on the linear functions and dynamics apertures, for 
instance, that for some machines may be significantly af- 
fected by these end fields. 

Performing the computation to lowest order in the body 
field should become more accurate as the magnet gets 
longer compared to its aperture. Most accelerator systems 
are designed such that the effect of the magnet ends is small 
compared to the effect of the body of the magnet. Further- 
more, this computation finds an effect which is independent 
of the longitudinal profile of the end field; terms higher or- 
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der in the end field are expected to depend on the longitudi- 
nal of the end field: imagine a kick-drift-kick combination 
where the kicks are taken at two different points in the end 
field. This effect is second order in the body magnetic field, 
but seems to depend on the precise longitudinal of the end. 

The magnetic field as a function of distance s along a 
reference orbit is assumed to be proportional to a function 
of the transverse position times a function SL (s ) .  SL ( s )  
is zero for s < -L/2, one for .s > L/2, and is infinitely 
differentiable everywhere. An example of such a function 
would be 

(0 s < -L/2 

s > L/2. 
(1) 

If the field does not go from zero to a finite value, but in- 
stead goes between two constant values, the derivation will 
not change, and all that will matter is the change in the field 
from beginning to end. 

Because all computations will involve integrating from 
-L/2 to L/2 and then taking the limit as L --f 0, the inte- 
gral of any function of SL will be zero in the limit L -+ 0. 
Furthermore, it will be assumed that no integrals involve 
products of SL with itself or its derivatives. This is equiva- 
lent to the statement that the computation will only be per- 
formed to first order in the field values, plus the assumption 
that the metric of the coordinate system (either for the field 
definition or the reference orbit) is not varying on the scale 
of L. This latter constraint requires special handling for 
magnets which are considered to be in a curvilinear coor- 
dinate system within the magnet and a straight coordinate 
system just outside the magnet. The correct handling of 
this situation must reflect the magnet construction: is the 
end of the magnet better represented as being straight or by 
curving with the body of the magnet? 

This problem has been addressed to lowest nontrivial or- 
der in the transverse variables [l]. Here we show how to 
perform the computation to arbitrary order in the transverse 
variables. 

LIE ALGEBRAIC COMPUTATION 
Begin with the Hamiltonian in the form 

H = Hp - Hq (2) 

H p  is independent of magnetic field, and Hq is first order 
in the magnetic field. Terms that are higher order in the 



magnetic field are dropped in this computation. We wish to 
compute the map going through the magnet end. 

f cannot easily be written as a sum of integrable pieces. 
One could conceive of writing it as a series of monomi- 
als, which are integrable [4, 51, but the implicit midpoint 
method is simpler and likely to be comparably fast to eval- 

The map can be written in Lie algebraic notation as 

. f q ( . s ) :  
e' > (3) uate. 

where 
d 

ds (4) 

Only terms in ,fq which are first order in Hq will be com- 
puted. In the limit L i 0. fp(L/2)  -+ 0, since H p  is 
finite. Accelerator Hamiltonian 

One can write down a differential equation for f q  [2,3]: 

(5) 

- e : f P ( s ) :  = -e : fP(s ) : :H . 
P" 

)HP,  To first order in the fields, the accelerator Hamiltonian in iex(-:f :)& = Hq + (e-:fq: - 1 
ds 

unscaled variables is 
where 

Write f as a series 

(7) 

Then, ignoring terms that are more than first order in Hq, 
(13) 

fn+l(S) = J_sL/21Hp. fn(3)I 6%. (9) 

The series does in fact converge, in the sense that each 
term is of higher order in the transverse variables than the 
next. First, note that in the limit L + 0, 

The first term above is Hp,  and the sum of the last two 
terms is -Hq. Thus, [Hp, f ]  is 

s"" 
d.32 . . . ds, SL (k) ( s ~ )  = 6kn. ds1 

- L / 2  -L/2 -L /2  
(10) 

Next, note that the term a magnetic field expansion satis- 
fying Maxwell's equations that is proportional to the kth 
longitudinal derivative of the magnetic field has a higher 
minimum order in some quantities (usually the transverse 
coordinates) than the term proportional to the (k - 1)st lon- 
gitudinal derivative. Furthermore, to lowest order, Hp is 
second order in the transverse phase space variables. The 
result is that f n  is of higher order in the transverse variables 
than f n - l .  , 

Evaluating the map only need be done to first order in 
f q ,  since the map is only correct to that order anyhow. One 
method which should work well is the implicit midpoint 
rule 

(11) 

This happens to be second order in the transverse variables, 
but is probably not any slower than any first order method. 
Operator splitting methods are unlikely to work well, since 

%i + %f 
Zf = z i + f ,  (7). 

EXAMPLE 

Assume that Byo(x) = B,(z, 0) is given in the body of 
the magnet; its change at the end of the magnet is AByo (x) . 
Its variation is assumed to be a function of s times BYo (z). 
Maxwell's equations will give the components of the field 
which are higher order in y. Then the generating function 
f ,  is, to the lowest three nontrivial orders in the vertical 
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The lowest order term is just the classical edge focusing 
in a bending magnet. However, even that contains more 
information than the classical result: the full field profile 
should be used, not just the linear part. In fact, if one is only 
interested in the effect on the tunes, the first term gives the 
complete effect to lowest order in AByo. One can even get 
some iudimentary nonlinear effects from that term. One 
can easily generate higher order terms if desired. 

One could perform a similar computation using a multi- 
pole representation of the field, or in a curvilinear geome- 
try. It turns out that the fist  term is correct even for nonzero 
horizontal curvature. It is not clear whether or not that is 
true for the higher order terms. The results will be different 
for a multipole expansion than for the midplane expansion 
shown above, even though the two representations give the 
same field in the body of the magnet where there is no lon- 
gitudinal variation of the field. The choice of expansion 
must depend on the symmetries which are expected in the 
magnet construction. 

CONCLUSIONS 

We have shown how to compute the effect of fringe fields 
to lowest order in the body field strength and to arbitrary or- 
der in the transverse variables. The effect is independent of 
the longitudinal profile of the end field, but does depend 
on the manner in which the field expansion is performed 
(which is related to the construction symmetry of the mag- 
net). 




