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Abstract. We give a brief introduction to the resummation of a class of large logarithmic per- 
turbative corrections to partonic hard-scattering cross sections. These corrections occur in deeply- 
inelastic structure functions at high Bjorken-x, and near partonic threshold in cross sections for 
large produced invariant mass or transverse momentum, such as the Drell-Yan process or hadronic 
prompt-photon production. They are associated with soft and/or collinear gluon emission. 

INTROlDUCTION 

Hadronic cross sections at large momentum transfer factorize to leading power in 
the hard scale into process-independent long-distance pieces (usually parton distribu- 
tions) and short-distance parts that describe the hard interactions of the partons and 
are amenable to QCD perturbation theory. For example, for the Drell-Yan reaction 
p p  -+ p f p - X  at high invariant muon pair mass Q one has: 

where z = Q2/S, fa, fi, are the parton densities, denotes an appropriate convolution, 
and where the sum is &er all contributing partonic channels a + b -+ p+y-  + x, with 
des$ the associated partonic cross section. The latter has the perturbative expansion 
de& = de:$(') + sd6"b,( ')  + . , ., corresponding to lowest order (LO) and next-to- 
leading order (NLO) etc. of perturbation theory. p is the renormalizatiodfactorization 
scale. Corrections to the right-hand-side of Eq. (1) are down by inverse powers of Q. 

When probed near an exclusive boundary of phase space, the perturbative partonic 
hard-scattering cross sections acquire large logarithmic corrections arising from incom- 
plete cancellations of soft-gluon effects between virtual and real diagrams. A prominent 
example are threshold corrections. For the Drell-Yan case above, these are of the form 
afInm(l -z)/(l  - z ) ,  where m 5 2n- 1, and become large when z =  Q2/S^+ 1, with 
Ŝ  the partonic c.m. energy. Sufficiently close to the phase-space boundary, i.e. in the 
limit of soft andor collinear radiation, fixed-order perturbation theory is bound to fail. 
A proper treatment of the cross section requires resummation of the logarithmic cor- 
rections to all orders. The techniques for this are well established for many reactions 
of interest, starting with the Drell-Yan process [l, 21. Fig. 1 compares the fixed-order 
(LO, NLO, . . . ) and the resummed (leading logarithms (LL), next-to-leading logarithms 
(NLL), and so forth) approaches qualitatively. 
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FIGURE 1. Fixed orders in perturbation theory, and resummation. L is a large logarithm near threshold 
in the appropriate Mellin moment variable; see below. 

BASICS OF THRESHOLD RESUMMATION 

For illustration, let us sketch the derivation of the LL threshold resummation for the 
Drell-Yan process. For rigorous and alternative derivations, see [l, 2, 3 ,  41. We start 
with the first-order corrections q ( p ) @ )  -+ p g ( k )  when the gluon is soft: 

We write the gluon momentum k = xp + y p  + kL with x = k p / p  - p x 2k p /Q2 ,  
y = k - p / p  F M 2k - p /Q2 .  One has k i  M xyQ2. Inserting the gluon phase space yields 

where z = Q2/$  and zk = 2k0/& = x + y is the energy fraction of the emitted gluon. 
We use dimensional regularization for the infrared and collinear divergencies present in 
Eq. (3). We now write the 6-function in (3) as an inverse Mellin (or Laplace) transform, 

which implies that soft emission (large z / small zk) corresponds to large N.  Then, 



There are two regions that contribute, x 5 y 5 1 and y 5 x 5 1 ,  where y = k f / Q 2 x .  
Thus we will have integrations over so nJo ‘’ dk: and $ J$$.dkf. Substituting 
x by y in the second integral shows that the two regions give identical contributions, 
since the integrand is symmetric in x and y. Hence, adding the contributions from virtual 
diagrams, the right-hand-side of Eq. (5) becomes 

where we have substituted x 3 1 - x and suppressed the term &dNeN(l-z) which 
just gives the Mellin-inverse. The expression in (6) still has a collinear singularity for 
kL 3 0, which is removed by collinear factorization, i.e., by applying the subtraction 

where p is the factorization scale, chosen here for simplicity as Q. Combining Eqs. (6) 
and (7) one finds that the dominant behavior at large N is contained in the expression 

where n= 2yeyE with yE the Euler constant. When the Mellin inverse is taken, this 
result yields the term aSCF/n In( 1 - z ) / (  1 - z) that dominates the first-order Drell-Yan 
coefficient function at large z. Obviously we could have derived this result directly in 
z-space”, without using Mellin moments. However, the use of moments is crucial for 

deriving the resumed cross section. This is because the phase space for multi-gluon 
emission contains energy-momentum conserving &functions connecting components 
of the gluon momenta. In our case at hand, for emission of n gluons, Eq. (4) turns into 

< c  

leading to a factorization of the n-gluon phase space under Mellin moments. At the same 
time, the squared n-soft-gluon matrix element has QED-like factorization properties 
and is essentially a product of n single-gluon emission factors, times the Born matrix 
element. As a result, exponentiation of the soft-gluon terms occurs in Mellin-moment 
space, with an exponent that to LL is just the one-loop expression derived in Eq. (8): 

where 



Here, the first term in A leads to resummation of the LL terms a: ln2k N in moment space. 
The second term gives next-to-leading logarithmic contributions of the form a:ln2k-1 N 
to the cross section. It is evident that the exponent is positive, so that resummation will 
enhance the cross section. This is related to the fact that soft-gluon effects are partly 
already contained in the parton distributions, as shown by the subtraction in (7). 

We note that in QCD the scale kL appears in the strong coupling constant in the 
exponent in Eq. (10). Because of the singularity of the perturbative coupling at AQCD, 
the perturbative expansion of the expression shows factorial divergence, which in QCD 
corresponds to a power-like ambiguity of the series. A closer look, however, shows that 
the resummed logarithmic terms in N have the form (we define as(Q2) ln(N) = asL) 

1 

in which the coefficients ak, b, have no factorial behavior [5]. The LL terms in the ex- 
ponent are single logarithms of the form a,”Lk+l; which after expansion of the expo- 
nential generate the leading double logarithms a,“L2k in the cross section. The factorial 
divergence thus appears only at nonleading powers of momentum transfer. This im- 
plies that perturbative resummation can suggest [6] the form of nonperturbative, power- 
suppressed, dynamics. Expanding the full resummed exponential at small kL, one finds 

. .  
with g, and g2 nonperturbative parameters to be determined by comparison to data. 

Threshold resummation has been worked out to NLL accuracy for most reactions of 
current interest; see for example [I, 2,7,8,9, lo], and in some cases to NNLL [ l l ,  121. 
If more than two partons are involved in the hard-scattering, exponentiation still occurs 
but, because of color interferences and correlations, usually comes in the form of sums 
of exponentials, rather than a single exponential [8, 91. However, at the LL level, the 
resummation is always very simple. Each initial parton receives a factor (see Eq. (10)) 

where Ci = CF for (anti)quarks and Ci = CA for gluons, and where on the right we 
have for illustration given the simple large-N result obtained for fixed coupling. An 
“observed” final-state parton (that is, a parton fragmenting into an observed hadron) has 
the same factor [lo]. For an “unobserved” final-state parton, one finds 

As one can see, this exponent is negative, corresponding to Sudakov-suppression, as 
expected, since for an “unobserved” final-state parton collinear singularities cancel. Also 
note that for fixed coupling the exponent in Eq. (15) has half the size of that in (14). 



RESUMMATIONS FOR VARIOUS PROCESSES 

It is instructive to compare the resummed ILL exponents for various processes of interest. 
These will not be sufficient for quantitative calculations (and in fact in the numerical 
applications discussed below the NLL terms will be included); however, they will 
indicate where threshold resummation effects will potentially be most important. 

Drell-Yan qa -+ f : As shown above, 

Higgs production via gluon-gluon fusion has the same exponent with CF -+ CA. 
DIS fq  -+ q : Mellin moments are taken in light-cone momentum fractions x. 

Prompt-photon production : for single-inclusive reactions such as prompt-photon 
production p p  -+ yX, integrated for simplicity over all photon rapidities, a partonic 
threshold is reached when the center-of-mass energy of the incoming partons is 
just large enough to produce the photon and the recoiling parton, that- is, when 
R, 2pY,/& -+ 1. Threshold logarithms occur as .,“ ln2k( 1 - g) . Taking Mellin 
moments in e, one obtains the resumed exponents for the two partonic channels: 

Single-inclusive hadron production : kinematics for the process p p  -+ hX are 
similar to the prompt photon case. A major difference is that one final-state parton 
is “observed” since it fragments into the observed hadron h. One therefore finds 
extra enhancement for the cross section, due to the factor in Eq. (14). In addition, all 
2 --+ 2 QCD subprocesses contribute at Born level, among them gg -+ gg. Because 
of the large gluon color charge CA = 3, resummation effects are expected to be 
large. We only give examples for two subprocesses here; the others follow directly. 

Semi-inclusive DIS j1“q -+ q : here one has two separate Mellin moments, for 
the light-cone momentum fractions associated with the initial state and with the 
fragmentation process. One finds to LL: 



PHENOMENOLOGICAL EXAMPLES 

Among the many processes to which threshold resummation has been applied, we 
choose three examples. 

Higgs production at the LHC. Here the full NNLO fixed-order corrections have 
been calculated [13], which allow to improve the resummation to NNLL accuracy. Fig. 2 
shows results from the study in [12] for the Higgs K-factor. On the left, resummation is 
done to NLL and compared to the NLO prediction. On the right, one can see the NNLL 
resummation and the NNLO result. It becomes evident that the NLL resummation yields 
a fairly good prehction of the NNLO result. NNLL resummation predicts a further, 
moderate, increase of the cross section over NNLO. 
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FIGURE 2. Fixed-order (NLO, NNLO) and resummed (NLL, NNLL) predictions for Higgs production 
at the LHC. Taken from [ 121. 

/dxBdz Semi-inclusive DIS. Here we focus on the “multiplicities” daldxB , where 
z = E”/v. Fig. 3 (left) shows NLO and resummed results for the kinematic regime 
relevant to HERMES measurements [14]. Even though we are considering a ratio of cross 
sections here, resummation effects become important towards larger z and Bjorken-x,. 

Single-inclusive hadron production pp --+ nX. NLO significantly underpre- 
dicts [15] data for this process in the fixed-target regime, as may be seen from the 
lower lines in Fig. (3) (right). On account of Eq. (19), we expect large effects from 
threshold resummation. Indeed, as the upper lines in the figure show, the agreement 
with data is substantially improved by NLL resummation, and the scale dependence is 
strongly reduced. Details will be given elsewhere [17]. 
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FIGURE 3. Left: Resummation for semi-inclusive DIS in the HERMES kinematic regime. Solid is NLO, 
dashed NLL resumed.  Right: NLO and threshold-resummed results for p p  + nX in the fixed-target 
regime. Data are from E706 [ 161. 
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