Calculations of Single-Inclusive Cross Sections and Spin Asymmetries in PP Scattering

Werner Vogelsang

Presented at 16th International Spin Physics Symposium, Spin 2004
Trieste, Italy
October 10 to 16, 2004

Physics Department
Nuclear Theory Group

Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Managed by
Brookhaven Science Associates, LLC
for the United States Department of Energy under
Contract No.: DE-AC02-98CH10886
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
CALCULATIONS OF SINGLE-INCLUSIVE CROSS SECTIONS AND SPIN ASYMMETRIES IN PP SCATTERING

WERNER VOGELSANG

Physics Department and RIKEN-BNL Research Center,
Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
E-mail: w vogelsang@bnl.gov

We present calculations of cross sections and spin asymmetries in single-inclusive reactions in pp scattering. We discuss next-to-leading order predictions as well as all-order soft-gluon "threshold" resummations.

1. Introduction

Single-inclusive reactions in pp scattering, such as \(pp \to \gamma X \), \(pp \to \pi X \), \(pp \to \text{jet} X \), play an important role in QCD. At sufficiently large produced transverse momentum, \(p_T \), QCD perturbation theory (pQCD) can be used to derive predictions for these reactions. Since high \(p_T \) implies large momentum transfer, the cross section may be factorized at leading power in \(p_T \) into convolutions of long-distance pieces representing the structure of the initial hadrons, and parts that are short-distance and describe the hard interactions of the partons. The long-distance contributions are universal, that is, they are the same in any inelastic reaction, whereas the short-distance pieces depend on only large scales and, therefore, can be evaluated using QCD perturbation theory. Because of this, single-inclusive cross sections offer unique possibilities to probe the structure of the initial hadrons in ways that are complementary to deeply-inelastic scattering. At the same time, they test the perturbative framework, for example, the relevance of higher orders in the perturbative expansion and of power-suppressed contributions to the cross section.

Of special interest is the case when the initial protons are polarized. At RHIC, one measures spin asymmetries for single-inclusive reactions, in order to investigate the spin structure of the nucleon \(^1\). A particular focus here is on the gluon polarization in the nucleon, \(\Delta g \equiv g^\uparrow - g^\downarrow \).
Figure 1. NLO spin asymmetry for \(\pi^0 \) production, using several GRSV polarized parton densities with different gluon polarizations.

measurements of \(A_{LL} \) at RHIC should give direct and clear information. The "error bars" in the figure are uncertainties expected for measurements with an integrated luminosity of 3/\(\text{pb} \) and beam polarization \(P=0.4 \). We note that PHENIX has already presented preliminary data \(^8 \) for \(A_{LL} \). We also mention that the figure shows that at lower \(p_T \) the asymmetry is not sensitive to the sign of \(\Delta g \). This is related to the dominance of the \(gg \) scattering channel which is approximately quadratic in \(\Delta g \). In fact it can be shown that \(A_{LL} \) in leading-power QCD can hardly be negative at \(p_T \) of a few GeV \(^9 \). One may obtain better sensitivity to the sign of \(\Delta g \) by expanding kinematics to the forward rapidity region.

Figure 2 shows predictions for the spin asymmetry \(A_{LL} \) for high-\(p_T \) jet production. The gross features are rather similar to the pion asymmetry, except that everything is shifted by roughly a factor two in \(p_T \). This is due to the fact that a pion takes only a certain fraction of \(\sim \mathcal{O}(50\%) \) of the outgoing parton's momentum, so that the hard scattering took place at roughly twice the pion transverse momentum. A jet, however, will carry the full transverse momentum of a produced parton.

We emphasize that PHENIX and STAR have presented measurements \(^{10} \) of the unpolarized cross section for \(pp \rightarrow \pi^0 X \). These are well described by the corresponding NLO QCD calculations \(^3,^8 \), providing confidence that the NLO pQCD hard-scattering framework is indeed adequate in the RHIC domain. This is in contrast to what was found in comparisons \(^{11} \) between NLO theory and data for inclusive-hadron production taken in the fixed-target regime. We will turn to this issue next.
fall rapidly with increasing $x_{a,b}$, threshold effects become more and more relevant as the hadronic scaling variable $x_T \equiv 2p_T/\sqrt{S}$ goes to one. This means that the fixed-target regime with $3 \text{ GeV} \lesssim p_T \lesssim 10 \text{ GeV}$ and \sqrt{S} of 20–30 GeV is the place where threshold resummations are expected to be particularly relevant and useful.

The resummation is performed in Mellin-N moment space, where the logarithms $\alpha_s^k \ln^{2k} (1 - \xi^2)$ turn into $\alpha_s^k \ln^{2k}(N)$, which then exponentiate. For inclusive-hadron production, because of the color-structure of the underlying Born $2 \to 2$ QCD processes, one actually obtains a sum of exponentials in the resummed expression. Details may be found in 4. Here, we only give a brief indication of the qualitative effects resulting from resummation. For a given partonic channel $ab \to cd$, the leading logarithms exponentiate in N space as

$$\hat{\sigma}_{ab \to cd}^{(\text{res})}(N) \propto \exp \left[\frac{\alpha_s}{\pi} \left(C_g^A + C_g^B + C_g^C - \frac{1}{2} C_g^d \right) \ln^2(N) \right], \quad (4)$$

where

$$C_g^A = C_A = N_c = 3, \quad C_g^B = C_B = (N_c^2 - 1)/2N_c = 4/3. \quad (5)$$

This exponent is clearly positive for each of the partonic channels, which means that the soft-gluon effects will lead to an enhancement of the cross section. Indeed, as may be seen from Fig. 3, resummation dramatically increases the cross section in the fixed-target regime. The example we give is a comparison of NLO and NLL resummed predictions at $\sqrt{S} = 31.5$ GeV with the data of E706 14 at that energy. We have used the "KKP" set of pion fragmentation functions 15, and the parton distributions of 16.

Acknowledgments

I am grateful to D. de Florian, B. Jäger, S. Kretzer, A. Schäfer, and M. Stratmann for fruitful collaborations on the topics presented here. I thank RIKEN, BNL and the U.S. DoE (contract number DE-AC02-98CH10886) for providing the facilities essential for the completion of his work.

References