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Abstract. For hamiltonian lattice gauge theory, we introduce the matrix product m a t s  inspired 
from density matrix renormalization group. In this method, wavefunction of the target state is 
assumed to be a product of finite matrices. As a result, the energy becomes a simple function 
of the matrices, which can be evaluated using a computer. The minimum of the energy function 
corresponds to the vacuum state. We show that the S = 1/2 Heisenberg chain model are well 
described with the ansatz. The method is also applied to the two-dimensional S = 1/2 Heisenberg 
and U(l) plaquette chain models. 

RHIC experiments have started to test the fundamental properties of quantum chro- 
modynamics (QCD). The importance of first-principle analysis of QCD has increased 
largely in the context of color confinement. There is the expectation that quarks and glu- 
ons deconfine in extreme conditions such as heavy ion collision. However, lattice gauge 
theory at finite density has been stuck for a long time. The most ideal treatment of non- 
equilibrium quantum physics is to trace time-evolution of quantum states based on the 
Schrodinger equation. 

Density Matrix Renormalization Group (DMRG) is the variational method that gives 
the most accurate results in one-dimensional quantum systems [l]. In these days, DMRG 
has been used as a standard method to complement quantum Monte Carlo and suc- 
cessful in solving one-dimensional (zero and finite temperature) and two-dimensional 
(zero temperature) quantum systems. Application of DMRG to elemanrary particle and 
molecular physics has started some years ago. Recent interesting progress of DMRG is 
its application to non-equilibrium quantum physics and quantum information theory [2]. 

The first application of DMRG to particle physics was the massive Schwinger model 
with the 8 term [3]. There is an old prediction by S. Coleman that quarks deconfine at 
8 = n [4]. The model has not been analyzed accurately with Monte Carlo because of the 
sign problem. On the other hand, DMRG has been successful in describing the details 
of the phase transition with large lattices because DMRG is free from the sign problem. 

The second application has been given by the author [5].'It is a preliminary work 
for study of gauge theory. In bosonic lattice systems, each site has infinite degrees of 
freedom and therefore hamiltonian is infinite dimensional differently from spin and 
fermion systems. It is not evident whether DMRG truncation works for bosonic degrees 
of freedom. DMRG needs to be tested in a simpler bosonic model before going to gauge 
theory. In Ref. [5], DMRG has been applied to a (l+l)-dimensional model. The 
DMRG result for the critical exponent p = 0.1264 f 0.0073 is consistent with the exact 
one = 1/8 = 0.125. 



TABLE 1. Numerical results for ground-state energy 
per site in the S = 1/2 Heisenberg chain model. The 
exact values have been obtained with the Bethe ansatz. 

M\L 10 100 1000 10000 
6 -0.4092 -0.4372 -0.4371 -0.4368 

12 -0.4092 -0.4427 -0.4425 -0.4425 
Exact -0.4515 -0.4438 -0.4431 -0.4431 

Matrix product variational method is a result of large simplification of DMRG [6]. 
In this method, the energy function has a simple form and easy to evaluate. However, 
the advantage is lost if a constraint is imposed to variational space directly. The Gauss 
law in gauge theory is one of the most important examples of constraints. To avoid this 
difficulty, the author has developed a method to introduce constraints with undetermined 
multipliers in Hamiltonian [7]. Also, the author has generalized the matrix product 
variational method so that it can be applied to higher-dimensional general systems [8]. 

We introduce matrix product states according to Ref. [6]. With the knowledge from 
DMRG, wavehnction is represented as a product of matrices. 

K 

SI ,..., SL=1 
IY) = tr[A[SlI.. .A[SL]IISl). . . Isi), (1) 

where periodicity is assumed. A [SI has the following normalization condition. 

Each of the matrices A[s] can be parameterized with an appropriate number of indepen- 
dent variables [7]. It is expected that better results is obtained for larger M. Let us apply 
the ansatz to the S = 1/2 Heisenberg chain model with periodic boundary conditions 

Periodicity simplifies calculation of the energy function 

E[A] = (4) 

where 4 = &t(slS$')A*[s] @A[s'] and 1 = &A*[s] @A[s]. The minimumof the energy 
function corresponds to the ground state. In actual numerical calculation, the matrix 1 is 
diagonalized to simplify calculation of the powers of 1. 

Table 1 shows numerical results for ground-state energy per site, which are compared 
with the exact ones. M is the size of the matrices A[s]. When the lattice size L is small, 
convergence is poor even for large M. On the other hand, when L is large, the numerical 
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FIGURE 2. Energy per bond in the two-dimensional S = 1/2 Heisenberg model. 

results approaches the exact one as M becomes larger. In the best case, error is less than 
1%. The lattice size dependence of energy is small when L 2 100. 

In the same way, the two-dimensional S = 1/2 Heisenberg model is analyzed. To 
use the matrix product ansatz, one-dimensional structure needs to be found on the two- 
dimensional lattice (see Fig. 1). The tube and ring sizes are denoted as L1 and L2, 
respectively. Figure 2 plots energy per bond as a function of 1/L1 for a very large ring 
with L2 = 10000. The circle for L1 = 1 is the exact result from the Bethe ansatz. The 
other three circles have been calculated using the matrix product ansatz. We are going 
to make a comparison in the thermodynamic limit L1+ - by extrapolating the obtained 
points to the limit. In Table 2, energy per bond is compared among various results in the 
thermodynamic result. “Lattice size” means the largest lattice size used for calculation. 

The method is applied to a U( 1) plaquette chain model. The hamiltonian is 

where x = l/g4 [ 131. Figure 3 plots energy as a function of the parameter x and compares 
it with the results of Ref. [14]. In this calculation, the Gauss law V .E = 0 has not been 
imposed on the variational space. Since vacuum wavefunction is available, we can check 
gauge invariance of the obtained vacuum state by calculating the vacuum expectation 
value of the electric field. The obtained result N is small compared to energy, 



TABLE 2. 
model in the thermodynamic limit. 

Energy per bond of the two-dimensional S = 1/2 Heisenberg 

1 -  

2 -  

E J -  

J -  

5 -  

Method E Lattice size Year Reference 

0 82 

0 122 

0 

10000 x 1 

Monte Carlo -0.3347 1 62 1999 [9] 

DMRG -0.3321 202 2003 [ l l ]  
TPVA -0.3272 Verylarge 2004 [12] 
Matrix product -0.3292 f 0.0005 10000 x 4 2004 This work 

DMRG -0.3347 122 2001 [lo] 
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FIGURE 3. Energy per site vs x in the U(l) hamiltonian lattice gauge model. 

which shows approximate gauge invariance of the vacuum state. Currently, calculation 
with the Gauss law constraint is being conducted. Further precise analysis with larger 
lattices will be given elsewhere to refine the results shown in this presentation. 

The numerical calculations were carried on the RIKEN RSCC system. This work has 
been partially suppoged by N-KJ3N.BNL.- 
U.S.D. O.E.-DE-ACO2-9S-CHIOSS6 
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