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Abstract. This paper is tlie'summaty of a feasibility study of a Fisd-Field itftemating-Gradjeiit (FFAG) Accelerator for 
Prohns in the one-to-few GeS energy rangez and axwage beam power of several MWatt. The esainpb we have adopted liac is 
a beam emrm of 1 GeV and an average power of 10 MWatt. bnt of GQWW die sane des@ approach mi ha uLsd with other 

beatn paraniakers. The design prkiplas, nierits mid fituitatians of the FFAG accelerators Iiave beai described prriously [I]. In 
particular, more advanced kchnirlues to minimize magnet dimension and field strength have been recently proposed. The design 
makes use of a novel cancpt by ivhich it i s  possible to m c d  ~hromatiC eEk&s, thus snaking betatron tunes and functions 
independent of the particle momentum. with an R&csted Ficld Pmfile [21. The emnipla given hers assumes a pulsed inode of 
operation at tile rqetition rate of 1.0 klh.  
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There are several applicaiious that may require 
high-ititeisity proton accelerators irt the one to few 
GeV eniq~y r<mge capable to deliver an average becam 
power of several m a t t .  Some of tliese applications 
are: Spallation Neutron Sour"Ce~~ Acceierator-Driven 
Tritium Production. Nuclear Waste Transmutation. 
Nuclear Energif Production, by either Nuclear Fission 
or Fusion methods; production of Radio-Isotopes md 
Exotic Nuclcar Fragments, and intense beams of 
Mesons, Muons and Neukinas for l.Juclear aid High- 
Energy Physics. Several proton acceicraturs 
architectures have been proposed arid sfxidied for aE or 
some of these appIic,&ions, namely: Cyclotrons, 
Rapid-Cycling Synchrotrons, Koom-Tenprature and 
Super-conducting Linacs, Induction Linacs, and 
FFAG accelerators. 

FFAG accelerators are an old technology proposed 
and denionstrated about a half a centun ago [3]. They 
have been proposed the past especcialbj in 
cormectioti of Spallation Neutmn Sources 141. But, 
despite a considerable aniount of design and feasibility 
studies, FFAG accelerators were never endorsed by 
tlie scientiffc coiiunu~~ity, bwause tliey were perceived 

owing a too complex orbit dynamics, a too large 
momaiturn aperture required for acceleration; mcl 
consequent.ly too expensive magnets. RF acceleration 
was also considered problematic over such a large 
momenturn qxr!x.re. hiloreover, the FFAG awakrator 
was always coupled to large injection energy (of few 
Iiundred MeV) at one end, %id to the need of 
stachglaccunidating devices at the other aid of the 
accelerating cycle. 

Recently,:, there is a renewed interest in FFAG 
accelerators, first of all bemuse of the practical 
deinoiisfxation IS] of a I50-MeV proton accelerator at 
I(EE(, Japaib and secondly because of a more modern 
approach b h e m  dyynmics and magnet lattice design, 
and of sonx kip,ur;Esfnt kmovative ideas [I ,  21 
concenung mmneiitunl compaction and magnet 
dimemiom. Because of the more recent development, 
FFAG accelerators are presently a very appealing and 
competitive technology that can allow a beam 
perfomniance at the saine level of the other accelemtor 
architectures. Like 011 other technologies, FFAG 
accelerators have of course their own pro's and con's, 
bid it is mido~ibtd that they c ~ 1  fulfil1 the 
requirements set by the application. 
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FEATtTRES OF THE FFAG 
ACCELERATORS 

"fhe miin feature of &e FFAG accelerators is k t  
they are essentially based on conventional room- 
temperatme magnet teclmolngy with constant field. / I s  
tlie bean1 is accelerated by RF cavities, its trajectory 
spirals from an inner orbit where injection o c c m  
toward a11 outer orbit from whiclt ffie beam is 
extracted- The radial extension of tmjectones is 
entirely conked within &e magnet aperhxre. and the 
fieid does not need then to be ramped either i'or 
badiwg or fox focusing. 

In pmciple, &is mode of operation requires a large 
momentum excursion that. for instance from 200 MeV 
to 1.0 GeV is about 2=40o/b around the central 
momentum vahie. To avoid that the nioiiienhun range 
gets exceedingly too large. EFAG acmlerators rqi.ure 
large injection eiiergy. o€ few Iiui~&ed MeV, for 
b&ixxe as delivered by a Drift-Tube Linac (DTL j. 

Another fetlkire of ale FFAC accelerator is the we 
of magnets \&Ii combined functions; for sunultaneous 
bendhg and focusing. The field piq%e is not constsuit 
but varies across the magnet width aid may vary from 
magnet to magnet. Moreover, the bending and the 
focusing alternate providing strong focusing aid a 
inore compact moinentm aperture when compared to 
cyclotrons. Ne~erthekss. the reverse bending sdstrac's 
from &e tot31 bendkg increasing the circimifkrence of 
&e ring. 

I3iffmmiI types 01 magnet Pdttice conllgrtration 
have been proposed and invesfigated; hut a lattice 
made of triplets lias been found to he the most 
advantageous, especially in the FDF configuration. 
Though tl-tae is some freedom in choosing the tnag~let 
edge coatjguration and flie relative oneiitation of the 
R ~ ~ I E ~ S  with respect to each ather, ~ 3 e  hwe only 
cansidered the case that the magnets are combimd- 
functivn sector magnets with the exit plane of one 
p a d e l  to the a i l x ime plaie of the iiext. FOT a certain 
reference nioinentum pe, that we chose to correspond 
to the iujection orbit [l], the entrance and exit angles 
the corresponding reference frajectory makes wtli 
each magnet vanish. 

200XeV DTL 

LO&\' FFAG 

FIGURE 1. Layout of n site-independent I-GeV lO-MWntt 
Power Proton Driver. 

Four major niles f l ,  2. 61 have been proposed for 
the design of the lattice of the FFAG accelerator to 
insure stability of motion over lhe required n i o n i ~ i ~ i  
range for acceleration and a compact magnet 
configuration. The design of &e Proton Driver 
deiescrilxd hex makes use of these major rules. 

FPAG ACCELERATOR AS A 1.0-GEV 
AND 10-MWATFT PROTON DRIVER 

The swage beam proton power from any proton 
accelerator is given by 

P = N e F U f  ( 1 )  

witb e the elementary electric charge, N the nurnber of 
p&ons p e r  cycle, F fixe repetition rate, iind UI. the h a l  
kinetic energy. 

A site indepedent mmipb of a High-l'otvw 
Pmtm Driver based on the z~se of ZI WAG accelerztor 
is described in Fig. I .  The example assmnes 
acceleration beheen U, = 2UO MeV and LJ, = 1.0 
GeV. The injector could be a 300-MeV Drift Tube 
Linac (DTL). Multi-tun1 injection by stripping of 
negative ions &I-) is done over a period of time Tmj to 
rexh the desired number of protons N per bTAG 
cycle. Accelemtian proper takes T,,, so &at the tatal 
cyde pcriod 1s t = TmJ + T,,, and the repetition rate is 
F = 1: It. The merage proton bem Gmrent is I,, = Ne;. 
?lie main kinematics parameters are listed in Table 1. 

Let IL be the peak current Goni the DTL, and a tlie 
ratio of beam chopping required to e l i i i~ate  potential 
loses of beam that \\ill not tit in the capturhg RE 
buckets. Let also p, c be the beam velocity at in-jation. 
and G the circ~~i~fmence of llie FFAG accelerator. Tlie 
revolution frequency E = @/C, and &e revolution 
pmod 1' = i /f The number of protons injected p a  tusli 
is hiv = c&T/e. We can derive the total number of 
injected ttims required to reach the +&a1 &itaisity n = 
p.T& = N&ILT, atid tlie mje-ction period T,, = a T = 
Ne/a1~ that does not depend on the accelerator 
C~~CLUII~'CS~XIW OF on the injection energy. 

Let also W be the averagc energy gain per t~m, and 
m = (XJf - Ul) 1 W the number of wvol&~ons du&g 
acceleration. If Tuve is tlie average revolution period 
the acceleration period is T,,, = m T,,, = (T,,, / W) 
(1 - U, / Uf) (1 f q) Uf. where q is the acceleratian 
tinit dilation factor that includes, for insLance: the 



tnmsition betwm RF capture during muIti-trun 
injection and the onset of the accek~ation proper. We 
can asamie ( 1  - U, I Uf) (1 + qj - 1 that yields 

By combining &is to &e injection period Tull fa get 
the EEAG cycle time T = T,"? +TdCc, we finally have 

t= Ne/aIL( l  - PIPB) 

= T,I(I - P/PEJ (3  

where PB = W Ne / T,,, is the average circulating 
bean power during acceleration. Clearly one requires 
P < Pg. For ksfance, wi?b Pg = ( 3 2 )  P. the total FFAG 
cycle period z = 3 For stable beam RF foadkip 
operation, we shodd add ta the W power Ppz ai 
amount ah& eflual to PB being dissipated in &e I?.l? 
cavity system. Since the XF power by far d o i i ~ t e s  
all other power coiuumptions in ttle ring we can iilf'er 
that the overall eftkiency P I Pw - 33%. 

Considering ow- example OK proton driver with an 
average beam power of 10 TVIT/v,2ttt, a consistent set of 
parameters is a = 0.5, IL = 60 ~ I A  md N = 6.25 Y 
protons per cycycle that yields Tln1 = 0.3113 ms and T,,, = 
0.667 ms. In this case Pm = 2 FB = 30 &&Watt. From 
Eq. ( 3 )  the avemge energy gain per ttm is 

FIGURE 2. RF Modulation, Hanmnic N L I N ~ ~  h = 36. 

We have designed an FFAG lattice described neyt 
with a circumference C = 201 m. Since - 0.75 the 
required energy gain is W = 1.2 hdeV/tmu and the RF 
peak voltage 1.8 MVolt. Acceleration can be 
accomplished with ferrite-drivm single-gap cavities, 
each about 1 ni long, with ai1 internal diameter of 10 
cm. Asmining a gap volt%e of45 kValt, 40 cavities 
zre needed. Ewli cavity is to be &ivea by a 0.8 W a t t  
power auiplifier. With the liannonic number h = 36, 

ffie RF &eqimcy moduiation is as & o m  in Fig. 2. A 
mcjor concern is of course tlia cavity f&te operating 
in freqaency range and that is to be swept in about 
one third of a niillisecoiid. Tables 5 md 6 give 
respectively a summary of the Acceleration 
PX~EX&FS aid of die RF Cavity System 

I 1 TABLE 1. Proton Driver Kinanlatic Parameters 

I TABU?, 2. &lagnet Parameters for the Iiljection Orbit 

Magnet Type B D 
Arc L.fngtk En 0 3 5  0-10 
Rending Fiekl E, IrG - 7.118 4.956 

Emding Radius p, ni 40.5958 62.65 
Bending Angle- m a d  -34.49 80.69 
Bending Ratio @@> 2.34 

&a&a1t G, kGh11 71.12 -23.2956 

DESIGN OF THE FFAG LATTICE 

The design is iiiade considerably easier n-i& a hrge 
ring cimiifermce md perioclici$ [ 1 1. We believe 
nevert1ieIess that such 3 Proton Facility shouU be as 
coinpact as possible. We have fouiid a reasonable 
solution with a circumference G = 2I)T.X in and a 
periodicity of 68 iclaitical FDF triplets. We have of 
cotme followed the procdwe descrihed in [ 1, 2 and 
61. In paticutar we have adopkd a lvim-SmZi~g 
Ldrtiim- The period, L&oxn in Fig. 3, is similar to the 
oat. we have adopted for the AGS Upgrade /7] aid 
already represents ci solution close to q&iniizntinn. and 
froni v&idi we have scald IJie nett design with 
diffaent injection energy wid cirwmference. The 
dhensioiis of the Drifts and o f  the Sector mgiiets 
liave also hemi scaled accordingly as described m [I]. 
The lattice ftntctions, estmated at the injection energy, 
are shonn in Fig. 4. The magnet and lattice 
parameters, an the injection orbit. are sumnmized in 
Tables 2 nncl 3. The long drift S is 1.25 m h ~ g ,  
e1113ugli to acconmodde a singk-gap RF cavity. 



FIGURE 3. Period of the FFAG Proton Drker 

FIGURE 4. Lattice Function at bijection 

ADJ'CTSTED FIELD PROFILE 

TO compensate for Uie c1&matic effects we  we 
a.dopkd . ~ C ~ ~ Z I S S F ~  FieM Pmflles [I 21 &at me shown 
along the iertgtli of &e rnagmts in 5g.s 5 aid 6 .  The 
Msgnetic Fk?ds I i m ~  sbie-mgfi within acceptable range. 

Tlre variation of the fractional b m n  tmes 
during acceleration IS shown in Fig. 7. There is a 
cIrauge of about 0.2 caused by the entrance and exit 
aiigbs flie particle trajectory makes with the edges of 
the magnets [6]. We believe t!ae change to he 
acceptable. The compactness of the tnjectories at 
differmi rnornmtm~ mliw along the length of Iidr R 
period is sliowii in Fig. 8. The orbit sepaation is less 
than I cm Li the middle of the long straight section. 

The tecluGcal feasibility of the sector magnets that 
include propdy ffie dcljrisfed Field PmfZes neab 
careful study anti a practical denionstration. 

me mapet  design is Ihm very cornpad smd feasible. 

The parameters at injection are listed in Table 4. 
The beam emittance at the space-charge &me-shift of 
0.5 is 150 a mm-mrarl; but because the betatron beta 
filnctions are also small. the overall beam dimensions 

 ai-^ elliptical mc'uufll cliainber 20 cm wide a d  10 mi 
dt~ring accelmtian atre modest and G ~ I I  be stfery fit in 

high. The overaII magnet dimensions are ffius about 2 
feet s 2 fed. The desigi procedure to be followed is 
this essentially the same as described in [7]. It is seen 
that &he power ~011sumpti011 for the inagileis is niodea 
(- 1 MWattj, and considerably smaller than aiat 
required for tlie RF accelzration. 

There is enough drift space for the nccomnodatkn 
of mag& componmts foT injection md e&action fiat 
follow closely the layout described in the similar note 
[7]  ofthe 1.S-GeV FFAG for ffie EINL-AGS Upgrade. 
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FIGXIRE 6. Field Profile in the D-Sector Mngnet 
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TAELE 3 Parainelers for the Injection Trajmtoq 

Circurn Sereiice 291.773 m 
Number of Periods 68 
Period Length 2.96725 m 
Period S t r u c t ~ ~ e  S F g D g F S  
Short Drift, g 0.15 rn 
Long Drift, s (total) 1.26725 m 
PH max in S )  2.27 111 

&J may fin D) 
?I nl@x (in S )  
phase adv. I Period. wv 
E~&&oII Times. H/V 
Nabiral Chromaticity, H N  41.915 /-2.?57 
Traisition Energy7 YT 53.755 i 

5.859 m 
0.0603 m 
1QS.IO" / 99.802* 
19.8515 / 18.SSI4 
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TABLE 4. Iiijac-tiou into the FFilG Proton Driver 

Linac Peak Current 
Revolution Period 
No. of Protons f FFAG pulse 
Chopping Ratio 
Choppkg Frequt-ncy 
Single Puke Length 

LinaclFFAG repet. rate 
Linac DuQ Cycle 
Linac Emittance, ms ti~m.- 
Final Emittance, full nomi. 
Etmchirrg Eack9r 
Space-C harge Tune-Shlft 

NO. of 'Iiznls rj,cted pttrsr: 

60 mA 
1.858 ps 
0.94 s 
0.511 
30.253 MKz 
0.50 ms 
265 
1 .0 mz 
50 YO 
1 R znni-mrml 
1 50 K fml-nmd 
3 
0.511 

circm-aa1ce 
Harmonic Number, h 
Energy 
Trmsition Energy, y~ 
Peak RF Voltage 
Nuinher of €1~11 B~tckets 
Tobl Number of Protons 
Bunch Area, I3111 
Protons i Bimcli 
111jecti011 Pa-iad 
Accelaatim Pe r id  
TotaI Cycle Period 

201.773 m 
36 
1.2MeV/turn 
53.755 i 
1.8 itmolt 
26 out of 36 

0.4 eV-sec 

0.333 zns 
0.667 llls 
1 .(I ms 

6.25 s I P  

2.4 s 1CP 

No. 0fF.F Cavities 
No. of Gaps per Cavity 
Cm5t-y Z.mgth 
Interm1 Diameter 
Peak Voltage J Cavity 
Power Amplifier / Cavity 
Energy Range. MeV 
is 
Rev. Freyrrency, iMHz 
Revolution Period, lis 
RF Frequency. &lHz 
Peak C urrenx Amp 
Peak Beun Po\ver, fiAw 

40 
1 
1.Om 
10 cm 
45 lrVolt 
0.8 IW- 
208 ~,~~~ 
0.566 0.875 
0.841 1.300 
1.159 0.769 
3025 46.80 
12.65 19.55 
15.2 25.5 
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