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QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific 
integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall 
sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low 
power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most 
demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed 
so far has shown all systems functioning according to specification. We review the hardware and software status 
of QCDOC and present performance figures obtained in real hardware as well as in simulation. 

I. Introduction 

Continued advances in commodity processing 
and networking hardware make PC (or worksta- 
tion) clusters a very attractive alternative for lat- 
tice QCD calculations [l]. Indeed, there are quite 
a few important problems that can be addressed 
on PC clusters, and many lattice physicists are 
taking advantage of this opportunity. However, 
for the most demanding problems in lattice QCD, 
e.g. dynamical fermion simulations with realistic 
quark masses, one would like to distribute the 
global volume over as many nodes as possible, 
resulting in a very small local volume per node. 
PC clusters are inadequate to deal with this case 
because the communications latency inherent in 
their networking hardware implies that the local 

volume must not be chosen too small if a reason- 
able sustained performance is to be achieved. In 
other words, for typical lattice QCD problems PC 
clusters do not scale well beyond a few hundred 
nodes. 

In custom-designed supercomputers such as 
QCDOC [2,3] and apeNEXT [4], the communica- 
tions hardware is designed to reduce the latencies 
and to assist critical operations (such as global 
sums) in hardware. As a result, these machines 
are significantly more scalable and allow for much 
smaller local volumes. In addition, they provide 
low power consumption, a small footprint, and 
a very low price/performance ratio per sustained 
MFlops. On the downside, the development effort 
is considerably higher than for PC clusters, but 
this effort is amortized by the unique strengths of 
these machines. 

*Based on talks by K. Petrov and T. Wettig at Lattice 
2003, Tsukuba. 
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Figure 1. Block diagram of the QCDOC ASIC, where the cross-hatched blocks have been custom-designed. 

2. Hardware 

The QCDOC hardware has been described 
in detail in several previous publications, see 
Refs. [2,3], therefore we only summarize its most 
important features here. 

The QCDOC ASIC, shown schematically in 
Fig. 1, was developed in collaboration with IBM 
research and manufactured by IBM. It contains a 
standard PowerPC 440 core running at 500 MHz, 
a 64-bit, 1 GFlops FPU, 4 MBytes of embed- 
ded memory (eDRAM), and a serial communica- 
tions interface (SCU) which has been tailored to 
the .particular requirements of lattice QCD. The 
SCU provides direct memory access, single-bit er- 
ror detection with automatic resend, and a low- 
latency pass-through mode for global sums. Also 
on the chip are several bus systems, controllers 
for embedded and external (DDR) memory, an 
Ethernet controller, a bootable Ethernet-JTAG 
interface, and several auxiliary devices (interrupt 
controller, 12C interface, etc.). A picture of one 
of the first ASICs, delivered in June of 2003, is 
shown in Fig. 2. 

The physical design of a large machine is as 
follows. Two ASICs are mounted on a daughter- 
board, together with two standard DDR memory 
modules (one per ASIC) with a capacity of up to 
2 GBytes each. The only other nontrivial com- 
ponents on the daughterboard, apart from a few 
LEDs, are four physical layer chips for the MI1 

Figure 2. Close-up view of a QCDOC ASIC. 
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QCDOC is a &dimensional torus with nearest- 

Figure 3. A daughterboard with two QCDOC 
ASfCs and two DDR DIMMs. 

interfaces (two per ASIC) and a 4:l Ethernet re- 
peater which provides a single 100 Mbit/s Ether- 
net connection off the daughterboard. A picture 
of the very first two-node daughterboard is shown 
in Fig. 3. A motherboards holds 32 such daugh- 
terboards, eight motherboards are mounted in a 
crate, and a large machine is built from the de- 
sired number of crates. A picture of a QCDOC 
motherboard is shown in Fig. 4. 

The physics communications network of 

Figure 4. A QCDOC motherboard populated by 
a single daughterboard. 

neighbor connections. The two extra dimensions 
allow for machine partitioning in software so that 
recabling is not required. A 64-node motherboard 
has a 26 topology, with three open dimensions 
and three dimensions closed on the motherboard 
(one of which is closed on the daughterboard). 
The SCU links run at 500 Mbit/s and provide 
separate send and receive interfaces to the for- 
ward and backward neighbors in each dimension, 
resulting in a total bandwidth of 12 Gbit/s per 
ASIC (of which 8 Gbit/s will be utilized in a 4- 
dimensional physics calculation). 

In addition to the physics network, there is an 
Ethernet based network for booting, I/O, and 
debugging, as well as a global tree network for 
three independent interrupts. The Ethernet traf- 
fic from/to each motherboard proceeds at 800 

ETHERNET 

Figure 5.  A two-dimensional version of the net- 
work connections in a QCDOC machine. Each 
small square corresponds to a processing node, 
and the large rectangles represent a motherboard 
(actual motherboards have 64 nodes). 
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Mbit/s to a commercial Gbit-Ethernet switch 
tree, a parallel disk system, and the host machine. 
The latter will be a standard Unix SMP machine 
with multiple Gbit-Ethernet cards. See Fig. 5. 

As of the writing of this article (September 
2003), all major subsystems of the QCDOC ASIC 
have been tested in single-daughterboard configu- 
rations (2 ASICs per daughterboard) using a tem- 
porary test-jig. This configuration allows non- 
trivial communications between the two ASICs 
in one of the six dimensions; for the remaining 
dimensions the ASIC communicates with itself in 
a loop-back mode. Extensive memory tests with 
different sized commodity externaI DDR SDRAM 
modules have been done, tests of the 4 MByte on- 
chip EDRAM have been performed, and all the 
DMA units have been used. High-performance 
Dirac kernels have been run for Wilson and ASQ- 
TAD fermion formulations, confirming the perfor- 
mance figures given in Table 1 and Ref. [3]. No 
problems with the ASIC have been found to date. 

With QCDOC motherboards now in hand for 
use (Fig. 4), tests of 64 and 128 node machines are 
imminent. In our test-jig tests, the ASICs appear 
to be working well close to the target frequency of 
500 MHz. With a fully populated motherboard, 
and the more stable electrical environment pro- 
vided by the motherboard as compared to our 
simple test-jigs, we will soon be able to test a 
large number of ASICs at the 500 MHz design 
frequency. From preliminary measurements, the 
power consumption per node is about 5 W. 

3. Software 

One of the major goals of the development 
team was to make QCDOC accessible and de- 
ployable to a large scientific community, so ev- 
ery attempt has been made to allow users to use 
standard software tools and techniques. In or- 
der to reliably boot, monitor and diagnose the 
10,000f nodes in a large QCDOC machine, and 
to allow user code maximum access to the high- 
performance capabilities of the hardware, we are 
writing a custom operating system for QCDOC. 
This is modeled on the QCDSP operating system, 
which has successfully allowed the use of a ma- 
chine with a similar number of processing nodes. 

The QCDOC operating system (&OS) has been 
improved in myriad ways, continuing to focus on 
ease-of-use for the end-user. 

3.1. Operating System 
We now give a more detailed list of the re- 

quirements of the operating system and discuss 
how these features have been implemented. In 
addition to booting the machine, the QOS must 
diagnose hardware errors and monitor the hard- 
ware during user program execution. Monitoring 
is accomplished by regular inspection of on-chip 
registers which monitor memory and communi- 
cation link status, along with interrupt handlers 
which are invoked by changes in hardware state 
deemed crucial. After booting, partitions of the 
machine may be requested for interactive use by 
a user or the queuing system. Each partition will 
only run a single user program at a time; all mul- 
titasking will be handled by the host fiont-end. 
During program execution, the operating system 
provides host-QCDOC input/output access using 
commodity Ethernet connections, access to spe- 
cial QCDOC features such as the mesh commu- 
nication network and on-chip memory and access 
from QCDOC processing nodes to a parallel disk 
array. The QOS is designed to coordinate the in- 
teractions between the host and QCDOC, insulat- 
ing the user from many QCDOC-specific details 
while still providing detailed control over their 
execution environment. 

Our solution is &OS, written largely from 
scratch in C-tf, C and some assembler. The soft- 
ware runs on the host computer and the QCDOC 
nodes and consists of several parts, namely: 

i Th? Qdaemon on the host, which manages 
and monitors the entire QCDOC machine. 
All interactions go through the Qdaemon. 

ii The Qclient layer on the host, which pro- 
vides access to the Qdaemon for a variety 
of planned user interfaces, such its the batch 
system and Web applications, as well as the 
existing command line interface, the Qcsh. 

iii The Qcsh on 'the host, a modified version 
of tcsh, which is currently in use and allows 
complete control and use of QCDOC. 

iv The boot/run kernels on each node. 



The Qdaemon is the heart of the operating sys- 
tem, and it is designed and implemented using 
modern C++ techniques, e.g. it is heavily tem- 
plated, it employs POSIX threads to allow effi- 
cient use of a multi-processor front end, its queue 
calls and object lists are thread-safe, and it can 
drive multiple physical network interfaces. The 
single Qdaemon on the host uses reliable UDP to 
transport packets between QCDOC and the host, 
starting with basic UDP packets in the boot pro- 
cedure and adding an RPC protocol to this when 
the run kernels are loaded. The Qdaemon con- 
trols the IP addressing scheme to the nodes, does 
the partitioning that users request, monitors ma- 
chine status, directs 1/0 to the host and evokes 
hardware testing when needed. The Qdaemon 
can be accessed by a “root” user for system man- 
agement and monitoring, but most users will only 
have access to a limited set of &daemon’s capa- 
bilities, those appropriate for the partition where 
they are running a job. The Qdaemon also pro- 
vides flexible software partitioning of QCDOC. 

The Qclient is a library of interfaces which com- 
municates with the Qdaemon and can accept in- 
put from a variety of planned user tools. To ac- 
cess the Qclient, and hence the Qdaemon, access 
to the host computer must be gained by conven- 
tional authentication tools such as ssh or a secure 
Web connection. Currently, a command-line in- 
terface, the Qcsh, communicates with the Qdae- 
mon via the Qclient library. 

Following the successful QCDSP model, Qcsh 
is a command-line interface. Starting from a stan- 
dard unix shell, tcsh, extra built-in commands 
to control QCDOC have been added. Users can 
use normal shell redirection to control 1/0 from 
QCDOC, programs can be executed on QCDOC 
and backgrounded in Qcsh allowing further inter- 
action between the Qcsh and Qdaemon (but not 
QCDOC directly since it is executing a program), 
and standard shell scripts can be used. The spe- 
cial QCDOC commands in the Qcsh all begin 
with the letter q. Some examples .are: q i n i t  - 
establish a connection between the Qcsh and the 
Qdaemon; qpar t i t ion-crea te  - create a parti- 
tion of QCDOC; qboot - boot a QCDOC parti- 
tion; qrun - run a user program; qhelp - display 
available &commands. 
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The Qdaemon will only permit connections 
from the local host, which allows a Unix socket to 
be passed to the Qdaemon from a user interface 
like the Qcsh. The Qdaemon then does user 1/0 
from/to this Unix socket and can determine Unix 
user and group identities directly from the host 
OS kernel. This is a major simplification. While 
the Qdaemon will be handling many users’ access 
to QCDOC, it does not have to open/close files 
and concern itself with protections. This is han- 
dled by the initial user interface, thereby ensuring 
correct ownership and permissions. 

The first software loaded to a QCDOC node is 
the boot kernel, which is loaded directly to the 
data and instruction caches of the 440 core via 
the Ethernet-JTAG hardware. Only the 440 core 
must be functional for the boot kernel to execute. 
When execution begins, tests of the on-chip and 
DDR memory can be done. Once the memory is 
known to be working, the boot kernel enables the 
standard 100 Mbit Ethernet port on the QCDOC 
ASIC and the run kernel is loaded down. The run 
kernel handles the activation of machine-global 
features such as the nearest-neighbor communica- 
tions network. When these steps complete, which 
should be on the scale of ten minutes even for a 
large machine, it is available for general use. All 
of the steps outlined above are implemented and 
have been extensively used on our first ASICs. 

The run kernel provides support for users, in- 
cluding access to QCDOC features via system 
calls. Part of the strategy for using RPC for the 
host-run-kernel communication is to avoid having 
a separate communications protocol for disk ac- 
cess. We have written an NFS client for the run 
kernel that uses the standard RPC-based NFS 
protocol. The client supports two mount points 
and open/read/write/close functionality. This 
NFS support has already been tested on QCDOC. 
While providing a standard user environment for 
high-performance computing, the run-kernel will 
not support multi-tasking. We have chosen to 
keep the run-kernel lean and compact to ensure 
reliability and to keep the software task bounded. 

3.2. Communications Software 
A major issue for a massively parallel com- 

puter is the effectiveness of its message pass- 
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ing. In hardware, QCDOC is a nearest-neighbor 
mesh, the majority of QCD based communica- 
tions are also nearest-neighbor and consequently 
QOS natively supports nearest-neighbor commu- 
nications calls. The QOS calls are implemented 
so as not to interfere with the low latency of 
the QCDOC communications hardware. The 

. QCDOC hardware supports efficient global sums 
(done via our pass-through hardware), which are 
also accessible via QOS calls. We have also im- 
plemented the SciDAC Lattice QCD Software 
Committee’s QCD message passing (QMP) pro- 
tocol on QCDOC. This protocol supports nearest- 
neighbor communications, which we efficiently 
map to the native QOS communications calls, as 
well as arbitrary communications. For the latter, 
we will implement a Manhattan-style routing. 

3.3. Existing Software and Benchmarks 
A simple (but not trivial) consequence of 

QCDOC using a standard processor from IBM’s 
PowerPC line is the availability of a whole ar- 
senal of Open Source and commercial software 
tools, most notably the GNU tools and IBM’s 
tools. On QCDOC, users will be able to use 
the GNU toolset, the closest thing to a standard 
across computer platforms. Additionally, we have 
access to the high-performance commercial tools 
from IBM, such as the xlc/xlC compilers which 
we have seen outperform the GNU compilers on 
PowerPC platforms by as much as a factor of two. 
We expect that users may do initial code devel- 
opment with the GNU toolset and only compile 
with the more restrictively-licensed IBM compil- 
ers when final performance is an issue. 

An issue for the larger potential user group for 
QCDOC is performance of existing physics codes, 
not written for a QCDOC or QCDSP type of com- 
puter architecture. The MILC code was an ob- 
vious choice to test, since it is one of the major 
lattice simulation codes and is written in C. The 
MILC code has been run on QCDOC, both the 
simulator and now the actual ASIC, concentrat- 
ing on the ASQTAD action. Unmodified MILC 
code gives performance in the few percent range 
for small lattice volumes, which was easily im- 
proved by a few standard C-code modifications as 
described in [3]. A summary of the performance 

Action 
Wilson 

Clover 

Staggered 

Asqtad 
AF 

Table 1 

VOl. 
7 

44 
24 

44 
24 

44 
44 

44 
24 

Assem. 
47% 
54% 
56% 
59% 
36% 

43% 

MILC 

17% 
21% 
15% 
14% 
20% 

Performance for. double prec-;ion assembly code 
and single precision MILC code for various local 
lattice volumes and actions. AF is the ASQTAD 
force term for the Hybrid Monte Carlo. 

for single precision MILC code and our double 
precision assembly code is given in Table 1. 

4. Schedule 

A 128-node prototype machine is currently be- 
ing assembled at Columbia. Assuming that no 
major problems are found, two machines of 10 
TFlops (peak) each will be available to UKQCD 
and the RIKEN-BNL Research Center by the 
summer of 2004. The operating system and user 
software needed to utilize these machines is pro- 
gressing in hand with the hardware developments. 
Approval is pending for a 3 TFlops (peak) ma- 
chine at Columbia and a 2 20 TFlops (peak) in- 
stallation at BNL for the U.S. lattice community. 
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