
BROOHIH4WEN
N AT I 0 P A 11, LAB 0 R A T 0 RY

/

BNL- 73620 -2005-CP

Hardware and software status of QCDOC

K. Petrov, et al.

Presented at Lattice 2003
Tsu ku ba, Japan
July 15-19, 2003

Physics Department
Nuclear Theory Group

Brookhaven National Laboratory
P.O. Box5000

Upton, NY 1 1973-5000
www.bnl.gov

Managed by
Brookhaven Science Associates, LLC

for the United States Department of Energy under
Contract No. DE-AC02-98CHlO886

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Govei-nment. Neither the United States Goveiment nor any agency thereof, nor
any of their employees, nor any of their contractors, subcontractors or their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or any third party’s use or the results of such use of any
information, apparatus, product, or process disclosed, or represents that its use would not
illfringe privately owned rights. Reference herein to any specific commercial product,
process,. or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof or its contractors or subcontractors. The
views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof

1

Hardware and software status of QCDOC *
P.A. Boyleab, D. Chen', N.H. Christb, M. Clark", S.D. Cohenb, C. Cristianb, Z. Dongb, A. Gara',
B. Job", C. Jungbd, C. Kimb, L. Levkovab, X. Liaob, G. Liub, R.D. Mawhinneyb, S. Ohtaef,
K. Petrovbd, T. Wettigfg, A. Yamaguchib

"Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland

bDepartment of Physics, Columbia University, New York, NY 10027, USA

'IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

dPhysics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

eInstitute for Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, 305-0801, Japan

fRIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY, 11973, USA

gDepartment of Physics, Yale University, New Haven, CT, 06520, USA

QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific
integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall
sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low
power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most
demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed
so far has shown all systems functioning according to specification. We review the hardware and software status
of QCDOC and present performance figures obtained in real hardware as well as in simulation.

I. Introduction

Continued advances in commodity processing
and networking hardware make PC (or worksta-
tion) clusters a very attractive alternative for lat-
tice QCD calculations [l]. Indeed, there are quite
a few important problems that can be addressed
on PC clusters, and many lattice physicists are
taking advantage of this opportunity. However,
for the most demanding problems in lattice QCD,
e.g. dynamical fermion simulations with realistic
quark masses, one would like to distribute the
global volume over as many nodes as possible,
resulting in a very small local volume per node.
PC clusters are inadequate to deal with this case
because the communications latency inherent in
their networking hardware implies that the local

volume must not be chosen too small if a reason-
able sustained performance is to be achieved. In
other words, for typical lattice QCD problems PC
clusters do not scale well beyond a few hundred
nodes.

In custom-designed supercomputers such as
QCDOC [2,3] and apeNEXT [4], the communica-
tions hardware is designed to reduce the latencies
and to assist critical operations (such as global
sums) in hardware. As a result, these machines
are significantly more scalable and allow for much
smaller local volumes. In addition, they provide
low power consumption, a small footprint, and
a very low price/performance ratio per sustained
MFlops. On the downside, the development effort
is considerably higher than for PC clusters, but
this effort is amortized by the unique strengths of
these machines.

*Based on talks by K. Petrov and T. Wettig at Lattice
2003, Tsukuba.

2

2.6 GByte/sec Interface
RISC Processor

Custom Deslgned Loglc

3 Complete Processor Node
on a Single QCDOC Chip

Ethernet

j-]

Figure 1. Block diagram of the QCDOC ASIC, where the cross-hatched blocks have been custom-designed.

2. Hardware

The QCDOC hardware has been described
in detail in several previous publications, see
Refs. [2,3], therefore we only summarize its most
important features here.

The QCDOC ASIC, shown schematically in
Fig. 1, was developed in collaboration with IBM
research and manufactured by IBM. It contains a
standard PowerPC 440 core running at 500 MHz,
a 64-bit, 1 GFlops FPU, 4 MBytes of embed-
ded memory (eDRAM), and a serial communica-
tions interface (SCU) which has been tailored to
the .particular requirements of lattice QCD. The
SCU provides direct memory access, single-bit er-
ror detection with automatic resend, and a low-
latency pass-through mode for global sums. Also
on the chip are several bus systems, controllers
for embedded and external (DDR) memory, an
Ethernet controller, a bootable Ethernet-JTAG
interface, and several auxiliary devices (interrupt
controller, 12C interface, etc.). A picture of one
of the first ASICs, delivered in June of 2003, is
shown in Fig. 2.

The physical design of a large machine is as
follows. Two ASICs are mounted on a daughter-
board, together with two standard DDR memory
modules (one per ASIC) with a capacity of up to
2 GBytes each. The only other nontrivial com-
ponents on the daughterboard, apart from a few
LEDs, are four physical layer chips for the MI1

Figure 2. Close-up view of a QCDOC ASIC.

3

QCDOC is a &dimensional torus with nearest-

Figure 3. A daughterboard with two QCDOC
ASfCs and two DDR DIMMs.

interfaces (two per ASIC) and a 4:l Ethernet re-
peater which provides a single 100 Mbit/s Ether-
net connection off the daughterboard. A picture
of the very first two-node daughterboard is shown
in Fig. 3. A motherboards holds 32 such daugh-
terboards, eight motherboards are mounted in a
crate, and a large machine is built from the de-
sired number of crates. A picture of a QCDOC
motherboard is shown in Fig. 4.

The physics communications network of

Figure 4. A QCDOC motherboard populated by
a single daughterboard.

neighbor connections. The two extra dimensions
allow for machine partitioning in software so that
recabling is not required. A 64-node motherboard
has a 26 topology, with three open dimensions
and three dimensions closed on the motherboard
(one of which is closed on the daughterboard).
The SCU links run at 500 Mbit/s and provide
separate send and receive interfaces to the for-
ward and backward neighbors in each dimension,
resulting in a total bandwidth of 12 Gbit/s per
ASIC (of which 8 Gbit/s will be utilized in a 4-
dimensional physics calculation).

In addition to the physics network, there is an
Ethernet based network for booting, I/O, and
debugging, as well as a global tree network for
three independent interrupts. The Ethernet traf-
fic from/to each motherboard proceeds at 800

ETHERNET

Figure 5. A two-dimensional version of the net-
work connections in a QCDOC machine. Each
small square corresponds to a processing node,
and the large rectangles represent a motherboard
(actual motherboards have 64 nodes).

, ' J

4

Mbit/s to a commercial Gbit-Ethernet switch
tree, a parallel disk system, and the host machine.
The latter will be a standard Unix SMP machine
with multiple Gbit-Ethernet cards. See Fig. 5.

As of the writing of this article (September
2003), all major subsystems of the QCDOC ASIC
have been tested in single-daughterboard configu-
rations (2 ASICs per daughterboard) using a tem-
porary test-jig. This configuration allows non-
trivial communications between the two ASICs
in one of the six dimensions; for the remaining
dimensions the ASIC communicates with itself in
a loop-back mode. Extensive memory tests with
different sized commodity externaI DDR SDRAM
modules have been done, tests of the 4 MByte on-
chip EDRAM have been performed, and all the
DMA units have been used. High-performance
Dirac kernels have been run for Wilson and ASQ-
TAD fermion formulations, confirming the perfor-
mance figures given in Table 1 and Ref. [3]. No
problems with the ASIC have been found to date.

With QCDOC motherboards now in hand for
use (Fig. 4), tests of 64 and 128 node machines are
imminent. In our test-jig tests, the ASICs appear
to be working well close to the target frequency of
500 MHz. With a fully populated motherboard,
and the more stable electrical environment pro-
vided by the motherboard as compared to our
simple test-jigs, we will soon be able to test a
large number of ASICs at the 500 MHz design
frequency. From preliminary measurements, the
power consumption per node is about 5 W.

3. Software

One of the major goals of the development
team was to make QCDOC accessible and de-
ployable to a large scientific community, so ev-
ery attempt has been made to allow users to use
standard software tools and techniques. In or-
der to reliably boot, monitor and diagnose the
10,000f nodes in a large QCDOC machine, and
to allow user code maximum access to the high-
performance capabilities of the hardware, we are
writing a custom operating system for QCDOC.
This is modeled on the QCDSP operating system,
which has successfully allowed the use of a ma-
chine with a similar number of processing nodes.

The QCDOC operating system (&OS) has been
improved in myriad ways, continuing to focus on
ease-of-use for the end-user.

3.1. Operating System
We now give a more detailed list of the re-

quirements of the operating system and discuss
how these features have been implemented. In
addition to booting the machine, the QOS must
diagnose hardware errors and monitor the hard-
ware during user program execution. Monitoring
is accomplished by regular inspection of on-chip
registers which monitor memory and communi-
cation link status, along with interrupt handlers
which are invoked by changes in hardware state
deemed crucial. After booting, partitions of the
machine may be requested for interactive use by
a user or the queuing system. Each partition will
only run a single user program at a time; all mul-
titasking will be handled by the host fiont-end.
During program execution, the operating system
provides host-QCDOC input/output access using
commodity Ethernet connections, access to spe-
cial QCDOC features such as the mesh commu-
nication network and on-chip memory and access
from QCDOC processing nodes to a parallel disk
array. The QOS is designed to coordinate the in-
teractions between the host and QCDOC, insulat-
ing the user from many QCDOC-specific details
while still providing detailed control over their
execution environment.

Our solution is &OS, written largely from
scratch in C-tf, C and some assembler. The soft-
ware runs on the host computer and the QCDOC
nodes and consists of several parts, namely:

i Th? Qdaemon on the host, which manages
and monitors the entire QCDOC machine.
All interactions go through the Qdaemon.

ii The Qclient layer on the host, which pro-
vides access to the Qdaemon for a variety
of planned user interfaces, such its the batch
system and Web applications, as well as the
existing command line interface, the Qcsh.

iii The Qcsh on 'the host, a modified version
of tcsh, which is currently in use and allows
complete control and use of QCDOC.

iv The boot/run kernels on each node.

The Qdaemon is the heart of the operating sys-
tem, and it is designed and implemented using
modern C++ techniques, e.g. it is heavily tem-
plated, it employs POSIX threads to allow effi-
cient use of a multi-processor front end, its queue
calls and object lists are thread-safe, and it can
drive multiple physical network interfaces. The
single Qdaemon on the host uses reliable UDP to
transport packets between QCDOC and the host,
starting with basic UDP packets in the boot pro-
cedure and adding an RPC protocol to this when
the run kernels are loaded. The Qdaemon con-
trols the IP addressing scheme to the nodes, does
the partitioning that users request, monitors ma-
chine status, directs 1/0 to the host and evokes
hardware testing when needed. The Qdaemon
can be accessed by a “root” user for system man-
agement and monitoring, but most users will only
have access to a limited set of &daemon’s capa-
bilities, those appropriate for the partition where
they are running a job. The Qdaemon also pro-
vides flexible software partitioning of QCDOC.

The Qclient is a library of interfaces which com-
municates with the Qdaemon and can accept in-
put from a variety of planned user tools. To ac-
cess the Qclient, and hence the Qdaemon, access
to the host computer must be gained by conven-
tional authentication tools such as ssh or a secure
Web connection. Currently, a command-line in-
terface, the Qcsh, communicates with the Qdae-
mon via the Qclient library.

Following the successful QCDSP model, Qcsh
is a command-line interface. Starting from a stan-
dard unix shell, tcsh, extra built-in commands
to control QCDOC have been added. Users can
use normal shell redirection to control 1/0 from
QCDOC, programs can be executed on QCDOC
and backgrounded in Qcsh allowing further inter-
action between the Qcsh and Qdaemon (but not
QCDOC directly since it is executing a program),
and standard shell scripts can be used. The spe-
cial QCDOC commands in the Qcsh all begin
with the letter q. Some examples .are: q i n i t -
establish a connection between the Qcsh and the
Qdaemon; qpar t i t ion-crea te - create a parti-
tion of QCDOC; qboot - boot a QCDOC parti-
tion; qrun - run a user program; qhelp - display
available &commands.

5

The Qdaemon will only permit connections
from the local host, which allows a Unix socket to
be passed to the Qdaemon from a user interface
like the Qcsh. The Qdaemon then does user 1/0
from/to this Unix socket and can determine Unix
user and group identities directly from the host
OS kernel. This is a major simplification. While
the Qdaemon will be handling many users’ access
to QCDOC, it does not have to open/close files
and concern itself with protections. This is han-
dled by the initial user interface, thereby ensuring
correct ownership and permissions.

The first software loaded to a QCDOC node is
the boot kernel, which is loaded directly to the
data and instruction caches of the 440 core via
the Ethernet-JTAG hardware. Only the 440 core
must be functional for the boot kernel to execute.
When execution begins, tests of the on-chip and
DDR memory can be done. Once the memory is
known to be working, the boot kernel enables the
standard 100 Mbit Ethernet port on the QCDOC
ASIC and the run kernel is loaded down. The run
kernel handles the activation of machine-global
features such as the nearest-neighbor communica-
tions network. When these steps complete, which
should be on the scale of ten minutes even for a
large machine, it is available for general use. All
of the steps outlined above are implemented and
have been extensively used on our first ASICs.

The run kernel provides support for users, in-
cluding access to QCDOC features via system
calls. Part of the strategy for using RPC for the
host-run-kernel communication is to avoid having
a separate communications protocol for disk ac-
cess. We have written an NFS client for the run
kernel that uses the standard RPC-based NFS
protocol. The client supports two mount points
and open/read/write/close functionality. This
NFS support has already been tested on QCDOC.
While providing a standard user environment for
high-performance computing, the run-kernel will
not support multi-tasking. We have chosen to
keep the run-kernel lean and compact to ensure
reliability and to keep the software task bounded.

3.2. Communications Software
A major issue for a massively parallel com-

puter is the effectiveness of its message pass-

6

ing. In hardware, QCDOC is a nearest-neighbor
mesh, the majority of QCD based communica-
tions are also nearest-neighbor and consequently
QOS natively supports nearest-neighbor commu-
nications calls. The QOS calls are implemented
so as not to interfere with the low latency of
the QCDOC communications hardware. The

. QCDOC hardware supports efficient global sums
(done via our pass-through hardware), which are
also accessible via QOS calls. We have also im-
plemented the SciDAC Lattice QCD Software
Committee’s QCD message passing (QMP) pro-
tocol on QCDOC. This protocol supports nearest-
neighbor communications, which we efficiently
map to the native QOS communications calls, as
well as arbitrary communications. For the latter,
we will implement a Manhattan-style routing.

3.3. Existing Software and Benchmarks
A simple (but not trivial) consequence of

QCDOC using a standard processor from IBM’s
PowerPC line is the availability of a whole ar-
senal of Open Source and commercial software
tools, most notably the GNU tools and IBM’s
tools. On QCDOC, users will be able to use
the GNU toolset, the closest thing to a standard
across computer platforms. Additionally, we have
access to the high-performance commercial tools
from IBM, such as the xlc/xlC compilers which
we have seen outperform the GNU compilers on
PowerPC platforms by as much as a factor of two.
We expect that users may do initial code devel-
opment with the GNU toolset and only compile
with the more restrictively-licensed IBM compil-
ers when final performance is an issue.

An issue for the larger potential user group for
QCDOC is performance of existing physics codes,
not written for a QCDOC or QCDSP type of com-
puter architecture. The MILC code was an ob-
vious choice to test, since it is one of the major
lattice simulation codes and is written in C. The
MILC code has been run on QCDOC, both the
simulator and now the actual ASIC, concentrat-
ing on the ASQTAD action. Unmodified MILC
code gives performance in the few percent range
for small lattice volumes, which was easily im-
proved by a few standard C-code modifications as
described in [3]. A summary of the performance

Action
Wilson

Clover

Staggered

Asqtad
AF

Table 1

VOl.
7

44
24

44
24

44
44

44
24

Assem.
47%
54%
56%
59%
36%

43%

MILC

17%
21%
15%
14%
20%

Performance for. double prec-;ion assembly code
and single precision MILC code for various local
lattice volumes and actions. AF is the ASQTAD
force term for the Hybrid Monte Carlo.

for single precision MILC code and our double
precision assembly code is given in Table 1.

4. Schedule

A 128-node prototype machine is currently be-
ing assembled at Columbia. Assuming that no
major problems are found, two machines of 10
TFlops (peak) each will be available to UKQCD
and the RIKEN-BNL Research Center by the
summer of 2004. The operating system and user
software needed to utilize these machines is pro-
gressing in hand with the hardware developments.
Approval is pending for a 3 TFlops (peak) ma-
chine at Columbia and a 2 20 TFlops (peak) in-
stallation at BNL for the U.S. lattice community.

Acknowledgments. This work was supported
in part by the U.S. Department of Energy under
Contract No DE-AC02-98CH10886, the Institute
of Physical and Chemical Research (RIKEN) of
Japan, and the U.K. Particle Physics and Astron-
omy Research Council.

REFERENCES

1. T. Lippert, these proceedings
2. D. Chen et al., Nucl. Phys. (Proc. Suppl.)

94 (2001) 825; P.A. Boyle et al., Nucl. Phys.
(Proc. Suppl.) 106 (2002) 177 and Nucl. Phys.
(Proc. Suppl.) 119 (2003) 1041

3. P.A. Boyle et al., hep-lat/0306023

7

4. F. Bodin et al., hep-lat/0306018

