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Spontaneous CP violation and quark mass 
ambiguities 

Michael Creutz 

Physics Department, Brookhuven National Laboratory, Upton> NY 11973, USA 

Abstract. I explore the regions of quark masses where CP will be spontaneously broken in the 
strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which 
manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the 
concept of a single massless quark is ill defined. 

INTRODUCTION 

In this talk I discuss two apparently distinct but deeply entwined topics. First, I ask 
for what quark masses is CP spontaneously broken. Second, I investigate whether a 
vanishing up quark mass is a physically meaningful concept. I should emphasize at the 
outset that I will be exploring rather unphysical regions of parameter space. This in some 
sense is a theorists fantasy, with no direct experimental relevance. Indeed, my real goal 
is to understand better how chiral symmetry works in the strong interactions. The main 
content of this talk is contained in two recent papers [ 1,2]. The basic ideas have roots in 
a talk I gave in Como at the 1996 edition of this conference [3]. 

I require a few assumptions. First, the continuum limit of QCD should exist and 
confine, with the only relevant parameters being the coupling and the quark masses. 
Then I will assume that chiral symmetry is spontaneously broken in the usual way 
and that effective chiral Lagrangians are qualitatively correct. Finally I assume that the 
anomaly removes any flavor singlet chiral symmetry. In particular, this implies that a 
single massless quark gives no exact Goldstone boson. 

The underlying concepts are all quite old. In 1971 Dashen [4] showed how CP symme- 
try could be spontaneously broken in the strong interactions. DiVecchia and Veneziano 
[5] observed the CP violation in chiral Lagrangians at negative quark masses. Georgi and 
McArthur 161 showed that non-perturbative effects could give a non-multiplicative shift 
to the up quark mass. This motivated Kaplan and Manohar [7] in their classic studies of 
ambiguities in the up quark mass in the context of effective chiral Lagrangians. Banks, 
Nir and Seiberg [SI discussed the fact that the concept of a vanishing up quark mass is 
not so clean. 



THE EFFECTIVE MESON THEORY 

I base my initial discussion on the effective theory for pseudoscalar mesons in terms of 
a field taking values in the group SU (3) 

1 C = exp(ina31a/f,) E SU(3) (1) 

I work with the three flavor theory, i.e. I include the up, down, and strange quarks. The 
standard generators of the group SU(3) are given by A,, and the pseudoscalar octet fields 
are denoted as n,. 

Chiral symmetry is manifested in independent left or right global rotations on this 
field 

This symmetry is explicitly broken by the quark masses. The lowest order effective 
Lagrangian including the masses takes the form 

E+ @g, (2) 

(3) L = -Tr(dpCi’dpC) f: - v Re Tr(cM) 
4 

with the mass matrix 

0 ms 
(4) 

Expanding this density to quadratic order in meson fields and then diagonalizing the 
resulting non-derivative term gives the usual result that the meson masses squared are 
proportional to the quark masses, including m& - mu + md. For my purposes, I am 
particularly interested in the isospin violation arising from the up-down mass difference 
md -mu. This results in a mixing of the no and 77 mesons, giving somewhat complicated 
formulae for their masses 

mu +md +ms - 2 +mi + nt,2 - mumd -mums - m 

mi  - + (mu + ??ad + m, + ,,/mi + mi + m; - m,md - m,m, - m m 

Note in particular that it is possible to tune the parameters such that mi, vanishes. This 

4 
occurs when 

This vanishing mass does not require chiral symmetry. It does, however, occur at a 
somewhat unphysical location, requiring at least one of the quark masses to be negative. 

SPONTANEOUS CP VIOLATION 

Going to negative quark masses at first seems a bit strange, but in such a regime unusual 
things do happen. Note that because of the anomaly, the signs of the quark masses can 
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FIGURE 1. The real and imaginary parts of the traces of 10,000 randomly chosen SU(3)  matrices. Note 
that the minimum real part occurs at two distinct cube roots of unity. 

become significant. Flavored chiral rotations can move the signs around, but the overall 
sign of the determinant of the mass matrix is invariant. 

The effective Lagrangian is useful for clarifying the expected behavior with negative 
masses. In the usual case with positive masses, the vacuum involves quantum fluctua- 
tions about the maximum of ReTrZ. This occurs at C = I .  However, now consider the 
case of degenerate negative masses. The vacuum instead should occur at the minimum 
of ReTrC. The important point is that -I does not lie in the group SU(3) .  A simple 
analysis shows that the minimum is doubly degenerate, occuring at C = exp(f2ni/3). 
Fig. 1 plots the traces of 10,000 random matrices to illustrate this result. Note that CP 
symmetry takes C to C"; thus, either of these solutions involves a spontaneous breaking 
of CP. 

This CP violating phase can be approached continuously by passing through the 
values of the quark masses in Eq. 6 where mi,, vanishes. Indeed, this equation represents 
the boundary for the occurance of a pion condensed phase with (no) # 0. Similar 
boundaries occur at the, appropriate branches of 

The full phase diagram is sketched in Fig. 2. 

of form 
In the CP violating phases the vacuum fluctuates about non-trivial complex matrices 

(8) 
0 0 ,5-@1-i42 

eih 0 
= ( 0 ei42 

where the angles satisfy 

mu sin( @l)  = md sin(q2) = -m, sin( + q2) (9) 



FIGURE 2. 
positive strange quark mass. 

The phase diagram of QCD as a function of the up and down quark masses with a fixed 

The CP violating phases are separated from the conserving ones by second order tran- 
sition lines occuring when mno = 0. The former have two degenerate vacua related by 
4i * - 4 ~ .  

AMBIGUITIES IN THE UP QUARK MASS 

I now take a section through this diagram. Phenomenologically, the down and strange 
quark masses appear to definitely not vanish. Consider fixing them at some positive 
values and study the dependence of the theory as a function of the up quark mass alone. 
Thus follow a horizontal line at fixed md in Fig. 2. To enable continuation around the 
boundary of the CP violating phase, extend the mu dependence into the complex plane. 
This gives the qualitative structure sketched in Fig. 3. 

The expectation is a first order transition along negative Re m axis. This ends at a 
second order critical point at non-zero Re m < 0. Along the first order line there is 
a spontaneous breaking of CP. The transition has a simple order parameter ( nono>. The 
presence of the gap below 772, = 0 and the CP violating phase were noted some time ago 
by Di Vecchia and Veneziano [5].  

Note that nothing significant occurs at mu = 0 when md # 0. This raises an interesting 
question: Does mu = 0 have any physical significance? I now argue that this is not a 
well posed question if md # 0 and ins # 0. One consequence of this observation is that a 
vanishing up quark mass is an unacceptable solution to the strong CP problem. 

A crucial message here is that the concept of an “underlying basic Lagrangian” 
does not exist. Field theory is full of divergences that must be regulated. It is only 
the underlying symmetries of the theory that remain significant. The case of a single 
massless quark gives no special symmetry because of the anomaly. Unlike the multiple 
degenerate quark case, no exact Goldstone bosons should appear at mu = 0. 



FIGURE 3. The qualitative phase diagram as a function of a complex up quark mass with fixed strange 
and down quark masses. (Here I ignore the reappearance of a CP ,conserving phase at large negative up 
quark mass.) 

The renormalization group trajectory 

A continuum field theory is defined as a limit of a cutoff theory. For QCD the bare 
parameters are the coupling g and quark masses mi. These must be renormalized for the 
continuum limit; indeed both bare parameters renormalize to zero in a well defined way 
given by the renormalization group equations. For this discussion I denote the cutoff as 
a minimum length a. This corresponds to the inverse of a large momentum scale. To 
simplify the discussion I will consider a single quark mass. Then the well known flow 
equations in the small coupling limit take the form 

a d  - 
(10) 

dag - /3 ( g )  = pOg3 + P1g5 + . . . + non-perturbative 
aZm d = rnr(g)  = wz(yog2 + 1/18 4 + . . .) + non-perturbative 

The first few coefficients Po, PI, and yo are scheme independent. In these equations the 
“non-perturbative” parts fall faster than any power of g as g --+ 0. Q crucial point, to 
which I will return, is that these contributions are not proportional to the quark mass. 

The solution to these equations is standard 

Rewriting shows how the coupling and mass go to zero in the continuum limit a --+ 0 

The first part of this equation represents the famous phenomenon of “asymptotic free- 
dom.” 



FIGURE 4. 
bare parameters. 

The continuum limit involves following a renormalization group trajectory in the space of 

At a basic level these equations arise from holding a few physical quantities fixed 
along the “renormalization group trajectory,” as sketched in Fig. 4. For this discussion 
it is convenient to use the lightest baryon and the lightest meson masses, nzp, m,, as 
physical quantities to hold fixed. With multiple quark flavors one would hold several 
meson masses fixed. 

The parameters A and M represent “integration constants” of the renormalization 
group equations. A is conventionally interpreted as the “QCD scale,” while M defines a 
the “renormalized quark mass.” Their values follow from limits along the renormaliza- 
tion group trajectory 

e-1/2Pog2g-P*/P; 
A = lim (13) 

a+O a 

The precise numerical values of A and M depend on the renormalization scheme. 

The physical masses map directly onto the integration constants, A = A(mp, m,) and 
M = M(nzp,m,). Inverting, gives the physical masses as functions of A and M :  -+ 
mi = mi(A,M). Simple dimensional analysis implies this relationship must take the form 
7 q  = Afi(M/A), with f(x) some apriori unknown function. 

In the case of multiple degenerate fermions more is known about the behavior o f f .  
In particular, Goldstone bosons should appear as the quark mass goes to zero: m: N mq. 
This implies the existence of a square root singularity f,(x) w x ’ / ~ .  The location of 
this singularity defines what is meant by zero mass quarks, thus removing any additive 
ambiguity in defining M .  

The single massless flavor case, however, is somewhat special. Then the meson mass 
m, = A f, ( M / A )  does not vanish at M = 0. The anomaly precludes chiral symmetry and 
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FIGURE 5. 
quark lines together with mass terms generates a shift in the lightest quark mass. 

Non-perterbative effects can flip all quark spins through the anomaly. Tying the heavier 

Goldstone bosons. While the meson mass can be forced to vanish, the earlier discussion 
shows that this requires a special tuning to a negative quark mass. For the function fn(x) 
one expects a smooth and non-vanishing behavior at x = 0. 

The shift of the singularity in x away from zero is due to non-perturbative effects. 
Indeed, non-perturbative contributions to the mass flow are expected which are not pro- 
portional to quark mass. As shown some time ago by t’Hooft [9], there are nonpertur- 
bative classical effects called “instantons” that flip all quark spins simultaneously. Tying 
the heavier quarks together with their mass terms as sketched in Fig. 5 gives rise to a 
contribution to the up quark mass flow 

These effects indicate that mu = 0 is not renormalization group invariant. If the up quark 
mass vanishes as some point on the trajectory, it will not for other points. 

Matching between schemes 

This non-invariance of the quark mass under the renormalization group raises the 
specter of scheme dependence. On changing renormalization schemes one should pre- 
serve the lowest order perturbative-limit as g + 0 at fixed scale a 

2 = g + 0 ( g 3 )  + non-perturbative 

#z = m( 1 + 0 ( g 2 ) )  + non-perturbative 
(16) 

j 
I 

Here “non-perturbative” terms should vanish faster than any power of g. As mentioned 
above, the integration constants A and M in general depend on the chosen scheme. 

I 



It is important to recognize that this perturbative matching at fixed a is not the 
continuum limit. Indeed, taking g -+ 0 at fixed a gives perturbation theory on free quarks, 
while taking a -+ 0 at fixed g gives the divergences of field theory. For the confining 
physics of the real world, one must go between these limits and take a and g together to 
zero dong the renormalization group trajectory. 

To dramatically illustrate the issue, consider a particularly cooked up new scheme 

E = a  

Here I have crafted the last factor in the mass expression to approach unity. This non- 
perturbative redefinition of the bare parameters makes 

While this may be somewhat artificial, it shows that some scheme always exists where 
the renormalized quark mass vanishes. Of course doing this for the top quark will insert 
ridiculously large non-perturbative .effects, but it is possible in principle. Because of this 
ambiguity, M = 0 is scheme dependent and thus is not a physical concept. Of course with 
degenerate quarks one can precisely define masslessness by the location of the square 
root singularity in f ( x )  as defined above. 

On the lattice 

As in the general case, on the lattice the renormalization flows depend on details of 
the lattice action. Various gauge actions as well as the fermion formulation need to be 
considered. Recent discussions have concentrated on overlap/Ginsparg-Wilson fermion 
operators [lo, 111, which bring a remnant of chiral symmetry to the lattice. However 
even these operators are not unique. The overlap operator relies on a projection, but it 
.depends on the particular Dirac operator being projected. When starting with a Wilson 
Dirac operator, the input negative mass is adjustable over a finite range. 

The one flavor theory dynamically generates a gap which will appear in the spectrum 
of the final Dirac operator. The overlap projection does not protect the size of this gap. 
With the gap present, the Ginsparg-Wilson condition is not sufficient to guarantee the 
preservation of M = 0 between schemes. 

With a Ginsparg-Wilson action the concept of a massless quark is synonymous with 
zero topological susceptibility. If a single massless quark is an ill defined concept, this 
raises the question of whether the topological susceptibility is uniquely defined for 
Nf < 2. This question has also been asked in the context of making the Witten-Veneziano 
formula [12, 131 for the q' mass precise [14, 151. From a perturbative point of view 
infinities .are not a problem [16, 171. However, to give a unique winding number to a 
gauge configuration requires a degree of smoothness for the gauge fields. One popular 
condition that ensures a well defined winding number forbids plaquettes further than 



a finite distance 6 from the identity [18]. However this condition is rather strong and 
leaves unresolved issues. In particular this “admissibility condition” has recently been 
shown to be in conflict with reflection positivity [ 191. 

CONCLUSIONS 

Effective chiral Lagrangians show that the strong interactions will spontaneously violate 
CP for large regions of parameter space. This phenomenon requires negative quark 
masses, a concept made physical by the anomaly. Based on this qualitative picture, I 
have argued that mu = 0 is not a meaningful concept. As such, it cannot be regarded as a 
possible solution to the strong CP problem. These effects are entirely non-perturbative. 
As a corollary, the topological susceptibility is not uniquely defined for Nf < 2. Finally, I 
note that available simulation algorithms cannot explore this fascinating physics because 
it involves regions where the fermion determinant is not positive, i.e. Monte Carlo 
methods have a sign problem. 
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