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Abstract smooth approximation analytically for a one-dimensional 

Previously it has been shown that the maintenance con- 
dition for a crystallinecbeam requires that there not be a 
resonance between the crystal phonon frequencies and the 
frequency associated with a beam moving through a lat- 
tice of Nl periods. This resonance can be avoided provided 
the phonon frequencies are all below half of the lattice fre- 
quency. Here we make a detailed study of the phonon 
modes of a crystalline beam. Analytic results obtained 
in the smooth approximation using the ground-state crys- 
talline beam structure is compared with numerical evalu- 
ation employing Fourier transform of Molecular Dynamic 
(MD) modes. The MD also determines when a crystalline , 
beam is stable. The maintenance condition, when com- 
bined with either the simple analytic theory or the numer- 
ical evaluation of phonon modes, is shown to be in excel- 
lent agreement with the MD calculations of crystal stabil- 
ity. A confirmed maintenance condition based on linear 
resonance criteria is that the lattice frequency must not be 
equal to the sum of any two phonon frequencies. 

, 

INTRODUCTION 
In the work that first considered the formation of crystals 

in “real” machines; Le., machines that allow the formation 
and maintenance of crystal, two criteria were presented. 
The first is that the machine can not be weak focusing (Le., 
a constant gradient at allt azimuths), but must be a strong 
focusing machine operating below transition [ 11. The sec- 
ond is a maintenance condition for a crystalline beam.?* It 
requires that there not be a linear resonance between the 
crystal phonon frequencies and the frequency associated 
with a beam moving through a lattice of Nz periods [2; 31. 

Previously, the maintenance condition is stated as that 
the lattice frequency must be larger than two times the. 
maximum phonon frequency, because if this condition is 
not satisfied, a linear resonance occurs and any crystalline 
beams will be destroyed. For a typical beam of high den- 
sity with near equal transverse (betatron),tunes, the maxi- 
mum phonon frequency is near fi times the higher single- 
particle betatron tune. Practically, the resonance can be 
avoided if the lattice periodicity Nz is larger than 2 f i  times. 
the maximum “bare” transverse tune. Here, we closely ex- 
amine cases from~low to high beam densityy and study in 
detail phonon modes and the maintenance condition. 

The phonon modes are evaluated first under the so-called 

*Work performed under the auspices of the US Department of Energy. 
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(1D) structure and numerically in general using the ground- 
state crystalline-beam structure, and then augmented with 
computational evaluation employing Fourier transform of 
particle trajectory simulated, with the molecular dynamic . 
(MD) method. The maintenance condition based on the 
evaluated phonon modes is shown to be in excellent agree-, 
ment with the MD simulation on the stability. 

In Sec. 2 we present the Hamiltonian employed and eval- 
uate analytically the phonon spectrum. In sect. 3 we intro- 
duce the Molecular dynamics method (MD) and employ it 
to determine, by Fourier transform, the phonon spectrum. 
In sec. 4 we confront these spectra with crystals that are 
stable, or unstable, in MD. Sec. 5 is a discussion. 

ANALYTICAL PHONON SPECTRUM 
The phonon modes may be calculated under the as- 

sumption that the external focusing is uniform in time,(the 
smooth approximation). In this case the Hamiltonian is: 

1 +Z (v,zzi + viy?) + vc 
1 1 
2 . . Iri - r j I  

where the Coulomb potential is VC = - -, 
Z f 3  

21 1’2 

2 2 Iri - rjl E Ti3 = [ (x i  - z j )  .+ (yi - yj) + (zi - z j )  

The only non-linear terms are derivatives of VC, which 
should be Taylor-expanded around the equilibrium pdsi- 
tions retaining only the linear terms. Assume that 

~i = X i  + 6 ~ 2  
yi = 5 + 6yi , 6yi = fii exp [i(wt  - k Z i ) ]  , (2) 

, 6~~ = $i exp [i(wt  - SZi)] , 

zi = Zi + Szi , 6zi = .& exp [i(wt - Mi)] . 
Assume that the unit cell length is L, and that there are N 
particles per unit cell. We obtain the linearized equations 
of motion in a circular accelerator, 

m N  

n=-m i=l 



co. N 

m N  (4) 

\-,$ where Rnij = d ( X i  - X j )  '+ (E - %)'+ (2; - Zj - nL) 
and i =' 1, . . . , N .  Also, Rnij = 0 term is excluded from,?. 
the double sum. 
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Figure 1: Dispersion function evaluated under the smooth 
approximation of two 1D crystalline beam with L = 3.0, 
1.8, and 0.96, respectively. The horizontal and vertical 
tunes are u, = 2.4 and uv = 2.2, respectively, and 
y = 1.000016. 
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For a ID chain of intra-particle distance L, N = 1 and 

0 ( X ,  Y, 2) = (0, 0, 0), the phonon bands are given by 0 1 2 3 4 
0 

1 
W f  = { u," + 0 2  + ,,/(u'2+n2)2-8n2 (u;-y2-n2)} Figure 2: Density of states corresponding to Fig. 1 evalu- 

' ated under the smooth approximation at two beam densities 
wz" = u; - n2 

1 wg = { ~ , "+0~ -4 (~2+0~ )~ -8R2  (u:-y2-02) 

with L =3.0, 1.8, and 0.96, respectively. 

the coupling in horizontal and longitudinal motion, the fre- 
quency in mode 1 can also shift upwards from the base tune 
u,. The amount of upward frequency shift reaches a max- 
imum when the density approaches the threshold of ID to 
2D transition (Fig. 2). The maximum phonon frequency for 
a stable 1D crystalline beam satisfies 

(6) 

(7) 

where 
1 - cos(knL) 

2 0  
n=l 

and IC varies from - z to z. The phonon bands satisfy 

The frequency w 2  corresponds to the motion polarized in 
y, while the frequency w 1  and w 3  correspond to the motion 
coupled in x and z directions. 

A test particle deviating from its equilibrium position ex- 
periences through' Coulomb interaction defocusing forces 
in both the horizontal (2) and vertical ( y )  directions, and 
focusing force in the longitudinal (z) direction. At a low 
beam density, the phonon frequencies in both mode 1 and 
2 shift downwards from the base tune, while the frequency 
in mode 3 shifts upwards from 0, as shown in Fig. 1, The' 
solid, black curve in Fig. 2 shows the density of states. 

When, the beam density increases, the amount of fre- 
quency shift downwards in mode 2 and upwards in mode 
3 also increases, as shown in Figs. 1 and 2. Because of 

~ 1 , 3 , m a x  I 4~; + W2,max I (8) 
The maximum frequency is achieved when k = n/L, i.e., 
when nearest-neighborparticles i and i + 1 move in the op- 
posite phase in each direction. The motion in the horizontal 
and longitudinal directions are 90 degrees out of phase. In 
the case when the equivalent focusing in the horizontal and 
vertical directions are equal, u: - y2 = u,", the threshold 
density corresponds to 

4.2 1'3 4.2 l I 3  .=(-I =(q) * (9) . 

At this density.value, the mode 2 frequency is down-shifted 
to zero when k reaches the maximum (5 = TIL). 

2 0  and 3 0  crystalline beams 
For a crystalline beam beyond lD, the dispersion rela- 

tion in general can not be solved analytically. We first ob- 



tain the equilibrium crystalline structure under the smooth 
approximation. Then, we obtain the dispersion relation and 

The strength of the 12 FODO cells are adjusted such that 
the lattice super-periodicity NZ is 12, 6, 4, 3, 2, and 1, re- 

the density of states Fig. 3 shows the density,of states of a 
series of 2D and 3D crystalline beams. The maximum fre- 
quency of the 3N phonon bands satisfies the relation 

wmax 5 J-. (10) 
Eq. 10 is expected to be a general relation independent o f .  
the choice of machine lattice. 

UN=O 76, N.2. zig-zag (2D in y) 
uN.0 5. N=4, alternating pair (30) 
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Figure 3: Density of states evaluated under the smooth 
approximation for various 2D and 3D crystalline beams. 
v, = 2.4, vy = 2.1, and 7 = 1.000016. 

PHONON SPECTRUM FROM MD 
The phonon spectrum can be directly evaluated for a 

“real” lattice without using the smooth approximation by 
the MD method, first determining the ground state and then 
evaluating the density of states in the frequency domain. 
b y  Fourier-analyzing the particle trajectory under small- 
amplitude vibration. The’agreement with those obtained. 
using the analytical method under the smooth approxima- 
tion is good (L.= 3.0 case in Figs. 2 and 4) [2,3]. 
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Figure 4: Density of states evaluated with MD using a 
“real” lattice with Nl = 3 as discussed in Section 4. 

MAINTENANCE CONDITION 
The. maintenance condition based on linear resonance 

criteria is that the lattice frequency (Nl) must not be equal 
to the sum of any two phonon frequencies. In order to ver- 
ify this condition, we study six slightly different ‘‘real’? stor- 
age ring lattices of 12 FODO cells with v, = 2.4, vu = 2.2: 

spectively. (1) With Nl = 12, the ID crystaI is stable for 
L 2 0.96. At higher densities the crystal becomes 2D and ~ 

3D. (2) With Nl = 6, the 1D crystal is stable also for 
L 2 0.96, below this value the crystal becomes 2D and 
3D. The resonance condition forbids phonon frequency at 
w1 = 3. (3) With Nl = 4, the 1D crystal is stable’only 
for L 2 2.2. At higher densities the down-shift of w2 to 2 
causes resonance. (4)+With Nl = 2, the 1D crystal is stable 
again only for. L 2 2.2. At higher densities the down-shift 
of w2 to 2 causes resonance. (5). With Nl = 1, the 1D 
crystal is stable only for L 2 3.2. At higher densities the 
up-shift of w3 to 0.5 causes resonance. 

The Nl = 3 case is worth special discussion. According 
to MD.result< the 1D crystal is stable only for L 2 3.0 
(Fig. 5). At the density of L 2 3.0, however, there is no 
power density at half of the lattice frequency, i.e. 1.5. The. 
resonance originates from the sum of the modes near w 1 = 
2.5 and w3 = 0.5 hitting 3 (Fig. 4). 
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Figure 5: 1D crystalline beam stability for the Nl = 3 lat- 
tice obtained by MD. 

DISCUSSIONS 
In this paper we have focused on the maintenance con- 

dition for a crystalline beam. We have derived the phonon. 
spectrum in the smooth approximation and then compared 
with that obtained by Fourier transform from MD calcula- 
tion. The maintenance condition based on linear resonance 
criteria is that the lattice frequency must not be equal to the 
sum of any two phonon frequencies. For crystalline beams 
of high density, this condition is equivalent to the previ- 
ously conclusion that the lattice super-periodicity must be 
larger than 2 f i  of the maximum transverse bare tune of 
the machine. 

The formalism can be applied to crystal formation in 
traps where y = 0. Similar maintenance condition holds. 
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