Beam-Beam Simulations For The eRHIC Electron Ring

C. Montag

Presented at the Particle Accelerator Conference (PAC’05)
Knoxville, Tennessee
May 16-20, 2005

Collider-Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Managed by
Brookhaven Science Associates, LLC
for the United States Department of Energy under
Contract No. DE-AC02-98CH10886

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

FOR UNCLASSIFIED, UNLIMITED STI PRODUCTS

Available electronically at:

OSTI:

http://www.osti.gov/bridge

Available for a processing fee to US. Department of Energy and its contractors, in paper from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
Phone: (865) 576-8401
Facsimile: (865) 576-5728
E-mail: reports@adonis.osti.gov

National Technical Information Service (NTIS):

Available for sale to the public from:

US. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22131
Phone: (800) 553-6847
Facsimile: (703) 605-6900
Online ordering: http://www.ntis.gov/ordering.htm
Abstract

To study collisions between polarized electrons and heavy ions at high energy, adding a 10 GeV electron storage ring to the existing RHIC facility is currently under consideration. To achieve high luminosities of several \(10^{33}\) cm\(^{-2}\) sec\(^{-1}\) range, a vertical beam-beam tune shift parameter of \(\xi_y = 0.08\) is required for the electron beam. Simulation studies are being performed to study the feasibility of this high tune shift parameter and explore the potential for even higher tune shifts. Recent results of these studies are presented.

INTRODUCTION

The electron-ion collider eRHIC [1], currently under study at BNL, consists of a 10 GeV electron ring added to the existing RHIC accelerator complex to study collisions of polarized electrons and relativistic heavy ions or polarized protons. The circumference of this electron ring is one third of the RHIC circumference. Some machine parameters of this facility are listed in Table 1.

A beam-beam tune shift parameter of \(\xi_y = 0.08\) is required for the electron beam to achieve a luminosity of several \(10^{33}\) cm\(^{-2}\) sec\(^{-1}\). These high tune shift parameters require careful simulation studies to ensure the feasibility of attaining the projected luminosity. Additionally, the unequal circumferences of the two rings lead to additional resonances that must be avoided when choosing the working point of the machine.

UNEQUAL CIRCUMFERENCES

Colliders comprised of storage rings of different circumference require careful choice of the working point of both rings to ensure stable beam operation [2]. The resonance condition is

\[
Q_1 - \frac{C_1}{C_2}Q_2 = n, \quad n \text{ integer,}
\]

where \(Q_1\) and \(Q_2\) are the fractional tunes of the two machines and \(C_1\) and \(C_2\) denote their respective circumferences. The actual width of these resonances is most easily studied by simulations. In the case of eRHIC, \(C_1/C_2 = 3\), so each electron bunch collides with three different hadron bunches.

The simulation is performed by describing both beams as rigid Gaussian bunches. One electron bunch and three hadron bunches are simulated. The beam-beam interaction is modelled as a mutual weak-strong kick, while the accelerator is described by a linear one-turn matrix. To seed the possible resonance, the electron bunch starts with an offset of 1 \(\mu\)m at the interaction point (IP), small compared to the rms beam size of \(\sigma_x = 100\) \(\mu\)m and \(\sigma_y = 50\) pm. Bunches are tracked for \(3 \cdot 10^4\) electron beam turns, corresponding to \(10^4\) hadron beam turns in RHIC. Stability is defined as no increase of the electron beam amplitude during tracking.

Taking into account both planes and setting the ion beam tunes to the current RHIC working point \(Q_{p,x} = 0.21\), \(Q_{p,y} = 0.23\), a sufficiently large region of the electron beam tune space \(0.06 < Q_{e,x} < 0.34\), \(0.05 < Q_{e,y} < 0.28\) leads to stable motion, as shown in Figure 1.

Table 1: Interaction region parameters of the electron-ion collider eRHIC.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bunches</td>
<td>120</td>
</tr>
<tr>
<td>Beam-beam tune shift</td>
<td>0.027/0.08</td>
</tr>
<tr>
<td>Damping time</td>
<td>1740/1740/870</td>
</tr>
<tr>
<td>Beam spot size</td>
<td>100/50/100</td>
</tr>
<tr>
<td>Luminosity</td>
<td>4.4 \cdot 10^{32}</td>
</tr>
</tbody>
</table>

DYNAMIC FOCUSING

With a beam-beam tune shift parameter as high as \(\xi_y = 0.08\), the beam-beam interaction has a significant effect on the entire electron beam dynamics and cannot be treated as a small perturbation. For instance, the resulting small amplitude tune \(Q\) is expressed as

\[
\cos(2\pi Q) = \cos(2\pi Q_0) - 2\xi \sin(2\pi Q_0).
\]
Likewise, the strong beam-beam lens at the IP significantly modifies the β-function at the IP, resulting in a tune-dependent β-function,

$$\beta = \frac{\beta_0}{\sqrt{1 + 4\pi^2 \cot(2\pi Q_0) - 4\pi^2 \xi^2}}.$$

The resulting β-function at the IP is therefore significantly reduced for tunes just above the integer, which provides additional focusing.

The presence of this strong beam-beam lens also modifies the entire machine optics and therefore the equilibrium beam emittance, which depends on the "curly" function $X(s)$:

$$X(s) = P(s)D(s)D'(s) + 2F(s)D'(s) + \gamma(s)D'(s),$$

where $\alpha(s)$, $\beta(s)$, and $\gamma(s)$ are the Twiss parameters at location s, $D(s)$ is the dispersion in the same location, and $D'(s) = dD(s)/ds$. The resulting dynamic emittance ϵ can be approximated as

$$\epsilon \approx \frac{1 + 2\pi \xi \cot(2\pi Q_0)}{\sqrt{1 + 4\pi^2 \cot(2\pi Q_0) - 4\pi^2 \xi^2}} \epsilon_0,$$

where ϵ_0 refers to the equilibrium emittance of the unperturbed lattice, but in fact depends rather strongly on the machine lattice [4]. For the simulation, the resulting equilibrium emittance is therefore calculated with the respective actual dynamic machine lattice for each working point.

SIMULATION RESULTS

The nonlinear eRHIC electron ring lattice [1] is optimized for a working point of $Q_x = 10$, $Q_y = 14$ and zero chromaticity in both planes. Tracking studies were performed to find the best working point for this machine, scanning tunes in the range between the integer and the quarter resonance by adjusting the main quadrupoles accordingly. For each working point the chromaticities are readjusted to zero.

The beam is represented by 100 macroparticles with a rms momentum deviation of $\sigma_p = 0.007$ and a synchrotron tune of $Q_s = 0.04$. These particles are tracked for ten radiation damping times, including quantum excitation and radiation damping. The horizontal equilibrium emittance is adjusted according to the radiation integrals that correspond to each individual working point. The vertical equilibrium emittance is assumed to be unaffected by the machine tune. The resulting equilibrium luminosity is calculated according to the obtained rms beam sizes σ_x and σ_y after tracking for ten damping times. Figure 2 shows a contour plot of the resulting luminosity in units of the nominal geometric luminosity, as a function of the working point (Q_x, Q_y).

While the luminosity generally increases with lower tunes, the coupling resonance is clearly visible in this plot, as is the 6th order resonance in both planes. At very low tunes synchrotron sidebands enhance the width of the integer resonance. However, to ensure proper matching of beam sizes of the hadron and electron beam at the IP, both planes have to be checked separately. Figures 3 and 4 depict the result-
CONCLUSION

Simulation studies show that even with beam-beam tuneshift parameters of up to $\xi = 0.08$, sufficiently large areas in the working diagram can be found that support the projected luminosity performance of eRHIC. These simulations also indicate that a luminosity significantly higher than the geometrical one could be achieved by moving the electron beam tunes very close to the integer, thus taking advantage of dynamic focusing effects. However, this results in a beam size mismatch of the two beams, which may cause emittance deterioration of the ion beam.

Based on these simulations three possible working points have been identified that promise to deliver the design luminosity without a significant beam size mismatch in either plane. These working points are around $(Q_x, Q_y) = (0.05, 0.07), (0.10, 0.14),\text{ and } (0.14, 0.07)$. These working points are further investigated in terms of non-Gaussian tails resulting from the beam-beam interaction in conjunction with quantum excitation and radiation damping [5]. According to simulations, unequal circumferences of the two rings are not much of a concern in terms of barycenter motion of the two beams, as long as certain additional resonances are avoided. The remaining stable tune space is sufficiently large to ensure stable operation of the electron-ion collider eRHIC. The location of the stable area within the tune diagram depends on the working point chosen for the ion ring. For the present RHIC working point, stable electron tunes are consistent with those found necessary to achieve design luminosity.

REFERENCES

[5] C. Montag, “Simulation of resonance streaming at the eRHIC electron storage ring”, these proceedings