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DRAFT

Neutron-proton effective range parameters and zero-energy shape dependence

R. W. Hackenburg®
Physics Department, Drookhauven National Laboretory, Upton, NY 11973
{Dated: June 14, 2005)

A completely model-independent effeetive range theory fit to available, unpolarized, np scattering
data below 3 MeV determines the zero-energy free proton cross section aq = 20.4287 +£0.0078 b, the
singlet apparent offective range r, = 2.754 £ 00,0185 £ 0,056,454 fm, and improves the error slightly
on the parahydrogen coherent scattering length a, = —3.7406 £ 0.0010 fm. The triplet and singlet
seattering lengths and the triplet mixed effective range are caleulated to be oy = 54114 £0.0015 fm,
as = —23.7153 £ 0.0043 fm, and p+(0, —e¢) = 1.7468 £+ 0.0019 fm. The model-independent analysis
also determines the zero-cnergy effective ranges by treating them as separate fit parameters without
the constraint from the deuteron binding cnergy e These are determined to be pe(0,0) = 1.705 £
0.023 fin and p. (0, 0) = 2.665+£0.056 fm. This determination of pe (0, 0) and p, (0, () is most sensitive
to the sparse data between about 20 and 600 keV, where the correlation between the determined
values of p:(0, 0) and p.{0, 0} is at a minimum. This correlation is responsible for the large systematic
crror in r,. More precise data in this range are nceded. The present data do not even determine
(with confidence) that p:(0,0) # p:(0, —e ), referred to here as “zero-cnergy shape dependence”.
The widely used measurement of o = 20.491+£0.014 b from W. Dilg, Phys. Rev. C 11, 103 (1973),
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is argued to be in crror.

PACS numbers:  13.75.Cs, 25.40.Dn, 29.85.+¢

I. INTRODUCTION

The primary goals of this article are fourfold: first,
using a model-independent analysis, to extract from the
available data the best possible values of the effective
range theory (ERT) parameters for np elastic scatter-
ing (the spin-triplet and spin-singlet scattering lengths
a; and a,, and their effective ranges r; and r,, and the
zero-energy free proton cross section oy used to obtain
those four); second, to obtain the best possible model-
independent estimate of the mixed and zero-energy effec-
tive range difference p, (0,0)—p, (0, —e;); third, to dermon-
strate that there is a range of energy most sensitive to
this difference (which turns out to be from about 20 keV
1o about 600 keV); and fourth, to demonstrate that bet-
ter cross section measurements in this range are needed
for a useful determination of this difference. The ERT
parameters (especially @g), and this difference, have con-
giderable relevance to nucleon-nucleon {NN) potential
models.

Much of the work done in studying the NN interaction
is done using models of the NN potential [1-4]. NN po-
tential models have diverse low energy applications, such
ag studies of nuclear structure [5], neutrino detection [6],
and pp weak capture [7], to name a few. NN potential
models can also determine the ERT parameters. Partial
wave analyses are used to fit the parameters of patential
models to a large body of data including high energy data
which do not bear directly on the low energy parameters.
Thug, small, unnecessary errors may be introduced into
the low-energy parameters obtained from these models.
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This is exacerbated when low energy data are omitted
from the data sets [2]. If the data set is restricted to
sufficiently low energies, where only the 5 wave ig signif-
icant, an ERT analysis yields more accurate values for
these parameters because it does not depend on mech-
anisms, nor on the shape of the nuclear potential, and
is truly model-independent. Studies of charge indepen-
dence [3, 8, 9], for example, use the np singlet parameters
determined from an ERT analysis.

Some NN potential models use the free proton zero-
energy cross section gg as an input. Many of these use
the 1975 measurement by Dilg [10], o = 20.491(14} b.
This value ig deviant from all previous values, such ag
Houk’s 1971 measurement oo = 20.436(23) b [11], but
only by about two standard deviations or less, because
of the larger uncertainties on the previous measurermnents.
Tn 1990, Koester et al [12] determined oy = 20.420(10) b,
which is in good agreemert with Houk’s result. With
that small uncertainty, Dilg’s value could no longer bhe
accepted as being within two standard deviations of all
other values. This should have laid the issue to rest,
but the Koester et al value never seems to be used. To
thig day, some works simply use the Dilg measurement
(e.g.. [4, 8, 9]), either directly cited or indirectly (e.g.,
through [13, 14]), while some include both the Dilg and
Houk measurements (e.g., [1-3, 7, 15, 16]). Meanwhile,
ununecessarily inaccurate and inconsistent values for oy,
and the resulting sets of ERT parameters, coutinue to be
used. This is especially relevant to the low energy appli-
cations of NV potential models. The Appendix attempts
to explain the problem with Dilg’s result.

The remainder of this work deals with the gimple,
model-independent world of low energy data (5 wave
only), and an ERT analysis. This work analyzes a con-
siderably larger body of data than previously used for
this purpose, and the fit uncertainties are substantially



reduced from previous determinations. Some improve-
ments have been made to the method, including the
handling of a correlation between the triplet and sin-
glet effective ranges, which does not seem to have been
previously treated. This correlation results in a sub-
stantial systematic error on the singlet effective range.
By taking p,(0,0) and p.(0,0} as fit variables, without
taking p((0,0) = p,(0, —¢,) and constraining it with the
deuteron binding energy ¢, it is possible to determine the
triplet zero-energy effective range p, (0, 0) separately from
00, —¢;) and without reference to a model. To obtain
meaningful, statistical errors for p,(0,0) and p. (0,0} as
fit variables, their correlation must be properly handled.
Such a determination of p(0,0) can tell us gomething
about shape dependence (i.e., the shape of the nuclear
potential), without any model-dependent assumptions.

II. EFFECTIVE RANGE THEORY SYNOPSIS
AND ZERO-ENERGY SHAPE DEPENDENCE

The unpolarized, elastic np cross section ¢ is the spin-
weighted sum of the noninterfering triplet and singlet
partial cross sections, thus

o =40, + 10,. (2.1)
ERT gives both the triplet and singlet S wave partial
cross sections as [17-20]
agg = 471‘/[(0.51 - %p,mkz)g + kg], (2.2)
where &g, 00, par are o, ay,p Tor the triplet and
T 5. (s, por Tor the singlet, and where a4 is the scattering
length and pgg is the effective range. The center-of-mass
{(cm.) momentum is k, with &% = 2mT (nonrelativisti-
cally), where m is the reduced neutron-proton mass and
where T is the c.m. np kinetic energy (in natural units:
h = ¢ =1). The relativistic relations actually used are
given in (3.13) and (3.14).

Equation (2.2) is exact because it defines pgr, which is
shorthand for pg(0, 7). In terms of the asymptotic (free
particle) np wavefunction vg(7T) and the exact (interact-
ing) np wavefunction ug{T"). both of which implicitly de-
pend on the neutron-proton separation r, the function
pa(Tu, Ty) i defined as [17-19]

pa(To,Ty) = 2[(11‘ [va(Toyva(Th) — wa(TyyualT)], (2.3)
Jo

where pg. g, ttg are p;, v,y Tor the triplet and py. vy, 14
for the singlet, and where T, and 7} are any two values
of the can. kinetic energy. This definition satisfies (2.2)
exactly for T, = 0 and Ty = T. The wavefunction wug,
but not vg, depends on the shape of the nuclear poten-
tial, and this shape dependence manifests itself as energy
dependence of p;. All of this concerns only the S wave,
so there is no angular dependence; the word shape refers
to the dependence on r. The uncertainty principle pro-
hibits us from probing the fine details of the potential at

low energies. Therefore, the detailed shape of the nuclear
potential can ouly have a small effect on the spectrum,
as long as k7! is much larger than the well size. Em-
pirically, we know that the energy dependence of pgy is
small, at least for low energies. The shape-independent
approzimation replaces pg with the shape-independent
effective range 74 (a constant), thus

T = 471‘/[(0.51 - %‘f‘,jk’z)g + k‘z} (2.4)

For T' = —¢4, where ¢4 is the deuteron binding energy
{e; for the triplet and e, for the singlet), we have the
mized effective range [21],

Pdm = Pd(()a _Fr)'): (25)

for which, exactly,

n.;l =g — %pmnoxf, with g = £V 2mey, (2.6)

where the positive root is taken for the triplet, and the
negative root for the singlet. The nonrelativistic form
for g 1s shown, but the relativistic form (3.13) is uged
: NN P PR ] = 2 2 —

in the calculations, with 5* = —aj and ¢y = =T. In
the shape-independent ERT, for the triplet only, p; is
taken as the constant r; = py, which satisfies (2.6) and
is determined by a;, €, and the relation

(2.7)

which follows from (2.6). Since there i3 no measurement
of €4, (2.7) cannot be used to obtain pgy,. Instead, ry
may be obtained from the three parameters «;, a,,r;, and
a measured elagtic cross section op at c.n. momentum
E. through (2.1) and (2.4).

Consider that the zero-energy effective range pgo =
pa(0,0) is a better approximation to pg = pa(0,7T) than
is pam = pal0, —eq), if shape dependence is admitred. Ar
the very least, we have limy g pgi, = pao. While pyo and
pso may be caleulated with specific assumptions of the
triplet and singlet wavefunctions or potentials, it is hoth
possible and important to extract estimates of these from
data, without reference to a model. The relation between
pdo and pgy, 18 independent of the energy T'. Define the
constant Argz such that

Pam = 2(151 (1= 1/ageq),

(2.8)

The condition Ar; £ 0 is referred to in this article as
“zero-energy shape dependence”. Although a survey of
nuclear-potential maodels exceeds the scope of this work,
these models universally predict a nonzero value for Ar,.
Given sufficiently precise measurements, Ar, can be used
to discriminate between (or ituprove) these models. As
will be geen, currently available measurements are not
quite up to this task.

Tt is of some interest to obtain €, {specifying the pole
position), which is done by solving (2.6) for €4, thus [22]

Pdo = Pam + Arg.

—1 ;
Qg = P (1 + /11— 2;),;.r,,/rmd) , (2.9)
with g following from (3.14), taking % = —a? and
eg = =T. Of course, pgm 18 not known, so r; must be

ernployved.



I1I. ERROR ANALYSIS

The measurements and their uncertainties are:

ag £éay the zero-energy elastic cross section
a. Xda, the parahydrogen coherent scattering length
oy tday the elastic cross section at c.m. momentum k.

The uncertainties dag, dea., and dop are small and in-
dependent. DBecause its uncertainty is utterly negligible
compared to the others, ¢ is taken as exact.

The zero-energy (free proton) elastic cross section is
given by (2.1), taking k£ =0 in (2.2), thus

oo = (3a] + r}.ﬁ) . (3.1)
The parahydrogen coherent scattering length is [23]
. = %a,, + %as. (3.2)

The first group of derived quantities and their uncer-
tainties are:

a, Lday the singlet scattering length
a; =Lda; the triplet scattering length
Pem TOppn the triplet mixed effective range.

These do not depend on . Ouly pg, depends on e.
The formulas determining these, r;, and r, are

o= =@ (3.3

;= % — 35 ay = E”‘" + s (3.4)

= pum + N prm = 20701 = 1aiey)  (3.5)
a (k) = 4w /(e ! - f,kz) + k2] (3.6)

Tar = 4oy — 30y (k) (3.7)

s =2k a7t + AT jog — B2). (3.3)

Equations (3.3) and (3.4} are exact, and follow from (3.1)
and (3.2). The function o;(k) is the theoretical triplet
partial cross section; it is a shape-independent approxi-
mation if ¥, is taken from (3.5). The quantity o4 is the
estimated singlet partial cross section. Equations (3.7)
aud (3.8) follow from (2.1) and (2.4), and r, 1s the sin-
glet apparent effective range.

The determination of vy from (3.8) containg contribu-
tions to its error from a,, ag, €. o, and, if using p,
(instead of pp) as vy, a systematic error from taking
Ar; = 0, and further systematic errors from ignoring
the energy dependence of pg, and pyp. The latter ay be
elirninated, in principle to within any specified precision,
by taking o) at a sufficiently low energy. The statistical
uncertainty in v, is

. Ara\° . ar\* ara\"
52— 5 24 (2} s+ [ =) o2, (3.
drs = (300> doy + (3(1(,) das + (aak) Sai. (3.9)

At thig point, Ar; 18 an unknown constant, and 1s pre-
sumed to he small. If Ay is ignored, using pp, for r,

TABLE I: The partial derivatives from {3.3) to {3.8).

O _ -1 Oy _ 1 Ors _ 1
doo S8xms daa 24ms doo ~ 12msala?
3(15_ + aaf_—a(.+1 an_ 2 fn(JrL
da,. ds do. 128 % fa. n,?rr 125 2
Dar —a} -1 1. g2 _y { Ou: 1
oo~ Zw (M TR { (aaﬂ) (a )]
e —al, _ _, 0oy Iry
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e alk? 1 5
Bar T a3

ar, _ -2 (80.3) n 127 (Bat)
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FIG. 1. Contribution to the crror ér, in the singlet apparent
effective range v, from the measurement crror dog in the cross
section o, through (9r, /0 )doy.

Curve A: o = 0.01 b, i, for fixed errors.

Curve B: dgy, = 0.003 x ay, i.c., for variable crrors, 0.3% of
cross section.

then the singlet apparent effective range obtained will be
the shape-independent. value v, = ryy, with

rs0 = pso — (075)Ar, = i py — (8rs)ar,

(3.10)

i P+ AT (’)To, 0T5
(0rs)ar, = /; dry (557‘:) B <8A"'i> i

im

Table I shows the partial derivatives of the parameters
g, g, 1, e With respect to og, ae, o, Ary. Figures 1 and
2 plot. the contributions to dr, from the errors dag, dayg,
and da,. In these figures, the curves are calculated using
the thearetical partial cross section e, (k) from (2.4).
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FIG. 2: Contributions to the error ér, in the singlet apparent
cffective range r, from the measurement crrors dog and da.
in oy and a..

Curve A: contribution from (9r,/d0g)deq, for dog = 0.01 b,
Curve B: contribution from {dr,/da,)ba., for da, = 0.001 fm.
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FIG. 3: Relative {or fractional) critical error size in the cross
secbion, defined as §own /o from (2.1), (2.4), (3.11). Mcasured
cross scetions which exceed the theoretical cross scetion by
more than this produce nonsense {complex) values for r,.

There is a eritical error size 3., which follows from
(3.8), when the expression in the radical goes 1o zero, Le.,
47 faee = k*. This occurs for o4 = a4(k) + 4000, thus

8Ty, = A7 /K — a4(K)]. (3.11)

1
1
This is plotted in Fig. 3 ag a fractional error. Cross sec-
tlon measurements that exceed the theoretical value by
more than this produce nonsense (complex) values for r,
from (3.8).

The form {2.4) yields limy o aq = 167 /r3k*, s0 the
expression in the radical of (3.8) should remain positive
as T' — oc. However, higher waves increase the cross sec-
tion relative to (2.4), and it turns out that above about
100 MeV, the apparent effective range r; cannot he cal-
culated without subtracting higher waves.

Figure 4 plots the slope dr; /OAr,, which describes how
Ar affects ryg.

The variables k, T, and T, where Ty is the neutron
kinetic energy in the frame of the proton (lab), are used
interchangeably as the indeperndent variahle in evaluating

3 N
7 f ]
EY
*§' 0_
N -1_'
4 =
g 2
v 3[
_4-
I L IIIIIIII L IIIIIIII 1 IIIIIIII
-5
102 10! 10° 10!

Neutron (lab) kinetic energy (MeV)

FIG. 4: Dependence of 740 on Arg, plotted as &, /8Ar:, from
Table I. Note: limy o Or./0Ar = —3a?/a? = 0.03564.

a, Ta, pa, etc. The mappings & < T < T} employed in
the calculations in this work are always the relativistic
ones, thus, with E = m, +my, + T,

miTL (2, + T1)

k= 3.12
(my, +my)? + 2Ty, (
k= i[Ez - Q(mi + 'm,?j) + ("m.'f1 - mg)Z/EZ] {3.13

T=vk?+mp? —m, +VE +m,? —my

Ty =TT + 2y, + 2imny) [ 2my,. {3.15

Failure to use the relativistic relations for the deuteron
binding energy results in about a 0.75 standard deviation
shift down in the triplet mixed effective range.

The masses and other physical constants used
here are from the 2004 PDG listing [24]: wm, =
938.272 029(80) MeV /¢, m,, = 939.565 36(08) MeV /2,
and fie = 197.326 968(17) MeV fm. The value used for
¢, is that from [25], e, = 2.224 366 14(41) MeV.

IV. THE FIT

Historically, the most used method for obtaining the
ERT parameters starts with a direct determination of
ag.as, and 7, (as pp,) from the three measured values
T, . €, and the equations (3.3} 1o {3.5), leaving v, un-
determined. Any single measurement of a cross section
at a nonzero energy determines r; (as rq) from the equa-
tions (3.6) to (3.8}, taking Ar, = 0. Or, ry can be de-
termined from a collection of such data using an LMS fit,
which is equivalent to a weighted average of single-point
determinations. In any case, oy and «,. have all the influ-
ence on the parameters ay, g, and py,, while the higher
energy measurements have none.

The method for obtaining the shape-independent ERT
parameters with a fit takes Ar; = 0 and r; = pyyp, con-
strained by @; and ¢ with (3.5), and then fits the three
remaining parameters, a;, as. and r4 (a8 740 ), t0 measure-
ments of @g. a., and some set {o } of measured cross sec-
tions at higher energies [26]. This determination of a,, as,



and ry differs only slightly, and not significantly, from
their direct determination, mentioned above. It is, how-
ever, more flexible in that it can determine a;, s, 7, and
rs when the measurements of oy, a.. and ¢ are singly or
jointly omitted. In particular, fitting without employing
e; permits p (0,0} {and therefore Ar;) to be determined,
and this is not otherwise possible.

The fitting algorithm is described in [27].  Cross
section measuremernts, including g, contribute terms
w X [o(fit) — o (meas)]? to 2, where w is the weight, with
w = 1/8? from the measurement nncertainty §, defined
as a standard deviation of a Gaussian distribution. Mea-
surernents of a, contribute terms w x [a.(fit) — a.(meas)]*
to y?. The number of degrees of freedom v is the number
of data less the number of fit variables, and y? = v*/v.
For independent variables and Gaussian error distribu-
tiong, the fit uncertainties are standard deviations, if
2 =1+ /2/v[28].

The correlation between the two fit parameters ¢, and
as presents a small difficulty. Two variables # and y
are substantially correlated if the increase in y2 from
a variation 4z in x can be substantially cancelled by
gome opposing variation dy in y, where §r and by are
comparable in size to the standard deviations in z and
i, or larger. When this situation exists, the fit errors
from the fitter will underestimate the uncertainties in
and y. How much the uncertainties are underestimated
depends on how large these opposing variations can be
made compared to their respective standard deviations
without x2 suffering a substantial increase from its min-
itnum. Whether variables are substantially correlatecd
with each other depends on the type, range of energy,
and precision of the data to which they are fit. To avoid
this difficulty, og, a., and ryy are taken as the fit variables,
with a; and a, following from {3.4). Measurements of a,
so tightly constrain the fit value of a,. that it is practi-
cally fixed to that of a weighted average of the ¢, mea-
surernents. The cross section measurements determine
ag and g, with the lower energy measuremernts mainly
affecting o¢ and the higher energy measurements mainly
affecting rg. The effect is that these fit parameters are
for all practical purposes uncorrelated with each other.

A. Data selection

The measurements of ¢q and . that were consid-
ered are shown in Tables 1T and III. The parameters
used for calculating the 2 values shown are the shape-
independent values from Sec. IV C, but the parame-
ters from [12], o, = 5.411(3) fin, @y, = —23.711(6) fin,
rp = 1.745(3) fin, and r; = 2.76(5) {m from [29], vield
similar y? values. One measurement of ay and two of
a. were excluded because they are substantially deviant
from most of the other mweasurements, as evidenced by
their large y? values. The value of ag from [12] is derived
(mainly) from a pair of measurements at 1.97 keV and
143 keV. Since these two points are included in the cross

TADBLE II: The g data considered for the fits. Values with

large vZ are excluded.

2

Relerence Year Ty b9 Included

{b) in [Hs?
a0 Melkonian 1949 20.360(50) 1.89 Yes
hl Ilouk 1971 20.436(23) 0.102 Yes
10 Lilg 1975 20.491(14) 19.8 No"
12 Koester 1990 20.420(10) 0.75 No*

2Error shown as adjusted by Engelke et al [31], 1963.

5%ee the Appendix.

“This value is derived mainly from a pair of cross section mea-
surements which are included in the set of cross section data, so it
would not be correct to include this value of &q.

TADBLE III: The a. data considered for the fits. Values with

large vZ are excluded.

Relerence Year e A Included
(lm} in [Hs?
11 llouk 1971 —3.7210{40 24 No
32 Koesler 1971 —3.7400(30 0.04 Yes
33 Callerame 1975 —3.7330{40 14.4 No
34 Sears 1985 —53.7406(1L1 Q Yes*

2Adjusted from Koester and Nistler [14], 1975,

section data used for the fits, it would not be correct to
also include this value of .

Total cross section data were obtained from the Cam-
puterized Index to Neutron Data (CINDA) throngh
Brookhaven National Laboratory’s National Nuclear
Data Center (NNDC) [35] and from the literature. These
data are shown in Table TV. The parameters used for cal-
culating the average y? per datum shown in Table IV are
the shape-independent values from Sec. IV C; the param-
eters from [12] yield similar x*. Data were not included
that had no stated uncertainties or large uncertainties
(more than 10% fractional error), or were from an un-
published thesis, or where the results were not expressed
as np cross sections. The neutron capture cross sections
a1 and o are assumed to be negligible and were not
subtracted from the total cross sections. Higher waves
were not subtracted. Corrections such as those for inscat-
tering, system deadtime, detector efficiency, the presence
of other nuclei, ete. are assured to have already been
made to the published data [66]. None of the data above
50 MeV were used in the fits.

Oscillations and fluctuations are evident in the data
from [51] (Clement), [55] (Foster), and [54] (Larson). An
assumption is made that these are artifacts, and that the
net effect over a large enough range is that they wash
out. The fluctuations in [51] (Clement) are quite large
for energies below 2 MeV. Although they do not exceed
the statistical errors for most of the data in that range,
this portion of the data from [31] was omitted {rom the
fits, ag 18 suggested in [51]. The data from [54] (Larson)
and [55] (Foster) seem to suffer similarly below 5 MeV,
50 this subset was also excluded. The 12 points from [51]
above 18 MeV and the 9 points from [54] above 45 MeV
have uncertainties approaching daepqy, and so were omit-



TABLE TV: The np total cross section data considered for the
fits. IV is the number of points in a publication. Values in the
average v and average uncertainty (fraction of the measured
value, standard deviation) columns are calculated from only
the data below 15 MeV, except as noted. None of the data
above 50 McV were included in the fits. Only the data up to
3 MoV were used for the main results. The parameters used
to ealeulate the average x2 are the shape-independent values
from this work.

Rel. First N Average Average Min. Max.
Author e, x: BNergy Bnergy
(perc.) {MeV) (MeV)
12| Koesler 2 0.21 2.66 0.00197 0.143
36| Kirilyuk 2 0.14 0.407 0.002 0.145
37 Fujita 1 .13 0.117 0.023645 1.023645
38]"Frisch 4 2.8 2.36 0.035 .49
39] Allen 3 2.6 0.263 0.06 0.35
40| Bailey 15 3.8 0.971 0.35 [§]
31 }'Eugelke 2 0.25 2.7 0.4926 3.186
41]" Poenile 3 0.3 2.35 0.509 2.003
42]*Cierjacks 1066 2 0.42 0.70145 31.99
43] Lampi [H 2.2 0.624 0.798 4.97
441*Clements 17 .46 4.50 0.841 19.957
45]? Fields 2 0.39 0.692 1.005 2.533
44" Phillips aT 0.72 1.91 1.053 18.556
47] Koester 2 1.6 0.963 1.3 2.1
48]*Storrs 1 0.54 0.0321 1.312 1.312
49] Schwarlz 1652 1.5 0.831 1.447 14.97
a0 Davis 27 (.94 1.45 1.5 27.515
51]°Clement, 166 (.98 1.12 2 17.976
52]*Nereson 38 10 0.0715 2.95 13.1
54" Lalmer 1 (.38 0.1438 4,748 4.748
54]° Larson 3432 1.6 0.96 5.0004 44.643
55]7 Foster 111 2.1 1.17 5.012 14.689
54 *Bralenahl 6 1.8 4 717 14.02
57 Cook 3 1.7 0.977 141 15
5817 Bowen 63 4.8 2.07 158 111.5
59]7 Pelerson 3 2.3 3.69 17.8 29
607 Groce 3 0.51 33.1 19.565 27.95
19 Wesl. ] 3 0.873 1658 a0.46
6217 Brady 3 0.7% 43.1 24 63 58.35
63]9 laylor 3 3.4 0.0302 38 153
647 Lisowski 113 1.3 23.7 39 793
57 111lman 3 6.4 4.55 475 &8

“Data not included in fits.

bEmergy as adjusted by [66].

“The data below 2 MeV and above 18 MeV are excluded.

?Data included despite the large, 10% average uncertainty; the
uncertainties appear to he overstatec.

“The data below 5 MeV and above 45 MeV are excludead.

fThe data below 5 MeV are excluded,
4Columns’ values calculated with data up to 50 MeV,

ted. The data from [38] (Frisch), [44] (Clements), [46)]
(Phillips), and [56] (Bratenahl} are substantially deviant
from the other data, as indicated by their large aver-
age 2, 80 they were excluded. Because of the apparent,
gysternatic shift in the data from [42] (Cierjacks), com-
pared to the other data, these data were excluded, de-
spite their good, average x* (which merely reflects that
the stated uncertainties are large enough to include this
ghift). There are a few publications’ data which were re-
tained, despite seeming to be substantially deviant from
other data, because they have only a few points (3 or
less). For such small statistics, the average y* per datum
ig not a reliable determination of their deviance. The
data from publications which are all above 15 MeV were
not excluded, despite the large, average y? for some. A
poor fit 13 expected for these because of contributions
from higher waves. These data do not affect the main

results, which involve only the data up to 3 MeV.

The results presented here depend on the particular
choices made in the data selection process. Several alter-
native selections were made, where the more deviant data
were not cut out. This resulted in parameter variations
not entirely in agreement with the final values from this
work. If the published uncertainties of the selected data
are not too far off from being standard deviations (as
may not be true for the excluded data), and if there are
no systematic errors which approach or exceed the given
uncertainties, then the measurements will be appropri-
ately weighted and any likely selection bias affecting the
resulting fit pararmneters will be reflected in the fit errors.

B. The § wave

The § wave partial cross section approaches a constant
in the limit of zero energy, while the partial cross sections
for the P, D, and all waves higher than 5 approach zero
in this limit, i.e., f ~ k* as & = 0, where f;, is the am-
plitude for the wave with orbital angular momentum 7.
The contributions from higher angunlar momentum waves
increase with energy, resulting in a decrease in the appar-
ent effective range r, and an increase in 2, if they are
ignored. In order to maintain full model-independence,
it is necessary to ignore the higher waves, but it is imn-
portant to justify that ignoring them is valid for a usable
range of low energy. Clearly, by ignoring higher waves, at
any energy, systernatic errors are introduced, but these
will be seen to be much smaller than the statistical er-
rors. As will be demonstrated in Sec. IV C, the need for
any wave higher than S is not apparent from the data in
the limit, of zero energy (i.e., below 3 MeV with this data
set).

Table V shows the partial cross sections, using the
dominant phase shifts from Table V of [1] at 1, 3, 10,
and 25 MeV, calculated from

gL = 727 + DA 2sin? (39 L), (40)
which includes an integration over 47 solid angle and the
statistical factor. &) L, and J are the spin, orbital, and
total angular momentum of the np system. Mixing is
ignored in (4.1). Taking into account D/S mixing (i.e.,
mixing of the L = J—1 and L = J + 1 states for J = 1),
represented by the J =1 mixing angle 1, yields

a(* S = k™2 (% €2 cos e —1— %iemﬁ‘iz)sin 229 |2+
—+ Heﬁ’sl cos22; — 1+ V2ie!Prtin) iy 90 |2) (4.2)

20200522 — 1 — /2jet0r+82)giy 2294

a(?'Dl) =7k* (i

+ %|62“§“’ 082z — 1+ %iei(rh#»ﬁz) gin 2¢; |2)., (4.3)

where d; = §(%S)) and & = 6(°D;). These follow from
Egs. (16}, (17), and (18) of [1]. Table V also shows the



TABLE V: The partial cross sections 0'(2":;+1L.1‘_) calenlated
with (4.1) from the largest np phase shifts §(°° T L,) from
Table ¥V of [1] for 1, 3, 10, and 25 MeV. The *8; and Dy
waves are treated both with £1 = 0, and with €1 from Table
V of [1] with (4.2) and (4.3). The ratios o (** 1LY /g with the
total cross scetion use ¢ from this work, The ratios do/a arce
the relative (statistical) cross section errors, from this work.

Wave 25+ )Y S35 (5L /e
2+l {degreas) (b)
Tor 1 = L Mev 7 — 4.24835 b 30 /0 = 0.00045
Lay 62.068 2.03536 0.47907
Ly —0.187 0.00003 0.00000
81, (0.006 (3.00000 (3.00G00
581 £ =10 147.747 2.22778 052436
45, £ = (1105 147.747 2.22779 0.52437
LN =0 —0.003 0.00000 0.00000
N £ = 0.1035 —0.005 0.00002 0.00001
For 1L = & Mev & = 1.62670 b 30 /0 = 0.00048

tsy 63.63 0.41862 0.25734
s —1.487 0.00035 0.00021
G 0.222 0.00004 0.00002
38, =0 118.178 1.21564 0.74730
8g) =) = (LGT2 118.178 1.21552 0.74723
RN 5 =0 —0.183 0.00002 0.00001
S0 = = 0L.672 —0).183 (.00023 (.00G1L4
For 7L = L0 MeV o = 0.93502 b do/¢ = 0.00056
L5y 5006 0.19340 0.2089%
! —3.039 0.00073 0.00078
813, 0.846 0.00028 0.00030
ig) 5 =0 102.611 0.74496 0.79673
g = = 1.139 102.611 0.74467 0.79642
RN =5 =0 —0.677 0.00011 (0.00G12
RN = = 1.139 —0.677 (3.00043 (1.00G46
For 1, — 25 Mev¥ o — (.36826 b do/a — 0.00030
L5y 5090 0.06281 017057
! —6.311 0.00126 0.00342
81y 3.708 0.00218 0.00592
R =5 =0 80.63 (1.30461 (0.82714
ig, =, = 1.793 80.63 (1.30432 (.82636
RN =5 =0 —2.799 0.00075 0.00203
&N =) = 1.793 —2.799 0.00105 0.00285

481 and 9Dy partial cross sections from (4.2) and (4.3).
Taking ;3 = 0 in {(4.2) and {4.3) yields {4.1) for hoth.
For perfect agreement bhetween the cross sections from
[1] and this work, the numbers in the last column of each
gection of Table V should add up to unity (counting the
88 and D, only for one of the twa values of £1). There
ig a small disagreement between the total cross section
from this wark and from [1], which is likely due ta the
use of the Dilg cross section there, which causes the low
energy cross sections to be increased (see the Appendix).

C. The shape-independent fits

Table VI shows the results of fits of g, ¢., and ry to
the data set. The data were selected for each fit by cut-
ting on the neutron (lab) kinetic energy at Tia, = 50,
40, 30, 20, 15, 10, 5, 4, 3, 2, 1 and 0.5 MeV. The gen-
erally too-good 2 reflect that most of the experimental
uncertainties are overestimated. To correct this, the un-
certainties from different publications would require dif-
ferent scaling factors to correct them. This is not done,
since such a scaling would be biased hy the results here,

and would guarantee a good fit even with a poor set
of parameters. It is preferred to regard the experimental
uncertainties from their respective publications as preem-
inent, and thereby retain their utility in deciding whether
or not to retain a given set of data, or whether or not the
data are well-represented by the parameters for a given
range of energy. So, the requirement for a “cood” fit, that
X2 =14 /2/v, must be interpreted somewhat loosely.
The lowest. energy fits, for data below 1.0 MeV, have very
few degrees of freedom, and are especially susceptible to
errors in this small subset of the data.

Ouly ry varieg significantly amongst the fits helow
15 MeV. The decline of vy and the increase in Xf, with
Tax above b MeV may reasonably be interpreted as be-
ing due to higher waves. DBetween 1 and 4 MeV, the
variations in fit values of ry are not quite significant.
The barely significant increase in ryg between 4 MeV and
5 MeV could possibly be due to small errors in the data
{contributions from higher waves should have the oppo-
site effect). The 3 MeV fit is in the middle of the range
over which ry is nearly constant (and where there is a
good quantity of data), and is well below the region for
which there is unmistakable evidence of higher waves.
Furthermore, the 3 MeV fit has nearly the lowest x?.
while also having nearly the smallest errors for the fit
parameters. Therefore, the best fit in Table VI is taken
as the 3 MeV fit. Variations in the parameters from the
2 to 4 MeV fits are roughly the size expected from statis-
tical fluctuations, and are not in the direction expected
for them to be due to ignoring higher waves. Therefore,
any systematic errors introduced by ignoring the higher
waves are small compared to the statistical errors. Sig-
nificant shape dependence as a function of energy (i.e.,
par 7 pan) from 0 to 3 MeV is not evident, also because
the variations are of the size expected for statistical flue-
tuations.

While these conclusions have merit by themselves, they
are closely supported by Table V. The increase with en-
ergy in the higher waves in Table V shows good corre-
spondence with the fallofl in ry in Table VI The first
partial cross section (higher than 5) ("Omparable ta the
crosg section uncertainty ig the LP, wave at 5 MeV. No
wave higher than 5 in Table V at 1 MeV regigters any
contribution greater than 2% {1/45 for the *D; wave) of
the error in the cross section. The phase shifts for 3 MeV
are not given in [1] but. a conservative estirnate. assurm-
ing the amplitudes scale like &** between 1 and 5 MeV,
and taking the geormetric average of the scaled 1 and
5 MeV partial cross sections for ' P, and ®D;, puts the
surn of those waves’ contributions at (.41 of the statisti-
cal error (standard deviation) in the 3 MeV cross section.
At 2 MeV, that contribution has dropped to (.10 of the
statistical error. The net systematic contribution from
ignoring the higher waves should therefore be much less
than half the size of the statistical errors. The rise in

rg from 0.3 to 5 MeV (ignoring higher waves should re-
duce re) is indicative of systematic errors in this range of
data. The large, systematic error an rgg obtained in the



TABLE VI: 3-parameter (shape-independent) fits.

The fit parameters are gg, 4., 70, cxcept for the last fit.

The shape-

independent singlet apparent effective range 1s 7.0 = poo — (6r:) Ar, . where (07} A, 18 the unknown systematic shift in ryo from
taking Ary = . The value of T,y shown is the highest energy in a data set. The errors on aq, 4., 7y are from the fitter,
except for the last fit; the others are propagated from the fit errors using Table 1. The fit chosen as the best fit is in boldface.

L nax {MeV) 1 ([m) o, {[m) P (0m) o (fm) oy {(b) . {[in) y 2 v
15500 a.3851{12 —23.6422(33} L.7143(16 2.54538{04 20.20932{60 —3.74343(55) 1.0734 2436
39.765 5.3013(12 —23.6506(33) 1.7212(16 2.6019{95 20.3253(61 —3.74277(95) 0.9095 2434
26,734 5.3050(12 —23 6723(35) Lrari(le 2.6440(95 20.3489(61 —3.74228(95) (L9653 2391
20.000 5.4053(12 —23.6084(34) L.7391(16 2734797 20.3973(61 —3.74130(96) (L9079 2312
15.000 5.4082(12 —23.TOR5(34) 1.7427(16 2.7646(98 20.4122({61 —3.74100(96) 0.8847 2243
10.000 5.4113(12 —23.T154(34} 1.7468(16 2.802(10 20.4287(61 —3.74087(96) 0.8433 18453

5.000 5.4128(13 —23.7T193(37) Lr4s6(LT 2.817(14 20.4361(68 —3.74053(98) (L7991 1239
4.000 5.4118(14 —23.7L67(39) 17474(18 2.786(1h 20.4313(72 —3.74059(98) (L7849 1078
3.000 5.4114(15) —23.7153(43} 1.7468(19) 2.754(18) 20.4287(78) —3.7406(10) ©.7543 818
2.000 5.4113(19 —23.T151(A4}) 1.7467(24 2.739(30 20.4283(99) —3.7408(10) 0.6703 390
1.000 5.4111(21 —23.7143(61) lorda6d(ar 2.667(52 2(].427(1Lg —3.7405%10) 1.2041 19
0.493 5.4105{21 —23 7T127(62) 1. 74h&(ar 2.574061 20.424(11 —3.7405(10) 0.7025 13
Fll g, 05, rso. Fit errors [or g and as, and propagaled errors [or oo, ac, atd peqy, are underestimated.
3.000 5.41137(65)  —23.7153(20} 1.74682(81) 2.754(18) 20.4287(31) —3.7406(14)  0.7543 818

TABLE VII: 4-parameter (shapc—dcp(!nd(!nt) fits. The fit paramcters are oo, e, pro, pso, except for the last fit. There is no
systematic shift in pgo from Ary. The fit errors for pro and pso are underestimated. This table is otherwise similar to Table VI

Finax{MeV) a¢ {Im) a. (lm}) pro (Tm) nso (fm) ap (b)Y a. (fm} XT) v
45500 5.4062(16) —22.7000{46Y) 1.a77r(37) 2.3357(04 20.4005(84) —3.7407 (10 0.8507 2435
39.765 A.4062(18) —23.7002(46) 1.5836(37) 2.3508(95 20.4010{84) —3.7408(10 0.8683 24383
20.734 A.4063(18) —23.7004(46) 1.5865(38) 2.3584(96 20.4013{84) —3.7408(10 0.8663 2390
20.000 5.4074(16) —23. 7037 {46} 1.6154(88) 2.4391(98 20.4074(84) —3.7407(10 0.8718 2311
15.000 5.4085(16) —23 TO6Y{A6) 1.6360(33) 2.4693(09 201.4132(84) —3.7407(10 0.8637 2242
10.000 A.4008(18) —23.7TL0K({46) 1.6542(39) 2.556(10 20.4198(84) —3.T406(10 0.8309 1944

5.000 A.4113(17) —23.7149(47) 1.6638(53) 2.599(14 20, 4281(87) —3.T405(10 0.7861 1238
4.000 5.4111(17) —23.7142{48) 1.6792(63) 2.623(15 20.4268(88) —3.7405(10 07770 1077
3.000 5.4110(18) —23 7141{50}) 1.7042(78 2.661(18 20.4266(92) —3.7405(10 0.7517 817
2.000 A.4108(20) —23.7T138({37) 1.671(19) 2.630(30 2004 26( 107 —3.T405(10 0.6628 389
1.000 A.4107(21) —23.7132(62) 1.57(12) 2.593(52 20.425(11) —3.T405(10 1.2452 18
0.493 5.4107(22) —23.7131(63) 1.85(16) 2.600(61 20.425(11) —3.7405(10 0.7525 12
Fll p20. peo with lixed oy, o [rom best [l of Table VI. This 1s taken as the hest shape-dependent Til.
3.000 5.4114(15) —23.7153(43) 1.7051(78) 2.665(18) 20.4287(65) —3.7406(31) 0.7511 8143

next section supports this, and, in light of that svstem-
atic error, the significance of ignoring the higher waves is
further (and drastically) reduced.

The shape-independent ERT parameters, the values of
aq and a,., and the singlet hinding energy (pole position)
are determined to be

ay = 3.4114 £+ 0.0015 fin

as; = —23.7153 & 0.0043 fm

rp = p{0, —e) = 1.7468 £ 0.0019 fin

Te =7Te0 = 2,754 £ 0018515, £ 0,036y, fin
ay = 20.4287 £ 0.0078 b

de = —3.7406 + 0.0010 fm

s = 66.25 £ 0.13 keV. (4.4)

The errors are standard deviations, although no correc-
tions have been made to account for the low value of X‘f/-.
80 the errors might be oversized hy roughly 10%. All the
errors are statistical. The systematic error shown for +,
is explained in Sec. IV D. The error shown for ¢, is cal-
culated using the larger, svstematic error on r,. None of
the other parameters have significant systematic errors.

Note that the fit value of a, is practically fixed to that
of [34], because of its small uncertainty. The fit value of
7o 18 mostly determined by the 1.97 keV measurement
from [12] and the 2 keV measurement from [36]. The ay
data [11, 31] have a fairly small effect on the fits.

A it using ag, ag, and rg, instead of gg. a., and g,
i8 shown in Table VI to illustrate the correlation be-
tween a; and o, and its effect on the fit errors, as men-
tioned earlier. The values obtained for the parameters
are the same, except that the errors for a,.a,, and pp,
are smaller by about a factor 2 (i.e., the errors for sub-
stantially correlated variables are underestimated by the
fitter). The fit error on r4 is the same in either case.

D. The shape-dependent fits

Tits were made in which r;, wag fit, rather than be-
ing taken as pgy from (3.5) with Ar, = 0. When
fit like this, r; is the triplet (shape-dependent) appar-
ent effective range, a determination of p, = p{0.0) =
limy g (0. T), and r, is the singlet (shape-dependent)
apparent effective range, a determination of py =
p:(0,0) = limy g ps (0, T), but withont a systematic con-
tribution from taking Ar, = 0. These fits are shown in
Table VII. These are called “shape-dependent” because
they are done without the shape-independent approxi-
mation g = ppm. If the data were sufficiently precise
{they are not), these fits would presumably show an en-
ergy dependence from neglecting the shape parameters
in the effective range expansion (see Sec. V), in addition
to the effects of higher waves (this is also true of ry in



the shape-independent fits). These fit values of p;p and
ps0 Appear to be significantly different from the values of
P and rg of Table VI. The values of a; and a, differ in-
significantly hetween Tables VI and VII {helow 20 MeV).
A fit varying only r, and ry, with ¢, and a, fixed to the
best-fit values from Table VI, is shown at the bottom of
Table VII, for the data up to 3 MeV, and this i3 taken ag
the best shape-dependent fit. This last fit omits the aq
and o. data, since these data have no effect on this fit.

The apparent difference in Tahles VI and VII between
the values of pr, and pr, and between ryy and pg, 18
deceiving at this point, hecause the fit values of p; and
fsn are correlated, which means that their fit errors are
underestimated. Figure 5 shows the effects on the ERT
cross section of shifting r; and rg up, separately and
in tandem, by armounts which anticipate the results be-
low. (There is no particular reason for showing r, and r,
shifted up, rather than down, which would have produced
a similar, but inverted, set of curves.) The shift in cross
section fram about 2 MeV to 10 MeV is almost negligible
if both +, and r; are shifted by those amounts. There-
fore, cross sections in that range do not tightly constrain
r; and r, if they are varied simultaneously. The shift
in cross section increases above 10 MeV, but there the
higher waves are gignificant and cannot be ignored. The
shift in cross section is larger below 2 MeV, but there are
not enough, precise data below 2 MeV to constrain r; and
T, more than they already are by the data above 2 MeV.
Thus, a substantial correlation exists between r, and rg.
This correlation is obscured when r, 13 fit with r; fixed
10 pum (constrained by ;). When =, i3 fixed, the value
of r, is much more sensitive to the data above 2 MeV, as
shown by the lower curve in Fig. 3. If the actual value of
Ay 18 sufficiently close to zero, then fixing r, to p,, with
ay through (3.5), and varying +, {as r4), will provide the
best fit values for the ERT parameters (least affected by
errors in the cross section data), but there remains an
unknown contribution to rg from either a true, nonzero
value of Ar; (shape dependence), or, from errors in the
data giving rise to a false, nonzero value of Ar; (loaks like
shape dependence). In either case, the existence of this
unknown contribution to r,g is not apparent, so long as r;
and r, are not varied simultaneously (and independently
of oy and a,).

To obtain statistically meaningful errors for the fit val-
nes of g and peq, one more type of fit is employed. The
parameters a;, ag, puo, and pso are fixed at their values
from the bottom of Table VII, and a new variable Ap,,
representing a perturbation in pyg, is introduced as the
sole fit parameter. The correlation between pgo and gy 18
given by (3.10). The change Ap, in pg needed to (sub-
stantially) cancel the effect on x% from the change Ap,
in pg is given by {(dr;/0Ar) Ap,. Throughout the fit,
pro ard pgy are varied according to

Ir,
P = P+ Apy Poo = pso T Apy <0T:,> . (4.5)

With this prescription, Ap, fits to a value of zero, bur

0.005 TT[TIT T [TIT [ TT T [TT AT [TIT [ TT T [TIT [ TIT [ Tl

|

0.000

-0.005

Cross section shift (b)

-0.010
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FIG. 5: The effects on the ERT cross section of shifting ry up
by 0.023 fm and r,; up by 0.056 fm, scparately and in tandem.
Line at zero: ERT cross section, using the shape-independent
parametoers from this work.

Lower curve: only r, is shifted.

Middle curve: re and r; shifted in tandem.

Upper curve: only e is shifted.

its fit-error is not zero, and is correctly determined as
a standard deviation if the errars in the data follow a
Gaussian distribution and if v2 = 1 £ /2/v. The mean
value of drg/OAr; is 2.3729, using the data of the best
shape-dependent fit. at the bottom of Table VII. The
fit hag y2 = 0.7502, with v = 816. The fit-values from
Table VII and the fit-errors from this Ap, fit, propagated
through (4.5) for pj, and pl,, are

o = (0,0) = 1.705 £ 0.023 fm
0 = ps(0,0) = 2.665 = 0.056 fm
Ary = pro — prm = —0.042 £ 0.024 fm.

(1.6)

With these uncertainties. which are considerably larger
than those from Table VII, the differences between pim
and pyy and between ro and pg are not quite significant,
being less than two standard deviations apart. The sta-
tigtical error on py is taken as the systematic error on
ry due to ignoring Ar,.

V. DISCUSSION

The zero-energy shape dependence considered here
(which is independent of energy) must be distinguished
from the shape dependence which is more generally spo-
ken of {which is dependent on energy). The (old) effective
range expansion [17, 26, 67, 68] 13

keotdy = —(L(;l -+ %p(mkz — Pyl kt + . 5.1
The CFS [69] form is [26, 28, 67, 68]
Ecotd; = —agl + %ﬂdokQ - ])czkf4/(1 + qdkg)- (5-2)

The Bethe equation is

Ecotdy = —a{;l + %pdgskz, (5-3)
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FIG. 6: Differences between the measured ap total cross see-
tions for the data below 1 MeV used in the fits, and the ERT
calculation (measured - calenlated).

Reference line at zero: Paramectors from (4.4).

Lower curve: vy = pyyp, + 0,023 fm and ry = ryp 4+ 0.056 fm.
Upper curve: e = prn — 0.023 fm and ry = v — 0.056 fm.
Data: [12] {Kocester), [37] {(Fujita), [31] (Engelke), [41]
{Pocnitz), [36] (Kirilyuk}, and [43] (Lampi). The data which
arc off-scale are not shown (ef. Table IV).

which is exact, with pgr = pa(0,T). Then

par = pao — 2pak® /(14 qak™) (
far = pam + Arg — 2pri‘lfQ/(]- + (Iclkz)! (

4)

5)

ks S g §

using (2.8). The large, uncertain value of Ar, deter-
mined here suggests that determinations of the spin-
triplet shape-dependent coefficients 4 and g may suffer
from considerable systematic errors, especially because
Ary (as determined here) almost certainly represents er-
rors in the data.

Remark on effective range expunsions: The series (5.1)
is not. a theoretically justified form, and suffers from con-
vergence problems, which the CFS form avoids. Whether
a series such as (3.1) converges well enough depends on
the range of energv and the precision of the available
data; their coefficients are inherently dependent on the
range of energv of the data, and have no physical sig-
nificance. Historically, expansions in k? originated when
high energies were not available and convergence was not
an issue. Their continued, widespread use may have to
do with the misconception that the &2 term in the Bethe
equation is the first-order term in a k2 expansion, which it
is not; the k? term has an eract origin in the Bethe equa-
tion [17]. The effective range should never be expanded
in a k? series.

Figure 6 emphasizes how poorly determined are pjq.
ps0, and therefore Ar;. by the data available. Whether
the reference line or one of the curves fits the data better
can hardly be decided. The maximum separation be-
tween the upper and lower curves occurs at 131 keV; a
simultaneous determination of pyy and pgg I8 most sen-
gitive to a measurement at this energv. The sensitivity
falls to half-maximum at 23 and 620 keV. Figure 6 shows
that the useful data hetween 23 keV and 620 keV are very
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sparse. More precise data in this region would greatly
improve the gituation: a single cross section with a pre-
cision of 0.4 mb vear 131 keV would reduce the errors
on pg and Ary to about 0.001 fin. As it stands, Ar, is
more a measure of errors in the data than a measure of
zero-energy shape dependence.

Potential models predict various differences between
2:(0,0) and (0, —¢;), and there is much to be gained
from comparing such predictions with the experimental
difference, as obtained by the model-independent analy-
sis described here. For the present, Ary is insufficiently
well-determined to be of any use in such a comparison.
The mutual relation, or correlation, hetween experimen-
tally determined values of pg(0,0) and p,(0,0) has a
mutually degrading effect on their determinations, and
therefore also on Ary = p(0,0) — p (0, —¢;). The im-
proved low-energy cross section measurements required
to overcome this degrading effect, in order that this anal-
vsis may bear its full fruit, are not exceedingly difficult
to make, nor costly, and may have lacked only a motive
to make them. [t is hoped that thig motive is now pro-
vided, and that this old well is not quite so dry as may
have been supposed.
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APPENDIX: THE ZERO-ENERGY FREE
PROTON CROSS SECTION AND THE DILG
MEASUREMENT

Consider a neutron beam scattering on a proton tar-
get. The cross section o as given by (2.2) with (2.1) is
the free proton cross section, which is the elastic cross
section which would be measured if the struck protons
were not bound in molecules. The zero-energy free pro-
ton cross section ay is given by (3.1). For neutron ener-
gies well above the vibrational level-spacing, the inelastic
molecular contributions from vibrational excitations can
be handled by introducing a molecular-vibration correc-
tion factor [70-72]. The total cross section becomes

ot = a1+ A/T0) + (0 — o) + oan1 (A1)
The (m — o) term represents the change in cross section
with neutran (lab) kinetic energy Ty, from (2.2). a4
is the M1 radiative neutron capture cross section. The
parameter A is a function of the molecular makeup, and
it depends on the temperature. The parameter A may
be nearly constant over some ranges of energy, but gen-
erally depends on the energy in a manner which requires
a substantial theoretical effort to predict. In measure-
ments of the cross section, A is determined by a fit to a



subset of the data which is well-described by a constant
A. While the fit value of A for a given target composi-
tlon at a given temperature shows reasonable agreement
with theory {when calculations exist), the agreement is
not generally excellent, and it is the fit value of 4 which
ig emnploved in the reduction of the data to determine oy.
The top two entries in Table IT were obtained with this
technique.

If the data set is restricted to energies sufficiently above
molecular binding energies, the proton can be treated as
free, and @y obtained by extrapolating (or fitting) with
(2.4). If the energies are low encugh such that the un-
certainties in the effective ranges hawve little effect on the
result, the extrapolation does not contribute significantly
to the error. The last entry in Table IT and the result
from this work both fall into this category.

The Dilg measurement of oy [10] used an energy at
which the molecular correction term opd/Tp in (A1)
gshould be small but not quite negligible, and should
nearly cancel with the (¢ — oy) term. The result in [10]
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follows from measurements on water and three hydrocar-
bong at a single energy, 132 eV. There was, therefore, no
way of determining A4, as was done in [30] and [11]. In-
stead, 4 was estimated for each target from values taken
from the literature, which described scattering on wa-
ter and benzene at energies from about 1 to 15 eV, The
resulting corrections were extrapolations to 132 eV,

The Dilg &g is unique in that it is the only measure-
ment which required molecular corrections to be made
but did not obtain them as part of the experiment. If
the molecular carrections for the different targets were
underestimated, the resulting value for oy would be too
large (and the error too small), which seems to be the
case. All other experiments, whether requiring molec-
ular corrections or not, have produced results in good
agreement with each other, and this includes fits to the
low energy measurements above 2 keV. It is inconceivable
that the Dilg result is correct while all others are not, es-
pecially in light of its unique handling of the molecular
corrections.
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