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Abstract 
 We determine the impedance of a cylindrical metal 

tube (resistor) of radius a, length g, and conductivity σ , 
attached at each end to perfect conductors of semi-infinite 
length.  Our main interest is in the asymptotic behavior of 
the impedance at high frequency, .  In the 
equilibrium regime, , the impedance per unit 
length is accurately described by the well-known result 
for an infinite length tube with conductivity 

ak /1>>

gka <<2

σ .  In the 
transient regime, , we derive analytic 
expressions for the impedance and wakefield.   

gka >>2

INTRODUCTION 
We consider the longitudinal impedance of a cylindrical 

metal tube (resistor) of radius a, length g and conductivity 
σ attached at each end to perfect conductors of semi-
infinite length (Fig. 1).  At high frequency there are two 
regimes: (i) When the Rayleigh range  corresponding 
to the tube radius is short compared to the resistor length 
g, the field pattern settles into an equilibrium in which the 
field is continually being eaten at the resistor while it is  

2ka

being replenished on axis by the deceleration of the beam 
[1]. In this case, the impedance per unit length is well 
approximated by that of an infinite length tube with 
conductivityσ  [2-6].  (ii)  When the Rayleigh range  
is short compared to g, equilibrium is not reached and the 
impedance per unit length differs from that of an infinite 
tube.   

2ka

   Within the framework of the diffraction model [1], we 
have the following picture.  When the electromagnetic 
field carried by the relativistic charge passes by the point 
of discontinuity in conductivity, a diffractive wave is 
emitted, traveling a distance kz / towards the cylinder 
axis as the wave propagates a distance z in the axial 
direction. The equilibrium regime corresponds to the 
diffractive wave reaching the axis when gz << .  The 
transient regime corresponds to the diffractive wave not 
reaching the axis until gz >> . 

 
Fig. 1: Cylindrical tube of radius a, having finite 

conductivity in a section of length g.   
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   In this paper, we present an analytic description of the 
impedance in the transient regime. Our discussion is 
complementary to the recent work of Ivanyan and 
Tsakanov [6].  A more comprehensive discussion of much 
of the work described here can be found in ref. [7]. 

EQUILIBRIUM REGIME  
Let us write the impedance in the form, 
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Branch cuts are chosen such that ( ) ( )kZkZ ss *=−  and 

( ) ( )kgaZkgaZ ,,*,, |||| =− . When and , 
the impedance per unit length is well approximated by 
that of an infinite cylinder with conductivity 

1>>ka gka <<2

σ [2-5], 
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where  is the characteristic length discussed in [3-5], 0s

                         
3/1

0

2

0
2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

σZ
as .                                 (4) 

The wake field determined from the real part of the 
impedance via, 
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can be expressed as [3]: 
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is plotted in Fig. 2. ( ) 10 =+∞W  and 
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      Fig. 2. The function   defined in Eq. (7).                                           ∞W                                        

DERIVATION OF INTEGRAL EQUATION 
Our analysis [7] of the impedance of a finite length 

resistor is based on an integral equation for the 
longitudinal electric field in the resistor. In the transient 
regime, the kernel of this equation can be simplified, and 
analytic asymptotic results obtained.  In the general case, 
the integral equation can be solved by expanding the field 
in a Fourier series in the axial coordinate z, and deriving 
an infinite set of linear algebraic equations for the Fourier 
coefficients.  Truncating these equations by keeping only 
a limited number of Fourier components, the equations 
can be solved numerically [7]. 

Assuming all time dependence is given by ( )tjωexp , 
the fields in the tube can be expressed as: 
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where 22 qkK −= . The resistive boundary condition 
is taken to be 
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Using Eqs. (8) and (9) in (10), we find the integral 
equation 
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with   and  2222
ss akb µ−= ( ) 00 =sJ µ .  The impedance 

is determined by 
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 TRANSIENT REGIME 
    When and , the kernel can be 
approximated by [8] 
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In this case, the integral equation (6) becomes 
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Iterating the kernel, we find the solution 
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We can also express the function h in terms of the 
imaginary error function 
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The impedance is given by 
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Performing one of the integrations, we find 
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and we have introduced the new length scale 
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WAKEFIELD 
The wakefield can be expressed in terms of the real part 

of the impedance using Eq. (5).  When 0ssg < , the 



impedance of Eq. (22) is a good approximation [7] over 
the wide range of frequencies given by the inequality 

, including values with   as 

well as .  In this case we find, 
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with (see Fig. 3) 
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The behavior for small argument is given by 
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and the behavior for large argument by 

         ( ) ( )∑
∞

= + ⎟
⎠
⎞

⎜
⎝
⎛ +Γ

+Γ−
≈

0 2/3 2
2

2/3
2
1

n n
T n

nW
α

α .                     (28) 

1 2 3 4 5 6
sêsg

−0.4
−0.2

0.2
0.4
0.6
0.8

WT

 
   Fig. 3. The function  defined in Eq. (27). TW

DISCUSSION OF RESULTS 
   When the Rayleigh range of a mode with wave 

number k and radius a is large compared to the length of 
the resistor ( )gka >>2 , the behavior of the impedance 
can differ significantly from that of a resistor of infinite 
length.  A new length scale  [Eq. (24)] enters the 

problem.  For , the longitudinal impedance is 
given by the low frequency resistive wall impedance, 
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For , the high frequency asymptotic behavior  
can be shown [7] to be twice that given by the diffraction 
model impedance [1-2, and references there] for a cavity 
of length g in a beam pipe of radius a, 
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                        ( ) ( )
k

g
a

Z
jkZ

ππ2
2

1 0
|| −≅ .                  (30)                                                 

   The low frequency resistive wall impedance cannot 
continue to very high frequencies because the 
corresponding negative wakefield would result in 
acceleration of the particles trailing immediately behind 

the leading particle [2]. Eq. (30) yields a proper retarding 
wakefield immediately behind the leading particle. 
Therefore, it is reasonable that at some sufficiently high 
frequency the diffraction-model-like behavior becomes 
dominant. The value of k for which the magnitudes of the 
two asymptotic forms given in (29) and (30) become 
equal is (up to a constant of the order of one) the inverse 
of the characteristic length scale . gs
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