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CONTROL OF DYNAMIC APERTURE FOR 
SYNCHROTRON LIGHT SOURCES* 

J. Bengtsson# 
BNL/NSLS, Upton, NY 11973, U.S.A.

Abstract 
A summary of how modern analytical- and numerical 

techniques enable one to construct a realistic model of 
state-of-the-art synchrotron light sources is provided. The 
effects of engineering tolerances and radiation are 
included in a self-consistent manner. An approach for 
utilizing these tools to develop an effective strategy for 
the design- and control of the dynamic aperture for such 
dynamical systems is also outlined. 

INTRODUCTION 
The dynamic aperture (DA) problem dates back to the 

design of the first strongly focusing synchrotrons. The 
classical approach is based on [1, 2]:  

  harmonic analysis of the periodic Hamiltonian, 
  identification of the slowly varying terms, i.e. 

structural resonances, and 
  first- and second order perturbative solutions of 

the equations of motion. 
The strategy has been to reduce the: 

  driving terms for the structural resonances, 
  momentum dependence of the optics functions, 
  tune shift with amplitude, 
  and nonlinear chromaticity 

by minimizing some heuristic merit function. However, 
due to the complexity of a realistic model, analytical 
studies are in general limited to a simplified model that: 

  ignores the effects of engineering tolerances and 
radiation. 

  is qualitatively different from the model used for 
numerical simulations. 

A more comprehensive treatment requires a change of 
mindset, from Hamilton’s equations to the Poincarè map, 
i.e. represented by a Lie series with the generator a power 
series in the multipole strength [3]. In particular, early 
work at the SSC used the rms variation of the linear 
invariant- and tune shift with amplitude to guide the 
design. This was initially accomplished by numerical 
simulations [4], but eventually advanced to a 
corresponding analytical model; including the effects of 
engineering tolerances and orbit [5]. 

CHROMATIC CORRECTION 
Traditional design guidelines for (linear) chromatic 

correction are: 
I. Avoidance (weakly focusing rings with high 

periodicity): with two chromatic families and a 
choice of working point away from structural 
resonances. 

II. Anti-symmetry (strongly focusing large rings) e.g. 
[6]: introduce pairs of sextupole separated by 
modulo-π in horizontal- and vertical phase 
advance. 

III. Second order1 achromat (strongly focusing periodic 
rings) e.g. [7]: introduce a unit cell with phase 
advance such that the second order geometric 
aberrations are cancelled over N cells.  

A robust DA has been achieved for the SLS which has: 
  a low emittance lattice, 
  with strongly focusing optics, 
  but only 3-fold periodicity (due to the short-, 

medium-, and long straights), 
through the generalization of the achromat guideline (III) 
above by careful modeling- and control of the [8-14]: 

  first- and second order sextupolar modes, 
  tune shift with amplitude, 
  non-linear chromaticity, 
  orbit in the sextupoles, 
  and engineering tolerances. 

The dynamical model is based on the Hamiltionian [10] 
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with the phase-space coordinates 
[ ],,,,,, 0 tcpypxx yx .= δr

 
and multipole expansion of the magnetic fields 
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obtained by the simplifications2: 
  the ultra-relativistic limit ( 8.0c ): E=δ , 
  piece-wise constant fields, i.e. no fringe-fields3, 
  δ can be treated as a slowly varying parameter4. 

Numerical evaluations (TRACY-2) are implemented by 
[15-18]: 

  a 4th order symplectic integrator, 
  with classical radiation modeled by modifying 

the kick5, 
  a Galilean transformation before- and after each 

element to introduce misalignments, 
  and first order6 Truncated Power Series Algebra 

to obtain the corresponding (linear) maps  
to calculate lattice functions, radiation damping, 

#bengtsson@bnl.gov 
*Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886. 

1 In the phase-space coordinates. 
2 For medium size rings (~102 m) at ~3 GeV, not expanded in δ. 
3 This leads to a small error in the (linear) chromaticity. 
4 The adiabatic approximation. 
5 By generalizing from a Hamiltonian- to a vector flow. 
6 For numerical efficiency. 



equilibrium emittance, and tracking; with a self-consistent 
treatment of engineering tolerances and radiation. 

In the pursuit of lower emittance, the NSLS-II 
requirements are pushing the envelope to a level where 
considering effects up to 2nd order is no longer sufficient. 
In particular, tune shift with amplitude up to 3J  (to 6th 
order in the sextupole strength) needs to be considered. 
Accordingly, the analytical framework has been extended. 

“CONTROL THEORY” FOR THE 
DYNAMIC APERTURE PROBLEM 

An intuitive7 approach to control the DA based on the 
(formal) Lie series representation of the Poincarè map has 
been pursued [10] 
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 In other words, the one-turn map is factored into: 
1. A (linear) transformation to normalized phase-

space, 
2. a single,  non-linear kick (by parallel-transport of 

all the thin kicks to the start of the lattice), 
3. and a major- and minor phase-space rotation. 

It is clear that the general stability problem depends 
strongly on: h, RR .o , and the initial conditions. 
Intuitively, one may argue that the DA can be improved 
by bringing the map closer to the linear approximation 
(for which stability has been established as part of the 
optics design) by: 

  reducing the magnitude of the power series 
coefficients for the Lie generator h, 

  and re-optimizing the working point RR .o . 
The non-linear effects generated by the sextupoles 

introduced for (linear) chromaticity correction are: 
  27 geometric modes to 3rd order see Table 1. 
  12 tune shift with amplitude terms to 6th order, 
  and 13 chromatic terms to 6th order 

for a total of 52 terms. 
 

Table 1: Sextupolar Geometric Modes to Third Order. 
h nx,y         
h 3 1,0 3,0 1,-2 1,2      
h 4 2, 0 0,2 4,0 0,4 2,-2 2,2    
h 5 1,0 3,0 1,2 1,2 5,0 1,4 1,4 3,-2 3,2

 
To optimize the DA for NSLS-II the following approach 
is applied: 

1. Start from the 2 chromatic families. 
2. Cancel the first order generators by symmetry, 

according to guideline (III) above, see Table 2. It 
follows that a robust design requires a cell with 
flexible optics. 

3. Extend to 9 families so that the working point 
can be adjusted without exciting the first order 
generators. Then include the higher order terms, 
i.e. one obtains a 952 ⋅  non-linear (6th order) 
system for the appropriate sextupole strengths. 
Solve the system, in a least-square sense, by 
introducing a suitable set of weights; obtained, 
heuristically, from tracking. 

4. Optimize the tune by selecting a grid of working 
points, and for each point: 

a) adjust the cell phase advance with the 
quadrupoles in the straights, i.e. 
ignoring the perturbations on the beta 
functions, 

b) determine the sextupole strengths by 
minimizing the 952 ⋅ system, 

c) and evaluate the DA in normalized 
phase space by tracking. 

5. Move to the desired working point by re-
optimizing the cell optics. 

6. Iterate. 
 
Table 2: Canceling of the First Order Sextupolar Modes. 

Cell . x,. y 2. x 2. y . x 3. x . x-2. y . x+2. y

1 8/5,3/5 3.2 1.2 1.6 4.8 0.4 2.8 
2  6.4 2.4 3.2 9.6 0.8 5.6 

…        
5 8,3 16 6 8 24 2 14 

 
Remarks: 

1. It is feasible to minimize the highly over 
constrained non-linear system of equations only 
because: 

a) the higher order terms are generated by 
cross terms (commutators) of the lower, 

b) and the initial system had all the first 
order terms cancelled by symmetry. 

2. The second order chromaticity [10] 
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depends strongly on the sextupole location as 
shown in Figure 1. Similarly, δ.⇓ .. xyx, needs 
to be considered as well. 

3. Because low emittance lattices tend to have a 
small (linear) momentum compaction 1α , they 
have the potential to generate “alpha-buckets” 
[19, 20], i.e. 2α needs to be controlled in order to 
maintain the RF bucket. Figure 2 and 3 shows a 
validation of our numerical model against the 
analytical. Moreover, due the non-linear 
dynamics, it is important to track for at least one 
synchrotron oscillation, with radiation, to 
determine the actual momentum aperture. 7 Since the KAM theorem only applies for miniscule perturbations, i.e. is 

of limited use for the design of a strongly non-linear system. 



4. Frequency Map Analysis is a valuable technique 
for analyzing the phase-space structure [21], 
which may be applied to gain better insight into 
how to adjust the weights in the merit function.  

 

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0  5  10  15  20  25  30

[m
]

s [m]

.⇓/.δ⋅.

.⇓ x/.δ⋅. x

.⇓ y/.δ⋅. x

 
Figure 1: Second Order Chromaticity: δ⇓. .. yxx , . 
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Figure 2: Longitudinal Phase Space for NSLS-II 

(analytical model: 3
2

4
1 104.1 ,107.1 −− ⋅=⋅= αα ). 
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Figure 3: Longitudinal Phase-Space for NSLS-II 

(TRACY-2 with radiation). 

LOOKING FORWARD: 
MODULAR OPTICS 

For the design of a high performance lattice, the 
different requirements for: 

  low emittance => large natural chromaticity => 
strong sextupoles, 

  high brightness insertion devices => low beta, 
  robust injection => high beta, 
  robust DA => carefully selected cell phase 

advance and working point, 
  low emittance => low 1α => control of 2α , 
  … 

are likely to produce a set of conflicting constraints on the 
optics. An approach to decouple these would be to 
implement a modular lattice design. In particular [22]: 

  a straight section tailored for injection, 
  and a phase trombone for adjusting the working 

point [23] 
will be introduced to simplify the control of the optics. 
This approach may enable the optimization of a robust 
high performance lattice and facilitate the commissioning 
of the real accelerator. 
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