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Non-Scaling Fixed Field Gradient Optimization . 
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Abstract. Optimization of the non-scaling FFAG lattice for the specific application of the muon 
acceleration with respect to the minimum orbit offsets, minimum path length and smallest 
circumference is described. The short muon lifetime requires fast acceleration. The acceleration 
is in this work assumed to be with super-conducting cavities. This sets up a condition of 
acceleration at the top of the sinusoidal RF wave. 

Keywords: Fixed Field Alternating Gradient. 
PACS: 29.20 

INTRODUCTION 

A field of the fixed field alternating'gradient (FFAG) accelerator has been recently revived. After 
the Proof of Principle (POP) proton FFAG accelerator was built at the KEK, JAPAN [l], additional 
designs and machines followed. The original scaling FFAG designs, in early fifiies [2] ,  and electron 
demonstration ring built by M U M  group in Wisconsin, USA had been abandoned until resent revival, 
especially in Japan. The revival comes due to many reasons although advancements in the magnet 
design and accelerator physics computing tools might be the most important ones. The first past of this 
report is mostly oriented on muon acceleration, one of the possible applications of an FFAG accelerator, 
while in the second part a medical application of the non-scaling FFAG for the proton therapy is 
presented. 

Muons have very short lifetime. The fast muon decay requires fast acceleration. The tunes and 
momentum compaction during acceleration do not change in the scaling while in the non-scaling FFAG 
design they vary between half-integer and zero in each cell. This is a major difference between the two 
designs. Due to tunes variations resonances will be crossed. This should not represent a serious problem 
for muons acceleration as the number of turns is -8-15 the accelerators is considered. The beam orbits 
of the scaling FFAG during acceleration are parallel to each other and the size of curvature radius 
follows the energy. A significant opposite bend (-1/3 of the major bend) is a necessary part of the non- 
scaling FFAG lattice. The present scaling FFAG designs reduced significantly the maximum orbit 
offsets with respect to the original designs, but they still require very large magnets. The cyclotrons are 
more compact, but with enormous size of the magnet with respect to the scaling FFAG. In the non- 
scaling FFAG, due to much smaller orbit offsets during acceleration, size of the magnets is significantly 
reduced. In addition, for the same value of the bending field, the non-scaling FFAG has a smaller 
circumference, due to a smaller size of the opposite bend. In this report the non-scaling FFAG examples 
are made for muon acceleration in a range between 10 GeV and 20 GeV. The acceleration is assumed 
by the super-conducting cavities with a frequency of -200 MHz. Due to difficulty of frequency change 
in the super-conducting RF the muon acceleration has to be performed at the top of the sinusoidal 
function. This limitation requires a small difference in the path length for muon beam within the 
required energy range. A nonlinear behavior of the RF wave at the top of the sine function will 
introduce distortions of the buckets. The smaller the path length differences for different energies, the 
smaller are distortions of the buckets. 

The momentum compaction shows a linear dependence on momentum in the non-scaling, while it 
has a constant value at the scaling FFAG lattice. As explained later, this implies that the path length 



difference has a parabolic dependence on momentum. The momentum compaction is set to be zero 
around the central momentum of the acceleration range. 

The second part of the report shows a possibility of accelerating protons without necessity of 
accelerating at the top of the RF wave but using the linear region and regular cavities with possibility of 
frequency variation. The resonance crossing becomes now very important if the time spent at the 
resonance is long enough. 

BASIC PRINCIPLE OF THE NON-SCALING FFAG 

The orbit offset, Ax, in the radial direction of an accelerator, has a simple relation to the dispersion 
function: 

(1) AX=D,--, @ 
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The momentum variation is defnied as S=Ap/p=(P -po)/po. The smaller the dispersion functioii is 
the smaller the orbit offset. A motion of particles with a momentum offset with respect to the reference 
momentum po is described, to the lowest order in 6, by the second order inhomogeneous differential 
equation: 
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When there is no bending the dispersion behaves as a harmonic oscillator. The dispersion function in a 
lattice is best described in the “normalized dispersion space” [3] where the coordinates are defined as: 

D CXD e=- and x = D ’ f i + - - .  fi fi (3)  

The vector x represents in the thin lens approximation a dipole “kick” where the bending angle of the 
dipole is equal to a change of the slope of dispersion function 8=D, ’. The normalized dispersion vector 
rotates around the origin at the places where there is no bending and the angle of that rotation represents 
the betatron phase. Minimizing the normalized dispersion vector reduces the amplitude of the 
dispersion function and the effect of dispersion on the particle motion. The “noimalized dispersion” 
within a single non-scaling FFAG cell is presented in Fig. 1. The square of the two normalized 
dispersion vectors represents the dispersion ‘action’ H i s  described as: 

In the normalized dispersion space the square rot of the ‘action’ vector The minimum emittance 
lattice for the electron storage rings has been previously very well analyzed [4]. A definition of the 
average value of the dispersion action <H> and conditions for its minimum are presented by equation 
(5). The result is the lattice with smallest emittance for the electron storage ring: 

d d 
---<If> = 0, -<If> = 0 , (5) 

<H>=-JIf(s)ds,  l L  
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It follows that the smallest average value of the dispersion action H is obtained if the small values of the 
horizontal betatron hnction and dispersion are placed in the middle of the bending elements. 

The variation of the path length is defined as: 



Lowering the dispersion function will reduce the path length. 
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FIGURE 1. The normalized dispersion function within a non-scaling FFAG cell for muon acceleration. 

The conditions for the minimum of <H> by the equation (5) had been applied [5] for the non- 
scaling FFAG lattice constructed by the principle of the minimum emittance electron storage ring. The 
non-scaling FFAG lattice was used for the muon acceleration' in 1999. This first "triplet" design 
contained: regular bends in the middle of the cell, focusing and defocusing quadrupoles and sextupoles. 
The lattice solution analyzed in the present report is a result of the significant improvements of the 
design above. Number of different elements and non-linear sextupole magnets were removed which 
resulted at the end with only two kinds of magnets. Continuous improvements during the last few years 
of this design had been reported during many FFAG workshops. 

OPTIMIZATION OF THE PARAMETERS 

The optimization of the non-scaling FFAG muon acceleration is based on few specific requirements: 
1. Super-conducting RF cavities for acceleration: Acceleration by the re circulating linac was 

found to be very expensive due to high RF cavity cost. Larger number of passages through the 



same cavities would reduce the cost. It is assumed that the W is made of super-conducting 
cavities and that the fast frequency variation is not available. The acceleration is assumed to be 
at the top of the RF sine wave. This sets a requirement for the smallest possible difference of the 
path length for different energies, to allow larger number of turns and smallest distortions of 
buckets due to non-linear wave function. 
A requirement of two meters long drift space for a single super-conducting cavity. 
The path length at the lowest should be equal to the path length at the highest energy. 
Small orbit offsets will reduce magnet cost due to smaller aperture size. 
The betatron tunes during acceleration should not cross half or full integer within a single cell. 

2. 
3. 
4. 
5. 

THE BASIC CELL 

The non-scaling FFAG lattice consists of only two types of combined function magnets: in the 
middle of the cell is a defocusing combined function magnet producing the major bending of the 
particles. It is surrounded by two focusing combined function opposite bending magnets with a small 
distance between. The two meters large drift is placed between the two focusing combined function 
magnets. The betatron functions at the reference momentum and elements are presented in figure 1. 

r; 
10 

8 

6 

4 

2 

0 0.20 

FIGURE 2. The horizontal and vertical betatron functions in the basic cell at the reference momentum. The 
dispersion function is shown in the lower part of the picture. 

The minimum of both: the horizontal betatron and dispersion functions are designed to be in the middle 
of the major bending combined function element. The vertical aperture is defined by the maximum 
value of the vertical betatron function. 



CONDITIONS FOR THE MINIMUM OF <H> 

I 

The central bending element in the design is a defocusing combined function dipole. The conditions 
for the minimum of the average value of the <H> are shown by the equation (5). The dispersion action 
H for the defocusing combined function central magnet is: 

The Do’ and Po are dispersion and the horizontal betatron function at the center of the magnet. The 
average value of the <H> function through the half of the combined function dipole is: 

The parameter q is defined [4] as q=L K’”. Conditions for the smallest <H> are: 

Do = 
2L6 - sinh 
q3 
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(9) 

An example of the non-scaling FFAG was produced’by applying the conditions provided by the 
equation (9). This result is presented in TABLE 1. 

Table 1. The path lengths, orbit offsets, tune range, D,,,, and 0& dependence on Dxmh and 
Pxmin at the center of the bend. First row corresponds to minimum <H> 

(W (rn) (cm) (cm) (cm) (mm) (mm) (GeV) (m) 
Dxmin A m i n  Hmu SCdo SCJm Xoff-min Xoff-max EzV-min Dx-max 02/01 

0.011 0.180 0.148 7.11 7.15 -17.9 26.5 14.9 0.069 0.086 

0.012 0.351 0.180 7.58 7.54 -18.7 27.8 14.5 0.071 0.095 

0.014 0.504 0.234 8.07 8.04 -19.6 29.3 13.9 0.075 0.105 

0.019 0.791 0.386 9.36 9.61 -22.0 33.68 12.6 0.085 0.130 

0.024 .1.100 0.611 11.66 11.77 -25.7 40.7 11.1 0.103 0.158 

0.038 1.368 0.869 13.81 13.95 -29.5 47.8 10.0 0.121 0181 

The path length dependence on the value of the betatron function and dispersion at the middle of the 
bending element shows a linear dependence. The smallest path length and the smallest orbit offsets 
correspond to the minimum of the average value of the dispersion action <H>. The fiu-ther the initial 
conditions for the dispersion and the horizontal betatron function are from the required conditions for 
the minimum of <H> the larger the path length and orbit offsets variation on energy are. Results from 
the Table 1 show very clearly that the smallest path length differences correspond to the lattice with the 
smallest value of the average function <H> (columns 6C3, and SC,,,). The column eighth shows the 
smallest value of energy with the stable betatron tunes. Conditions for the smallest value of the average 



H function have to be compromised to obtain stable tune conditions for the required range of 
acceleration. The smallest orbit offsets in optimization produce at the same time the smallest difference 
in the path lengths for the required momentum range, as shown in columns SC-Eo, SCJm,, ~ ~ f f - ~ i ~  and 
&E-,,,,. The 9* column shows that values of the maximum of dispersion function Dx-max at the central 
energy follows dependence of the momentum offsets and difference in the path length. 

A comparison of the ‘FODO’ and ‘DOUBLET’ lattices, constructed by the same magnets, with 
respect to the lattice described above shows clear advantage of the design presented above. This is 
according to already presented calculations and comparisons [4]. 

EQUALIZING THE PARABOLIC PATH LENGTH 

The momentum compaction shows close to linear dependence on momentum during acceleration. , 

The momentum compaction is defined as: 

a, =- 4 s  C P  Q” 
The momentum compaction, as shown in Fig. 3, shows linear dependence on momentum. 
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FIGURE 3. The Momentum compaction dependence on momentum. 
The analytical solution for the parabolic function dependence of path length on momentum was 

shown in the previous FFAG workshop [5]. The path length dependence is presented in Fig. 4. 





A bending radius has a negative sign for the focusing combined function magnet. Even when a 
stable solution for tunes is found for the whole energy range, there might exist a difference in the path 
length at the lowest with respect to the highest energy. An adjustment for this difference is possible by 
varying the strength of the opposite bend with respect to the main bend. The ninth column in the 
TABLE 1 shows a relationship between the opposite of the major bend. This is one of the variables 
used to make the path length (defined by the equation (6)) at the lowest equal to the one at the highest 
energy, as shown in Fig. 5. 

ORBITS AT DIFFERENT MOMENTA 

Particle motion in the non-scaling FFAG during acceleration start at the beginning with smaller 
radius of curvature and continue with large one as the energy increases. Orbits are not parallel to each 
other especially through the central bending part, as shown in Fig. 6 .  At the center of a drift, reserved 
for the ‘‘cavity’’, the orbits are parallel and all have zero slope. This is a condition set up by the design: 
adjust the gradients and drift lengths to get zero slopes of the dispersion and betatron functions. The 
orbits presented in Fig. 6 are obtained .from the results by the Polymorphic Tracking Code -PTC. The 
orbits on both sides show motion parallel to the orbit corresponding to the reference momentum 6=0. 
Orbits are not parallel anymore especially at the defocusing combined function dipole, presented at the 
center of the Fig. 6. This is due to the very strong gradients present at both magnets and due to the edge 
effects. 

‘ 

FIGURE 6. Orbits in one of the non-scaling FFAG examples. 



CONCLUSIONS 

This is a report about optimization with respect to the orbit offsets and path length differences 
during acceleration of the non-scaling FFAG lattice made for muon acceleration from 10 to 20 GeV. 
The path lengths need to be of the order of ten centimeters to enable acceleration with 10-16 turns [6]. 
The normalized dispersion or the dispersion 'action' function H are used to show that the minimum of 
the average value of <H> produced the smallest orbit offsets and path lengths. It should be noted that 
for this specific application the super conducting RF cavities are used for acceleration at the top of the 
sine wave. This is why the orbit offsets minimization is very critical to preserve small distortions of the 
buckets. The parabolic path length dependence on momentum requires, for optimum conditions, to have 
equal the largest offsets values. These path length offsets occur at the minimum and maximum values of 
momentum. This optimization was obtained by variation of the size of the opposite bend. More details 
about design procedure and non-scaling FFAG lattice are presented elsewhere [6]. 
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