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Hadronic scattering in the Color Glass Condensate 

Raju Venugopalan 
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Multi-particle production in QCD is dominated by higher twist contributions. The opem 
tor product expansion is not very effective here because the number of relevant operators 
grow rapidly with increasing twist. The Color GIass Condensate (CGC) provides a frame- 
work in QCD to systematically discuss ‘Lclassical” (multiple scattering) and “quantum” evolu- 
tion (shadowing) effects in multi-particle production. The apparently insuperable problem of 
nucleus-nucleus scattering in QCD simplifies greatly in the CGC. A few examples are discussed 
with emphasis on open problems. 

1 Introduction: the twist expansion and small x physics 

In the Bjorken limit of QCD, Q2 + 00, s -+ 00, ”CBj M Q2/s = fixed, we have a powerful 
framework to compute a large number of processes to high accuracy. Underlying this machinery 
is the Operator Product Expansion (OPE), where cross-sections are identified as a convolution 
of short distance ”coefficient functions” which are process dependent and long distance parton 
distribution functions which are universal. The evolution of the parton distribution functions 
with IC and Q2 is described by splitting functions, which determine the probability of “parent” 
partons to split into a pair of “daughter” partons. Both coefficient functions and splitting 
functions for DIS inclusive cross-sections are now available to Next-Next-Leading-Order (NNLO) 

The leading contributions in the OPE come from operators which have minimal twist, where 
twist is defined as the dimension minus the spin of the operators. Higher twist operators are 
suppressed by powers of ( ~ n ~ / Q ~ ) ~ - ~ m i n ,  where m is a hadronic mass scale, T denotes the twist 
of the operator and T ~ n  the minimal twist (2 for the structure functions F’‘ and F2). These 
higher twist operators can therefore be ignored in the Bjorken limit, albeit their contribution 
provides a systematic error to the application of the leading twist formalism at finite Q2. 

However, the bulk of multi-particle scattering in QCD is dominated by soft and semi-hard 
physics. In the language of the OPE, the latter are higher twist effects. These are of two 
sorts. The first are “kinematic” higher twist contributions, which arise from trace contributions 
that are often ignored in the OPE, where the leading contributions are from symmetric and 
traceless operators 2j3 .  These kinematic high twist contributions are of order x$m2/Q2 and are 
of decreasing importance at small ICB~.  The other “dynamical” higher twist contributions are 
fiom the hadronic matrix elements of the higher twist operators themselves. The relevant twist 
four matrix elements for leptoproduction were discussed in great detail by Ellis, Furmanski and 

‘Petronzio and by Jaffe and Soldate 5 ,  and expressed in terms of multi-parton distributions 
by Jaffe 6 .  Discussions specific to twist four contributions at small x are contained in Ref. 728. 
There are many more contributions at twists greater than four-these have not been quantified. 

To understand why the twist expansion is likely not a useful expansion at small x, we need to 
consider the properties of the theory in the Regge 1imit:zBj --+ 0, s -+ 00, Q2 = fixed. The BFKL 
renormalization group equation describes the leading as In( 1/z) behavior of gluon distributions 
in this limit. The solutions of the BFKL equation predict that gluon distributions grow very 
rapidly with decreasing I .  In the Regge asymptotics, since the transverse size of the partons is 
fixed, this growth of distributions will lead to the overlapping of partons in the transverse plane 
of the hadron. In this regime, contributions that were power suppressed in the BFKL scheme 
become important. These are recombination and screening effects which slow down the growth 
of gluon distributions leading ultimately to a saturation of these distributions “ 9 ” .  Such effects 
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must appea.r at small z because the occupation numbera of partons in QCD can be at most of 
order l /as.  

Qualitatively, the competition between Bremsstrahlung and recombination/screening ef- 
fects become of the same order when 2($--1) F w -  M &. This relation is solved self- 
consistently when Q = Qs(x) .  The scale Qs(z) is termed the saturation scale and it grows as 
one goes to smaller values of z. What does this have to do with higher twists? As we will 
discuss further in the next section, when Qs(z)2 2 Q2,  all higher twists are equally important. 
The OPE therefore is not a good expansion in this small x kinematic region, where the typical 
momentum of partons is of order Qs ’. 

There is however a glimmer of hope in this seemingly hopeless situation. This is because 
Q;(z) >> A&,,, which suggests that weak coupling techniques in QCD are applicable in the 
Regge limit. In the next section, we will discuss a weak coupling effective field theory approach 
which provides a more efficient organizing principle than the OPE at high parton densities. 

2 The Color Glass Condensate 

The physics of high parton densities can be formulated as a classical effective theory ‘*J5 
because there is a Born-Oppenheimer separation between large x and small x modes l3 which 
are respectively the slow and fast modes in the effective theory. Large x partons are static 
sources of color charge for the dynamical wee (small x) parton fields. The generating functional 
of wee pr tons  has the form 

where the wee parton action has the form 

-1 
4 NC (2) S[A,  p] = - / d4z Piv + -!.- / d2z1dz-6(z-) Tr (p(zl)U-,,,[A-]) . 

In Eq. 1, p is a two dimensional classical color charge density and W[p] is a weight functional 
of sources (which sit at momenta k+ > A+: note, z = k+/PLdron). The sources are coupled to 
the dynamical wee gluon fields (which in turn sit at k+ < A+) via the gauge invariant termC 
which is the second term on the RHS of Eq. 2. Here U-w,w denotes a path ordered exponential 
of the gauge field A- in the z+ direction. The first term in Eq. 2 is the QCD field strength 
tensor squared-thus the wee gluons are treated in full generality in this effective theory, which is 
formulated in the light cone gauge A+ = 0. The source j is an external source-derivatives taken 
with respect to this source (with the source then put to zero) generate correlation functions in 
the usual fashion. 

The argument for why the sources are classical is subtle and follows from a coarse graining of 
the effective action. The weight functional for a large nucleus is a Gaussian in the source density 
14,16, with a small correction for SU(Nc) coming from the N, - 2 higher Casimir operators 17 , 
The variance of the Gaussian, the color charge squared per unit area p i ,  proportional to is 
a large scale-and is the only scale in the effective actiond. Thus for p i  >> A&cD, as(p1) << 1, 

aThis corresponds to the number o€ partons per unit transverse area, per unit transverse momentum, in light 
cone gauge. This condition has its gauge invariant counterpart in the requirement that the field strength squared 
not exceed l /as .  

bAnother more severe reason why the OPE breaks down-even at leading twist at small x-has to do with the 
infrared diffusion in the BFKL equation 12. Ironically, this diffusion is cured by higher twist saturation effects. 

“For an alternative gauge invariant form, which also recovers the BFKL equation, see Ref. 
d p i  is simply related in the classical theory to the saturation scale QZ via the relation QZ 

23 . 
= 

~ S N C P ;  ln(QZ/Gym) 



and one can compute the properties of the theory in Eq. 1 in weak coupling. For an SU(3) Yang- 
Mills theory, there is an additional contribution proportional to the cubic Casimir operator. It 
is parametrically suppressed by All6. However, this term generates Odderon excitations in the 
CGC already at the classical level 

The saddle point of the action in Eq. 2 gives the classical distribution of gluons in the nucleus. 
The Yang-Mills equations can be solved analytically to obtain the classical field of the nucleus 
as a function of p: A&J) 14,16920. One can determine, for Gaussian sources, the occupation 
number 4 = d N / n R 2 / d k l d y  of wee partons in the classical field of the nucleus. One finds for 
k l  >> 93, the Weizsacker-Williams spectrum 4 N Q : / k i ;  for k l  5 Qs, one obtains a complete 
resummation to all orders in k l ,  which gives q$ N & ln(Qs/kl). (The behavior at low k l  can, 
more accurately, be represented as &r(O, z )  where is the incomplete Gamma function and 

Small fluctuations about the effective action in Eq. 2 give large corrections 21 of order 
as ln(l/x). The Gaussian weight functional is thus fragile under quantum evolution of the 
sources. A Wilsonian renormalization group (RG) approach systematically treats these correc- 
tions 22. In particular, the change of the weight functional W[p] with x is described by the 
JIMWLK- non-linear RG equations 22. These equations form an infinite hierarchy of ordinary 
differential equations for the gluon correlators < AlAz e -  -A,  >y, where Y = ln(l/x) is the ra- 
pidity. For the gluon density, which is proportional to a two-point function < a"(xl)ab(yl) >, 
one recovers the BFKL equation in the limit of low parton densities. Further developments 
beyond the JIMWLK equation have been summarized at this conference by Iancu 24. 

In the limit of large N, and large A (~t ;Al/~ >> 1), the JIMWLK hierarchy closes for the two 
point correlator of Wilson lines because the expectation value of the product of traces of Wilson 
lines factorizes into the product of the expectation values of the traces: (TY(&VJ)Tk(VzV,t)) - 
(Tr(VzKt)) (TY(VzVJ)), where V, = Pexp (J dz-a"(z-, x l ) T a ) .  Here P denotes path ordering 
in x- and T" is an adjoint SU(3) generator. The cross-section for a qij pair scattering off a target 
can be expressed in terms of these 2-point dipole operators as uqgN(x, r l )  = 2 J d2b Ny(z, r l ,  b ) ,  
where Ny, the imaginary part of the forward scattering amplitude, is defined to be Ny = 
1 - k < Tr(V,l(t) >y. The size of the dipole, F l  = 21 - & and b' = (21 + yi ) /2 .  The 
JIMWLK equation for the two point Wilson correlator is identical in the large A, large N, 
mean field limit to an equation derived independently by Balitsky and Kovchegov-the Balitsky- 
Kovchegov equation 26, which has the operator form $&!% = 6s KBFKL 8 {Ny - N;}. Here 
KBFKL is the well known BFKL kernel. When N << 1, the quadratic term is negligble and 
one has BFKL growth of the number of dipoles; when N is close to unity, the growth saturates. 
The B-K equation is the simplest equation including both the Bremsstrahlung responsible for 
the rapid growth of amplitudes at small x as well as the repulsive many body effects that lead 
to a saturation of this growth. 

We now return to our discussion of higher twists in the previous section. In lepto-production, 
the structure function F2 at small x is proportional to l$y*--tqg12 8 aqqN,  where I$y*4qq12 is the 
probability for a virtual photon to split into a qH pair and o q q ~  is the qij - N cross-section 
discussed previously. Since the latter is proportional to a product of Wilson lines, F2 gets 
contributions from N-point gluon distributions. In the classical McLerran-Venugopalan (MV)  
model of Gaussian color sources, these can be expressed explicitly25 as an expansion in Q3/Q2- 
thus, for Q3 2 Q2, all higher twists contribute equally. The OPE would not be very useful in 
this region-however, in the CGC framework, higher twist effects are included both at the tree 
level in the MV model, and in the small x quantum evolution of the BK and JIMWLK RG 
equations. It is interesting to ask whether the effective theory of the CGC at sufficiently small 
x and large Q2 can be matched on to the full theory beyond the leading twist level-this has not 
been done thus far but is feasible in principle. 

~ = k i / Q ,  2 19) . 



3 Hadronic Scattering in the CGC 

At small x, both the collinear factorization and k l  factorization limits of pQCD can be un- 
derstood.in a systematic way in the framework of the CGC. Rather than a convolution of 
probabilities, one has instead the collision of classical gauge fields. The expectation value of an 
operator 6 can be computed as 

where Y = ln(l/xF) and XF = x1 - x2. All operators at small 17: can be computed in the 
background classical field of the nucleus at small x.  Quantum information, to leading logarithms 
in x ,  is contained in the source functionals W,,(,,)[p1(p2)]. The operator 6 can be expressed in 
terms of gauge fields AP[pl, p2] (x). 

Inclusive gluon production in the CGC is computed by solving the Yang-Mills equations 
[DP, FPVIa = J’@, where J’ = p1 b(x-)b”+ + p2 S(x+)b’-, with initial conditions given by the 
Yang-Mills fields of the two nuclei before the collision. These are obtained self-consistently by 
matching the solutions of the Yang-Mills equations on the light cone 27. The initial conditions 
are determined by requiring that singular terms in the matching vanish. Since the Yang-Mills 
fields in the nuclei before the collision are known, the classical problem is in principle com- 
pletely solvable. Quantum corrections not enhanced by powers of as ln( l /z)  can be included 
systematically. The terms so enhanced are absorbed into the weight functionals W[pl,z]. Thus 
all “classical” multiple scattering effects are obtained by solving the Yang-Mills equations, while 
the small x quantum evolution effects (which gives rise to shadowing) are contained in the weight 
functionals which obey the JIMWLK/BK equations. 

Hadronic scattering in the CGC can therefore be studied through a systematic power count- 
ing in the density of sources in powers of p l , ~ / k f ; ~ , ~ .  The power counting is applicable either 
to a proton at small x, or to a nucleus (whose parton density at high energies is enhanced by 
A1/3) at large transverse momenta. The relevant quantity here is Qs,  which, as one may recall, 
is enhanced both for large A and small z. So as long as k l  >> Qs >> AQCD, the proton or 
nucleus is considered dilute. One can begin to study the applicability of both collinear and k l  
factorization at small x in this approach. 

To lowest order in pP&f and p P 2 / k f ,  one can compute inclusive gluon production ana- 
lytically27. At large transverse momenta, Qs << k l ,  the scattering can be expressed in a 
kl-factorized form. The inclusive cross-section is expressed as the product of two unintegrated 
( k l  dependent) distributions times the matrix element for the scattering. 51 factorization is a 
good assumption at large momenta for uark pair-production. This was worked out in the CGC 
approach by Ransois Gelis and myself18. In this limit, our result agrees exactly with that of 
Refs. 29. 

In the semi-dense/pA case, one solves the Yang-Mills equations to determine the gluon field 
produced-to lowest order in the proton source density and to all orders in the nuclear source 
density. The inclusive gluon production cross-section, in this framework, was first computed in 
Refs. 30931 and shown to be k l  factorizable in Ref. 32. In Ref. 33, the gluon field produced in pA 
collisions was computed explicitly in Lorentz gauge aPAP = 0. The fact that the distributions 
are k~ factorizable is remarkable because the “unintegrated” gluon distribution of the nucleus is 
not the usual leading twist unintegrated distribution, but includes all higher twists. Its evolution 
with energy is given by the JIMWLK/BK equations. 

If we wish to study multiple scattering effects alone, these can be studied in the NIV model- 
which provides the initial conditions for quantum evolution. Thus at larger x’s multiple scat- 
tering effects dominate while quantum effects turn on as one goes to smaller x due to the RG 
evolution of the weight functionals. The well known “Cronid’ effect is obtained in our formalism 



and can be simply understood in terms of the multiple scattering of a parton from the projectile 
with those in the target. The remarkable energy dependence of the Cronin effect seen by the 
RHIC experiments may be due to quantum evolution effects and has been discussed elsewhere34. 

Quark production in p/D-A collisions can be computed with the gauge field in Lorentz 
gauge 35.  Unlike gluon production, neither quark pair-production nor single quark production 
is strictly k~ factorizable. The pair production cross-section however can still be written in k l  
factorized form as a product of the unintegrated gluon distribution in the proton times a sum of 
terms with three unintegrated distributions, q5S,S, +aq,s and q54q,4q. These are respectively pro- 
portional to 2-point, 3-point and &point correlators of the Wilson lines we discussed previously. 
!For instance, the distribution &qrS is the product of fundamental Wilson lines coupled to a 44 
pair in the amplitude and adjoint Wilson lines coupled to a gluon in the complex conjugate 
amplitude. For large transverse momenta or large mass pairs, the 3-point and &point distribu- 
tions collapse to the unintegrated gluon distribution, and we recover the previously discussed 
Sl-factorized result for pair production in the dilute/pp-limit. Single quark distributions are 
straightforwardly obtained and depend only on the 2-point quark and gluon correlators and 
the 3-point correlators-which are “all twist” operators as previously. For Gaussian sources, as 
in the MV-model, these 2-,3- and 4point functions can be computed exactly a s  discussed in 
Ref. 35. The renormalization group evolution of these distributions lead to shadowing of the 
distributions. Understanding their evolution with energy may provide important information 
about the structure of multi-parton correlations in high energy QCD. 

Our results for gluon and quark production in p/D-A collisions (for a review, see Ref. 37), 
coupled with the previous results for inclusive and difiactive 36 distributions in DIS suggest an 
important new paradigm. At small J: in DIS and hadron colliders, quark and gluon structure 
functions, which are the right observables in a leading twist formalism, are no longer the right 
observables to capture the relevant physics. Instead they should be replaced by dipole and 
multipole correlators of Wilson lines that seem ubiquitous in all high energy processes and are 
similarly gauge invariant and process independent. For a similar conclusion on the importance 
of unintegrated distributions from a different perspective, see Ref. 38. To determine whether 
these distributions are robust, next-to-leading order computations must be performed, which is 
a formidable, but by no means impossible, task. 

In nucleus-nucleus collisions, p1,2/k1 N 1. There is no small expansion parameter and one 
has thus far not been able to compute particle production analytically in the CGC. Unlike gluon 
production in the pp and pA cases, SI-factorization breaks down in the A A - ~ a s e ~ ~ > ~ ~ .  A signif- 
icant consequence is that one cannot factor the quantum evolution of the initial wavefunctions 
into unintegrated gluon distributions unlike the pA case. Nevertheless, there is a systematic 
way to include small x effects in the AA case. The problem of nuclear collisions is well defined 
in weak coupling and can be solved numerically 39. The numerical simulations thus far assume 
Gaussian distributions of the color sources as in the MV model. This is reasonable for central 
Gold-Gold collisions at RHIC where the typicai J: is of order lov2. At the LHC, the typical IC at 
central rapidities is an order of magnitude lower. At these x values, quantum evolution effects 
are important and one should use one solutions of JIMWLK/BK RG equations to determine 
the distribution of sources. 

We will restrict ourselves to discussing numerical solutions for Gaussian color sources. The 
saturation scale Qs (which is an input in the numerical solutions in this approximation) and the 
nuclear radius R are the only parameters in the problem. The energy and number respectively 
of gluons released in a heavy ion collision of identical nuclei can therefore be simply expressed 
as $f = 9 Q:, where (up to 10% statistical uncertainity) we compute 
numerically 39 CE = 0.25 and CN = 0.3. Here q is the space-time rapidity. The number 
distributions of gluons can also be computed in this approach. Remarkably, one finds that 

. 

=]9 QZ and 



a) the number distribution is infrared finite, and b) the distribution is well fit by a massive 
Bose-Einstein distribution for IC1/QS < 1.5 GeV with a “temperature” of N 0.47Qs and by the 
perturbative distribution Q:/ICi for k l / Q s  > 1.5: We will not discuss comparisons of CGC 
predictions to RHIC data here but refer to Ref. 41. 

The transition to the QGP from the CGC remains as an outstanding theoretical problem. 
Due to the rapid expansion of the system, the occupation number of modes falls well below one 
on time scales of order l/Qs. From these times onwards, the classical approach breaks down 
for all but the softest modes-well before thermalization. On the other hand, for elliptic flow 
from hydrodynamics to be significant, the conventional wisdom is that thermalization should 
set in early. A necessary condition is that momentum distributions should be isotropic. The 
CGC initial conditions are very anisotropic with < p~ >N Qs and < p ,  >N 0. How does this 
isotropization take place? All estimates of final state re-scattering of artons formed from the 
melting CGC, both from 2 -+ 2 processes 42 and 2 --+ 3 processes “ suggest thermalization 

44 takes longer than what the RHIC collisions seem to suggest. In the “bottom up” scenario , 
7thermal - 13/5 

Recently, it has been suggested that collective instabilities, analogous to the well known 
Weibel instabilities in plasma physics, can speed up themdization ?. For a nice recent review, 
see Ref. 46. Starting from very anisotropic (CGC-like) initial conditions, these instabilities drive 
the system to isotropy. In some estimates, these may be very short time scales of order l/Qs. 
What is the relation of this language of instabilities and that of our classical field simulations? 
Paul Romatschke and 147 recently looked at the effect of small violations of boost invariance 
on the dynamics of gauge fields produced with CGC initial conditions. We found that there is 
a Weibel instability and thai the maximally unstable modes grow as exp(J73 (51s opposed to 
exp(7) in a static box). This behavior was predicted in Ref.45. Increasing the initial amplitude 
of the fields that violate boost invariance, we find that the growth of the instability terminates 
when non-Abelian effects become large. These studies don’t address the possible isotropization 
of the system by instabilities because the initial amplitudes examined are much smaller than 
physically plausible. This work is in progress. 

An equally interesting problem is that of chemical equilibration. At high energies, the initial 
state in a heavy ion collision is dominated by gluons. Are quarks produced in sufEcient numbers 
for the system to reach chemical equilibrium (where the ratio of gluons to quarks is expected 
to be 32/21Nf)? Recently, the Dirac equation for quarks was solved by Gelis, Kajantie and 
Lappi 48 in the background field computed in Ref. 39. For as values comparable to those in 
the pre-equilibrium phase of RHIC collisions, they indeed find that sufficient numbers of quarks 
pairs are produced for chemical equilibrium to be plausible. As for the studies of collective 
instabilities, more intensive numerical studies are required for conclusive results. 

1 1  which at RHIC energies gives 7thermal N 2 - 3 fm. 
‘YS 
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