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Abstract. Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer 
are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to 
compute tunes and t w i s s  functions in the presence of space charge forces. The working code for the simulation here presented 
is SIMBAD, that can be run as standalone or as part of the UAL (Unified Accelerator Libraries) package. 

PIC TRACKING BASICS IN THE 
SYNCHROTRON CODE SIMBAD 

In the discussion of numerical methods we will con- 
tinuously refer to the PIC synchrotron simulation code 
SIMBAD[ 11. Accelerator simulation relies on approxi- 
mations. PIC itself is an approximation. Other approx- 
imations used in the code will be indicated when they 

In a set of approximations the code uses a Split Oper- 
ator technique[2]. Progressively, the coordinates of ran- 
domly prepared macro particles are transformed through 
maps calculated for a bare lattice by some optical code, 
followed by Space Charge (SC) kicks. Maps must be 
continuously updated during acceleration, because 
0 there may be nonlinear effects in the lattice, like hys- 
teresis in the magnets, 
0 map elements describing the longitudinal motion are a 
function of particle energy, 
0 we may want to vary the lattice dynamically, e.g. by 
changing quadrupole setting and then betatron tunes. 

The independent variable may be time, t ,  or the longi- 
tudinal coordinate s. SIMBAD uses s during macro trans- 
port, but transforms between s and t when SC forces are 
applied to the macros, that are then all considered at a 
time that is the same for everyone. Like in MAD[3], the 
canonical phase space vector is 

occur. 

u'= (x, PXIPZ, PYIPZ, -w, MlPC) ,  

x radial, y vertical, and z longitudinal. A denotes the 
deviation of a variable from the corresponding of the 

synchronous particle, and 6 the sudden variation of a 
quantity at some location, say, in a thin kick or RF cavity. 

To address the SC problem in the presence of walls, we 
want to solve the electromagnetic problem for a steady 
beam current flow, using the two partial differential equa- 
tions Poisson and Ampbre Law) 

Q, source point, P, field point. Beam charge density 
p(Q) is obtained by binning the position of macropar- 
ticles on a grid, and current density T(Q) by binning mo- 
menta. If beam bunches are long, as it is the case with 
synchrotrons, we may make the approximation that the 
beam current is locally parallel to the walls. In this case 
we only integrate the Poisson equation, and represent 
the partial compensation between space charge repulsion 
and current attraction with a factor y2. 

Transverse and longitudinal SC momentum kicks are 
(@, peweance) 

22.L 
P 

with LT and Ls, length of kicks, A, longitudinal charge 
density, h, harmonic number, and H the grid mesh sue. 

In a synchrotron, beam bunches are long and thin. 
We treat the longitudinal dimension differently than the 
transverse, and adopt the approximation to numerically 
solve the lirst of Eqs.( 1) in only 2 dimensions in different 
longitudinal segments along the beam. On a transverse 
grid and in the approximation of a boundary of perfectly 
conductive walls 2, Poisson's assumes the following dis- 

Work performed under the auspices ofthe U.S. Department offinergy Finite conductivity will not be discussed here for lack of space. 



Crete form 

-4npij &y@kZ; @i,j(W) = 0, pi,j(W) = pimage, 

with the Laplacian 2’ a band sparse matrix. The discrete 
implicit formulation for the potential is 

1 
pi . = -(@i-l,j + Qi,j+l - 4@i, j + @i+l,j + Qij-1). ,’ 2lP 

This is a set of linear algebraic equations. With a bound- 
ary made of N points, around an area of M points, the 
number of equations is M + N. Known quantities are: 
charge in the inner Mpoint plus N values of the potential 
on the boundary. U h o w n s  are: potential in the inner M 
points plus image charge on the N boundary points. We 
solve the system by LU decomposition, and iteration, as 
described in a later Section. 

Note that SC solvers based on the integral form of 
Eqs. (I), e.g. FFT solvers, would require a previous 
howledge of the wall image. In a differential form the 
image is part of the solution. 

ALGORITHMS BASED ON THE ONE 
TURN MATRIX 

SC induces coupling between betatron and synchrotron 
modes, producing a tune spread and modifylng all lattice 
functions seen by the individual macros, so the matching 
of the beam to the lattice is altered. These effects can be 
studied through the One Turn Matrix, calculated for each 
macro. This matrix will differ fiom the MOT for the bare 
lattice, that has the general form (no natural coupling) 

s: 0 0 0 D’ 

(2) 
0 0 c y s y o  0 

E E‘ 0 0 1 G 
0 0 0 0 0 1  

Matrix elements D and D‘ represent the dispersion of 
the lattice, and E and E’ the synchro-betatron coupling 
terms. It can be shown that the symplecticity of the MOT 
is independent from the term G and is satisfied if 

(;’)=(; If)(;). (3)  

In a general tracking, in the presence of SC forces, the 
6 x 6 matrix elements can be dynamically calculated by 
solving 36 linear equations among particle 6 coordinates 
in 6 successive turns 

There will be an MOT for each macro in the simulation. 
In the new calculated inatrk, the elements appear soine- 
what different than in Eq. (2), in particular the 0’s are in 
general not 0’s anymore, showing the coupling induced 
by SC. 

In the transverse dimension, fractional betatron tunes 
for each macro can be calculated from the eigenvalues A 

[4] 

B = (1/2n) arctan[Im(A)/Re(A)]. (4) 

Also the twiss functions CXT and PT, for x (indeces 3 and 
4 for y) ,  from the MOT elements, are calculated as 

As an example, apply the above to the transverse dynam- 
ics of the AGS for three cases, with 
- no lattice coupling elements, no acceleration, 

- unnormalized emittance E ~ ,  eY = 40,lO m m r a d ,  
- beam profile = Gauss (transverse), uniform (long.), 
-no. ofPIC macros = io5, 
- high RF harmonic: k = 24, voltage: V = 80 kV. 
(1) Low intensity, beam charge lo9 A-s, 
(2) High intensity, 4.1014 A-s, bunch length 360 deg, 
(3)  Shortbunches: 10 deg, high space charge: 4.1012. 

Results are in Table 1. In the table, AV is the maximum 
‘Zaslett” tune depression in a round beam with Gaussian 
charge distribution 

- Ek=l.2 GeV, 

with TO, classical particle radius, N, number of particles, 
E, r.1n.s. emittance, Bf = I/Ipeak the bunching factor. 

The betatron tune footprint is shown in Fig. 1, where 
the Laslett tune is calculated for various effective emit- 
tances defined as follows 

Ex = (1 -C)Ex (0) +c < E >, q = (1 -C)E?) +C< E > 
< E >= (€io) 4 E?’)/2, 

with a coefficient C that represents the SC induced cou- 
pling between transverse modes. 

The longitudinal motion is described by 

The lirst equation gives the phase advance at each ma- 
chine element, with R(5 ,1 ) ,  R(5,2) representing the 

The method gives ambiguous results when the two betatron tunes are 
close together (e.g. Montague Resonance). 
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TABLE 1. Examples for the sample macro shown in Fig. 1 below 

I \‘X a, Px AVX \‘Y ol, AJ AV. I 
(M4D)bare [8].6920 -1.309 15.451 ’ [8].7337 1.303 15.375 
(1) io9 0.6920 -1.309 15.451 0 0.7337 1.303 15.376 0 
(2) 4.1014 0.6572 0.396 22.491 -0.0348 0.6830 -0.235 10.514 -0.0507 
(3) 4.1012 0.8325 0.313 21.476 -0.0395 0.5261 -0.217 10.795 -0.0628 
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FIGURE 1. Tune footprint for a high intensity AGS beam. 
Laslett tune is calculated for different effective emittances. 

synchro-betatron coupling. The second, essentially non 
linear, applies at an acceleration station between turns n 
a n d n f l .  

For the entire machine, with the synchronous energy 
and. YT the transition energy, write 

(7) 

with LT = machine length. The sign of MoT(5, 6) is pos- 
itive below transition and negative above4. From Eq.(7), 
that we assume holds also in the presence of SC, the 
value of YT can be calculated as 

By matrix multiplication in the fill machine we obtain 
the following relation betweenMoT(5, 6) and the disper- 
sion elements in the arcs 

(5,6) in a single element does not in general change sign, while it is 
the (5,6) element of the OTMthat changes its sign at transition, due to 
the cumulative effects of the dispersion terms along the ring 

If the arcs are all identical, the second term in the r.h.s. vanishes. 
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FIGURE 2. Synchrotron tune for a FODO, bare and with SC. 
The differences of 3D vs. 2D calculation of the space charge, 
as it will be described in the next section, are small 

The synchrotron oscillation frequency can be calculated 
from the eigenvalues of the MOT with Eq.(4), like for the 
transverse betatron. For small oscillations and no SC the 
tune from the eigenvalues matches the classical result 

(9) 

For large SC, the synchrotron tune and the value of YT 
show a k i t e  spread. For example, in a test FODO with 
no acceleration, and 

the tune,calculated from the eigenvalues, and YT, from 
the MOT, compared with the bare lattice values, are (see 
also Fig. 2) 

Ek = 1.4 GeV, vm = 800 KV, h = 1, LT = 384 m, 

Space charge vs “/T 
0. 0.00302 7.00745 

1013 (2D) 0.00292rt0.00117 8.607rt1.291 
1013 (3D) 0.00289f0.00118 8.882f1.332 

Similarly to the transverse dimension, where SC gener- 
ates some mismatch (effective Twiss function different 
from the bare lattice values), also in the longitudinal di- 
rection SC creates a mismatch that in particular affects 
the behaviour at transition and the symplecticity condi- 
tion of beam transport. Altough the symplecticity of an 
accelerator matrix is independent of the value of the el- 
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FIGLRE 3. Longitudinal dynamics across transition in the 
AGS. Short bunches suitable for the proposed BNL Neutrino 
Factory 

ement (5,6), other conditions for symplectic transport, 
like the one expressed by Eq.(3), are affected by SC. 

The evolution of the phase space patterns in the pres- 
ence of SC induced mismatch is rather complicated. A 
reference plot for the longitudinal motion across tran- 
sition in the AGS, for a macro particle with YT in the 
’center of mass’ of the distribution is shown in Fig. 3. In 
particular, note in the figure how the one particle in the 
longitudinal phase space rotates in a counter clockwise 
direction below transition and clockwise above. 

PARALLEL COMPUTATION 

A meaningful 3-D PIC simulation requires between lo5 
and lo7 macroparticles. It is presently impractical to sim- 
ulate by a single computer process the transport of so 
many macros in a synchrotron over thousand of turns. 
Parallel computation is a must. SIMBAD is being im- 
plemented using the Message Passing Interface, MP1[5]. 
The code models non-linear effects, space charge in par- 
ticular, and utilizes a genetic load balancing algorithm 
for performance. 

The code simulates the accelerator by representing 
each element of the machine, or operation on the beam, 
as a node in the ring. For simple tracking with no space 
charge, machine elements take the form of 6x6 matri- 
ces to iirst order or larger maps to second order. Paral- 
lelization is of the embarrassing variety where the herd 
of macroparticles is distributed evenly among the pro- 
cesses. When space charge calculations are performed 
the parallelization is more complex. 

In two dimensions the space charge calculations take 
place at given nodes, situated around the circumference 
of the ring. Conveniently, but not necessarily, we place 

an SC node at the location of each physical element in 
the ring. This is generally equivalent to perform tens of 
SC kicks per betatron wavelength. 

The herd of macro particles arrives at each node inde- 
pendent of time and is represented as a set of superim- 
posed flat disks of charged particles with different par- 
ticle densities, consistent with the A$ coordinate of the 
particles. Particles are then binned onto a 2-D mesh using 
bilinear interpolation and the resulting charge density is 
inserted into the Poisson equation to yield the scalar po- 
tential. A coefficient is used for each disk, proportional 
to the particle density in the disk. The Poisson equation 
is solved by means of a sparse LU solver and is not done 
in parallel since the 2-D meshes involved are not exces- 
sively large. The directional derivative of the potential at 
each mesh point is the component of the SC force, which 
is applied to a macro as a kick proportional to the length 
of the space charge element. 

In this 2-D case the only parallelization beyond the 
embarrassing case is the global reduction applied to ob- 
tain the charge density. At each space charge node the 
processors bin their macro particles onto a local mesh 
and then sum the charge values at the local mesh points 
onto a global mesh. The global mesh is then used to cal- 
culate the potential and subsequent forces. This scheme 
scales linearly with the number of processors. 

To better represent the variation of beam density 
both transversely and longitudinally, and its time evolu- 
tion, another model is used, characterized as 3-D space 
charge. Here, the parallelization is no longer trivial, 
but should possess the capability to effectively and ef- 
ficiently handle almost any beam configuration. 

In 3-D the simulation can no longer be independent 
of time. Instead, at each SC node the beam, represented 
as a flat disk to this point, is expanded longitudinally 
by transforming all six phase space coordinates of each 
macro particle so that time becomes the independent 
variable. By doing so, the longitudinal density of the 
beam is modelled as well as the transverse density that 
varies with longitudinal position s. The beam is then 
divided into longitudinal segments, all brought at the 
same time. This is particularly important and physically 
correct, because not only the true structure of the beam 
is reconstructed, but the interaction between adjacent 
beam slices happens with the slices at the same time. 
Fig. 4 shows a beam bunch in a test FODO synchrotron, 
expanded and “frozen” in time. The bare beam envelope, 
proportional to d& is also shown. 

In summary, in 3-D, the propagation of the beam 
through the lattice at a SC node consists of the following 
sequence of operations: 
(1) transfer of coordinates through maps, 
(2) expansion of the beam logitudinally, by space to time 
trans fo mation, 
(3) application of space charge kicks, 

, 



(4) compression of the beam again into a disk by t to s 
transformation, 

(1) transfer of coordinates to the successive node. 
At a non-SC node, only step (1) is performed. In 2-D, 

only steps (1) and (3). 
Each process takes a number of segments and per- 

forms all calculations locally on 2-D grids placed in the 
center of each segment. Longitudinal SC forces are cal- 
culated at each x , ~  point from a fitting of the potential 
difference between contiguous segments 

3-D parallelization is translated to a problem of op- 
timal load balance. A nake approach where each pro- 
cess is assigned the same number of space charge seg- 
ments may be typified in the following example. For a 
ring with K space charge segments, N total macros, and 
P processes, NIP macros would initially be injected into 
the ring by each process. Each macro particle has no ini- 
tial constraint regarding its longitudinal coordinate upon 
injection and therefore may be found in any of the K 
segments. When the first space charge segment is en- 
countered, the processes synchronize and transform their 
phase space coordinates to a time dependent frame. The 
ring is spatially decomposed along its length and so each 
process is assigned KIP space charge segments with one 
of the processes taking the remainder. The macro parti- 
cles are then exchanged based on the longitudinal bound- 
ary positions between segments. After the exchange con- 
cludes, each process contains all the macro particles in 
the global herd that belong to its KIP segments. The 
communication involved is large only for the first space 
charge segment, as the synchrotron motion of the parti- 
cles is relatively slow and cause infrequent migration of 
particles between processes. 

The processes then perform the 2-D tranvserse space 
charge calculation for each of their KIP segments before 
collapsing the beam back to a space dependent frame and 
continuing tracking. The procedure repeats itself at the 
subsequent space charge node, though with less particle 
exchange. 

This algorithm works well for a beam with a uniform 
longitudinal distribution. If this is not the case and the 
beam is not longitudinally uniform, as will occur if the 
beam is being accelerated or confined, the simulation 
will not be efficiently load balanced and the situation 
may arise where one process has many more macro 
particles than another. Several additional factors must 
be considered when decomposing the problem over the 
process domain. 

The computational burdens are dependent on two vari- 
ables: the number of space charge segments over which 
the Poisson equation must be solved and the number of 
macro particles in the local herd. Then, rather than sim- 
ply dividing the number of segments evenly among the 
processes, it is more efficient to consider the number of 

..... 

segments assigned to a given process as a function of the 
number of macro particles contained within them. There- 
fore, SIMBAD dynamically calculates an optimal decom- 
position scheme to balance the load, using a genetic al- 
gorithm that optimizes the number of SC segments to be 
assigned to each process. 

The algorithm utilizes two parents (M,F) and two chil- 
dren @,S), each of which represents a different distribu- 
tion of elements among the processes. After the parents 
are initially created, they mate to produce two offspring. 
All four are then tested for optimal load balance at which 
point the process repeats. The entire space is efficiently 
searched and an efficient allocation generated. The al- 
gorithm continues by iterating through mating, natural 
selection, and mutation. 

The mating phase combines the parents using an al- 
ternating element scheme to create two offspring. The 
four resulting instances are then compared to select two 
which will mate in the next iteration (natural selection). 
The metric which establishes the optimum load balance 
is a sum of two functions f and g, where f is the function 
defining the optimum distribution of macros and g the 
function defining the optimum distribution of elements. 
A weighting factor, w, is included that determines the 
precedence and importance off relative to g. The weight 
is significant and variable and depends on the total num- 
ber of macros used in the simulation and the size of the 
Poisson grid. The former, since overloading one process 
may overwhelm the available memory, and the latter, be- 
cause solving the Poisson equation may easily consume 
the majority of clock cycles, being largely independent 
of the number of macro particles. 

The functions are 

f =EL1 ( 1 - P - 2  1 , g=EL1 ( l - P . % )  NT 

.where P is the number of processes, Ei is the number of 
segments per process, ET is the total number of segments 
to be distributed, N is the number of macros per process, 
and NT is the global number of macro particles. As stated 
previously, w is a function of NT and ET. 

The comparison function is h = f + w . g. The suc- 
cessive mating pair is chosen from the available four by 
choosing the two with the lowest value of h. Before mat- 
ing the chosen pair, a small mutation is introduced into 
one of them and the process repeats. The number of iter- 
ations required to evolve the optimum solution is 

An example of genetic algorithm flow is given in Fig. 5. 

UNIFIED ACCELERATOR LIBRARIES 

SIMBAD is a part of and can be run through the Unified 
Accelerator Libraries, UAL[6], an environment designed 
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FIGURE 5. Example of one generation of selection. Arrays 
on the right represent slices per process during the various 
stages. The phase space graph on the left corresponds to an 
optimal solution, shown by the botton array and the lines that 
indicate the process boundaries. 

to address the complex simulation tasks of beam dynam- 
ics studies. UAL offers an open collection of accelerator 
algorithms and a consistent mechanism for building con- 
figurable project-specific accelerator off-line models. 

At this time, UAL joins several accelerator pro- 
grams, as shown in Fig. 6: PAC (Platform for Accel- 
erator Codes), ZLIB (Numerical Library for Differen- 
tial Algebra), TEAPOT (Thin Element Program for Or- 
bits and Tracking), ACCSIM (Accumulator Simulation), 
SIMBAD (Simulation of Beams, Advanced Dynamics). 
Modules that are under active development are ICE (In- 

I . . -. . . __ . - .  . . .. . 

FIGURE 6. UAL. Libraries 

coherent and Coherent Effects), AIM (Accelerator In- 
strumentation Module), SPINK (spin tracking in accel- 
erators), and TIBETAN (longitudinal phase space track- 
ing). The Application Programming Interface (API), in 
Perl, provides a shell for integrating and managing all 
project extensions. 

A cornerstone of UAL is the Element-Algorithm- 
Probe framework which identifies the association among 
three concepts: accelerator element, tracking algorithm, 
and evolved object (such as Bunch, Taylor map, etc.). 
Having initially rejected any implicit linkage between 
algorithms and elements, the framework connects them 
in application according to the user-specific Accelerator 
Propagator Description Format (APDF) file, similar to 
a propagator extension to the MAD lattice description. 

A typical simulation model with SIMBAD track- 
ers and AIM monitors is deked as indicated in Ta- 



TABLE 2. UAL model 
UP&> 

<propagator id= "simbad" accelerator="ring4 
<create> 

<link algorithm="SIMBAD::TSCPropagatorFFT" types="Default"/> 
<link algorithm= "AIM::Monitor" types= "Monitor"/> 
<link algorithm= 'WM::PoincareMonitor" types="Instrument"l>> 
</create> 

< /propagator> 
</up&> 

In practice, to run any code, or some algorithm of a 
code, through UAL, the user needs to write a suitable 
driver that contains the relevant values of the param- 
eters. UAL provides the environment and the graphic 
interface. One could, e.g. produce transfer maps with 
TEAPOT, track with PAC and calculate space charge ef- 
fects with SIMBAD. Diverse codes are to form "mod- 
ules" in an evolving, unified, coherent environment. To 
facilitate such unification, UAL has introduced an open 
architecture in which diverse accelerator codes are con- 
nected together via common accelerator objects such as 
Element, Bunch, Twiss, etc. In this architecture each ac- 
celerator code is implemented as an object-oriented li- 
brary of C t t  classes 

ACKNOWLEDGMENTS 
FIGURE 7. the Accelerator Physics Player 

ble 2 In this example, a SIMBAD tracker is associ- 
ated with all element types but monitors. Internally, the 
SIMl3AD::TSCPropagatorFFT class is implemented as a 
composite model combining a space charge kick and a 
conventional tracker selected from a catalog of the UAL 
algorithms, such as TEAPOT thin-lens integrator, ZLIB 
Taylor map. The same approach has been applied on par- 
allel computers by mixing together sequential and paral- 
lel tracking components. 

Recently, UAL has been also integrated with the QT 
GUI development framework and the ROOT analysis en- 
vironment [7]. The new package extends the UAL simu- 
lation algorithms with an open collection,of analysis and 
visualization components. The original Perl-based de- 
scripting interface has also been transformed into a GUI 
application. Its main window is implemented as a con- 
figurable and interactive Accelerator Physics Player, 
which coordinates data flows among tracking engines, 
interactive graphics, and data-processing (see Fig. 7). 

Development of UAL is strongly prejudiced toward 
importing existing codes rather than developing new 
ones. Importation of codes into UAL is an ongoing en- 
terprise and when a code is said to have been imported it 
does not necessarily mean that all features are supported. 

Discussions with W.Waldo MacKay on the symplectic 
properties of the transport matrices, in particular the 
implications of Eq.(3), are acknowledged. 
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