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FUN WITH DIRAC EIGENVALUES 

MICHAEL CREUTZ 
Depart~nent of Physics, Brookhaven National Laboratory 

Upton, NY 11973, USA 

It is popular to discuss low energy physics in lattice gauge theory ill terms of the small eigenvalues of 
the lattice Dirac operator. I play with some ensuing pitfalls in the interpretation of these eigenvalue 
spectra. 

1 Introduction 

Amongst the lattice gauge community it has recently become quite popular to study the 
distributions of eigenvalues of the Dirac operator in the presence of the background gauge 
fields generated in simulations. There are a variety of motivations for this. First, in a clas- 
sic work, Banks and Cashe* related the density of small Dkac eigenvalues to spontaneous 
chiral symmetry breakin Second, lattice discretizations of the Dirac operator based the 

plane. The validity of various approximations to such an operator can be qualitatively 
assessed by looking at the eigenvalues. Third, using the overlap method to construct a 
Dirac operator with good chiral symmetry has difficulties if the starting Wilson fermion 
operator has small eigenvalues. This can influence the selection of simulation parame- 
ters, such as the gauge action? Finally, since low eigenvalues impede conjugate gradient 
methods, separating out these eigenvalues explicitly can potentially be useful in develop- 
ing dynamical simulation algorithms! 

Despite this interest in the eigenvalue distributions, there are some dangers inherent in 
interpreting the observations. Physical results come from the full path integral over both 
the bosonic and fermionic fields: Doing these integrals one at a time is fine, but trying 
to interpret the intermediate results is inherently dangerous. While the Dirac eigenvalues 
depend on the given gauge field, it is important to remember that in a dynamical sirnula- 
tion the gauge field distribution itself depends on the eigenvalues. This circular behavior 
gives a highly non-linear system, and such systems are notoriously hard to interpret. 

Given that this is a joyous occasion, I will present some of this issues in terms of 
an amusing set of puzzles arising from naive interpretations of Dirac eigenvalues on the 
lattice. The discussion is meant to be a mixture of thought provoking and confusing. It is 
not necessarily particularly deep or new. 

Ginsparg-Wilson relatio $ have the corresponding eigenvalues on circles in the complex 

2 The framework 

To get started, I need to establish the context of the discussion. I consider a generic path- 
integral for a gauge theory 

Here A and $ represent the gauge and quark fields, respectively, SG(A) is the pure gauge 
part of the action, and D(A)  represents the Dirac operator in use for the quarks. As the 



Figure 1: In the naive continuum picture, all eigenvalues of the Dirac operator lie along a line parallel to 
the imaginary axis. In a finite volume these eigenvalues become discrete. The real eigenvalues divide into 

distinct chiralities and define a topological invariant. 

action is quadratic in the fermion fields, a formal integration gives 

Working on a finite, lattice D(A)  is a finite dimensional matrix, and for a given gauge 
field I can formally consider its eigenvectors and eigenvalues 

The determinant appearing in Eq. (2) is the product of these eigenvalues; so, the path 
integral takes the form 

2 = (dA) e-SG(A) Xi. (4) .I i 

Averaging over gauge fields defines the eigenvalue density 

Here N is the dimension of the Dirac operator, including volume, gauge, spin, and flavor 
indices. 

In situations where the fermion determinant is not positive, p can be negative or com- 
plex. Nevertheless, I still refer to it as a density. I will assume that p is real; situations 
where this is not true, such as with a finite chemical potential! are beyond the scope of 
this discussion. 

At zero chemical potential, all actions used in practice satisfy ‘‘75 hermiticity’, 
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Figure 2: Free Wilson fermions display an eigenvalue spectrum with a momentum dependent real part. This 
removes doublers by giving them a large effective mass. 

With this condition all non-real eigenvalues occur in complex conjugate pairs, implying 
for the density 

This property will be shared by all the operators considered in the following discussion. 
The quest is to find general statements relating the behavior of the eigenvalue density 

to physical properties of the theory. I repeat the earlier warning; p depends on the distri- 
bution of gauge fields A which in turn is weighted by p which depends on the distribution 
ofA .... 

P ( 4  = P ( X * ) .  (7) 

2.1 The continuum 

Of course the continuum theory is only really defined as the limit of the lattice theory. 
Nevertheless, it is perhaps useful to recall the standard picture, where the Dirac operator 

is the sum of an anti-hermitian piece and the quark mass m. All eigenvalues have the 
same real part m 

The eigenvalues lie along a line parallel to the imaginary axis, while the hermiticity 
condition of Eq. (6) implies they occur in complex conjugate pairs. 

Restricted to the subspace of real eigenvalues, 7 5  commutes with D and thus these 
eigenvectors can be separated by chirality. The difference between the number of positive 
and negative eigenvalues of 5 in this subspace defines an index related to the topological 

The Banks and Casher argument relates a non-vanishing p"(0) to the chiral condensate 
occurring when the mass goes to zero. I will say more on this later in the lattice context. 

Note that the naive picture suggests a symmetry between positive and negative mass. 
Due to anomalies, this is spurious. With an odd number of flavors, the theory obtained 
by flipping the signs of all fermion masses is physically inequivalent to the initial theory. 

p(. + iy)  = 6(. - m)P(y). 

structure of the gauge fields. 7 The basic structure is sketched in Fig. (1). 

2.2 Wilson fennions 
The lattice reveals that the true situation is considerably more intricate due to the chiral 
anomaly. Without ultraviolet infinities, all naive symmetries of the lattice action are true 



Figure 3: The overlap operator is constructed by projecting the Wilson Dirac operator onto aunitary operator. 

symmetries. Naive fermions cannot have anomalies, which are cancelled by extra states 
referred to as doublers. Wilson fermion8 avoid the this issue by giving a large real part to 
those eigenvalues corresponding to the doublers. For free Wilson fermions the eigenvalue 
structure displays a simple pattern as shown in Fig. (2). 

As the gauge fields are turned on, this pattern will fuzz out. An additional compli- 
cation is that the operator D is no longer normal, i.e. [D,  Dt]  # 0 and the eigenvectors 
need not be orthogonal. The complex eigenvalues are still paired, although, as the gauge 
fields vary, complex pairs of eigenvalues can collide and separate along the real axis. In 
general, the real eigenvalues will form a continuous distribution. 

As in the continuum, an index can be defined from the spectrum of the Wilson-Dirac 
operator. Again, 75 hermiticity allows real eigenvalues to be sorted by chirality. To 
remove the contribution of the doubler eigenvalues, select a point inside the leftmost 
open circle of Fig. (2). Then define the index of the gauge field to be the net chirality 
of all real eigenvalues below that point. For smooth gauge fields this agrees with the 
topological winding number obtained from their interpolation to the continuum. It also 
corresponds to the winding number discussed below €or the overlap operator. 

2.3 The overlap 

Wilson fermions have a rather complicated behavior under chiral transformations. The 
overlap formalisd simplifies this by first projecting the Wilson matrix Dw onto a unitary 
operator 

This is to be understood in terms of going to a basis that diagonalizes DwDL,  doing 
the inversion, and then returning to the initial basis. In terms of this unitary quantity, the 
overlap matrix is 

D = l + V .  (9) 
The projection process is sketched in Fig. (3). The mass used in the starting Wilson op- 
erator is taken to a negative value so selected that the low momentum states are projected 
to low eigenvalues, while the doubler states are driven towards X N 2. 

The overlap operator has several nice properties. First, it satisfies the Ginsparg-Wilson 
relation? most succinctly written as the unitarity of V coupled with its 7 5  hermiticity 

v = (DwDL)-%w. (8) 

@ySV = 1. (10) 



Figure 4 Inverting a complex circle generates another circle. 

As it is constructed from a unitary operator, normality of D is uaranteed. But, most 
important, it exhibits a lattice version of an exact chiral symmetry. The fermionic action 
+D+ is invariant under the transformation 

5 
- 

where 
9 5  = vy5. 

As with 7 5 ,  this quantity is Hermitean and its square is unity. Thus its eigenvalues are all 
plus or minus unity. The trace defines an index 

1 
2 

u = -Try5 

which plays exactly the role of the index in the continuum. 
It is important to note that the overlap operator is not unique. Its precise form de- 

pends on the particular initial operator chosen to project onto the unitary form. Using the 
Wilson-Dirac operator for this purpose, the result still depends on the input mass used. 
From its historical origins in the domain wall formalism, this quantity is sometimes called 
the “domain wall height.” 

Because the overlap is not unique, an ambiguity can remain in determining the wind- 

* ible, and for a given gauge field this can occur at specific values of the projection point. 
This problem can be avoided for “smooth” gauge fields. Indeed, an “admissibility con- 
dition,” ‘OJ1 requiring all plaquette values to remain sufficiently close to the identity, 
removes the ambiguity. Unfortunately this condition is incompatible with reflection 
positivity.12 Because of these issues, it is not known if the topological susceptibility is 
in fact a well defined physical observable. On the other hand, as it is not clear how to 
measure the susceptibility in a scattering experiment, there seems to be little reason to 
care if it is an observable or not. 

ing number of a given gauge configuration. Issues arise when DwD, t is not invert- 



Figure 5: Inverting the overlap operator generates a line with real part 1/2. 

3 A Cheshire chiral condensate 

Now that I have reviewed the basic framework, it is time for a little fun. I will calculate 
the chiral condensate in the overlap formalism. I should warn you that, in the interest of 
amusing you, I start the argument in an intentionally deceptive manner. 

3.1 He's here 
I begin with the standard massless overlap theory. I want to calculate the quantity ($$) . 
Remarkably, this can be done exactly. I start with 

where I have used the complex pairing of eigenvalues to cancel the imaginary parts. At 
the end, the average is to be taken over appropriately weighted gauge configurations. 

Now the crucial feature of the overlap operator is that its eigenvalues all lie on a circle 
in the complex plane. An interesting property of a general complex circle is that the 
inverses of all its points generates another circle, as sketched in Fig. 4. 

This process is, however, somewhat singular for the overlap operator itself since the 
corresponding circle touches the origin. In this case the inverted circle has infinite radius, 
i.e. it degenerates into a line. For the circle of the overlap operator, with center at z = 1 
and radius 1, the inverse circle is a line with real part 1/2 and parallel to the imaginary 
axis. This is sketched in Fig. 5. 

This placement of eigenvalues enables an immediate calculation of the condensate 

1 1 N  ($$) = E R e -  = E- = -. 
xi 2 2  

Here N is the dimension of the matrix, and includes the expected volume factor. 
So the condensate, supposedly a signal for spontaneous chiral symmetry breaking, 

does not vanish! But something is fishy, I didn't use any dynamics. The result also is 
independent of gauge configuration. 
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Figure 6: As the mass changes sign a pole moves between inside and outside the overlap circle. This 
generates a jump in the condensate. 

3.2 He’s gone 

So lets get more sophisticated. On the lattice, the chiral symmetry is more complicated 
than in the continuum, involving both 75 and 9s in a rather intricate way. In particular, the 
operator does not transform in any simple manner under chiral rotations. A possibly 
nicer combination is $( 1 - D/2)$. If I consider the rotation in Eq. (1 1) with 8 = n / 2 ,  
this quantity becomes its negative. But it is also easy to calculate the expectation of this 
as well. The second term involves 

Putting the two pieces together 

(g(1- D/2)$)  = N/2 - N / 2  = 0. (17) 

So, I’ve lost the chiral condensate that I so easily showed didn’t vanish just a moment 
ago. Where did it go? 

d 

3.3 He’s back 

The issue lies in a careless treatment of limits. In finite volume, (q(1 - 0 / 2 ) $ )  must 
vanish just from the exact lattice chiral symmetry. This vanishing occurs for all gauge 
configurations. To proceed, introduce a small mass and take the volume to infinity first 
and then the mass to zero. Toward this end, consider the quantity 

The signal for chiral symmetry breaking is a jump in this quantity as the mass passes 
through zero. 



As the volume goes to infinity, replace the above sum with a contour integral around 
the overlap circle using z = 1 + eie. Up to the trivial volume factor, I should evaluate 

As the mass passes through zero, the pole at z = -m passes between lying outside and 
inside the circle, as sketched in Fig. (6). As it passes through the circle, the residue of 
the pole is p(0) = lime+o p(0) .  Thus the integral jumps by 27rp(O). This is the overlap 
version of the Banks-Casher relation: a non-trivial jump in the condensate is correlated 
with a non-vanishing p(0). 

Note that the exact zero modes related to topology are supressed by the mass and do 
not contribute to this jump. For one flavor, however, the zero modes do give rise to a 
non-vanishing but smooth contribution to the ~0ndensate.l~ More on this point later. 

4 Another puzzle 

For two flavors of light quarks one expects spontaneous symmetry breaking. This is the 
explanation for the light mass of the pion, which is an approximate Goldstone boson. In 
the above picture, the two flavor theory should.have a non-vanishing p(0). 

Now consider the one flavor theory. In this case there should be no chiral symme- 
try. The famous U(1) anomaly breaks the naive symmetry. No massless physical parti- 
cles are expected when the quark mass vanishes. Furthermore, simple chiral Lagrangian 
a r g ~ m e n t & ~ $ ~ ~  for multiple flavor theories indicate that no singularities are expected when 
just one of the quarks passes through zero mass. From the above discussion, this leads to 
the conclusion that for the one flavor theory p(0) must vanish. 

But now consider the original path integral after the fermions are integrated out. 
Changing the number of flavors N f  manifests itself in the power of the determinant 

Naively this suggests that as you increase the number of flavors, the density of low eigen- 
values should decrease. But I have just argued that with two flavors p(0) # 0 but with one 
flavor p(0) = 0. How can it be that increasing the number of flavors actually increases 
the density of small eigenvalues? 

This is a clear example of how the non-linear nature of the problem can produce 
non-intuitive results. The eigenvalue density depends on the gauge field distribution, 
but the gauge field distribution depends on the eigenvalue density. It is not just the low 
eigenvalues that are relevant to the issue. Fermionic fields tend to smooth out gauge 

' fields, and this process involves all scales. Smoother gauge fields in turn can give more 
low eigenvalues. Thus high eigenvalues influence the low ones, and this effect evidently 
can overcome the naive suppression from more powers of the detehinant. 

5 athereal instantons 

Through the index theorem, the topological structure of the gauge field manifests itself in 
zero modes of the massless Dirac operator. Let me again insert a small mass and consider 



the path integral with the fermions integrated out 

(21) 

If I take the mass to zero, any configurations which contain a zero eigenmode will have 
zero weight in the path integral. This suggests that for the massless theory, I can ignore 
any instanton effects since those configurations don’t contribute to the path integral. 

What is wrong with this argument? The issue is not whether the zero modes contribute 
to the path integral, but whether they can contribute to physical correlation functions. To 
see how this goes, add some sources to the path integral 

J i 

Differentiation (in the Grassmann sense) with respect to q and 7 gives the fermionic 
correlation functions. Now integrate out the fermions 

If I consider a source that overlaps with one of the zero mode eigenvectors, i.e. 

( + O , d  # 0, (24) 

the source contribution introduces a 1/m factor. This cancels the m from the determinant, 
leaving a finite contribution as m goes to zero. 

With multiple flavors, the determinant will have a mass factor from each. When sev- 
eral masses are taken to zero together, one will need a similar factor from the sources for 
each. This product of source terms is the famous “‘t Hooft vertex.” While it is correct 
that instantons do drop out of 2, they survive in correlation functions. 

While these issues are well understood theoretically, they can raise potential difficul- 
ties for numerical simulations. The usual numerical procedure generates gauge configu- 
rations weighted as in the partition function. For a small quark mass, topologically non- 
trivial configurations will be suppressed. But in these configurations, large correlations 
can appear due to instanton effects. This combination of small weights with large correla- 
tions can give rise to large statistical errors, thus complicating small mass extrapolations. 
The problem will be particularly severe for quantities dominated by anomaly effects, such 
as the q‘ mass. A possible strategy to alleviate this effect is to generate configurations 
with a modified weight, perhaps along the lines of multicanonical algorithms>7 

Note that when only one quark mass goes to zero, the ’t Hooft vertex is a quadratic 
form in the fermion sources. This will give a finite but smooth contribution to the con- 
densate ($$). Indeed, this represents a non-perturbative additive shift to the quark mass. 
The size of this shift generally depends on scale and regulator details. Even with the 
Ginsparg-Wilson condition, the lattice Dirac operator is not unique, and there is no proof 
that two different forms have to give the same continuum limit for vanishin quark mass. 
Because of this, the concept of a single massless quark is not physical?’ invalidating 
one popular proposed solution to the strong CP roblem. This ambiguity has been noted 

malon” problem. The issue is closely tied to the problems mentioned earlier in defining 
the topological susceptibility. 

for heavy quarks in a more perturbative context P9 and is often referred to as the “renor- 



6 Summary 

In short, thinking about the eigenvalues of the Dirac operator in the presence of gauge 
fields can give some insight, for example the elegant Banks-Casher picture for chiral 
symmetry breaking. Nevertheless, care is necessary because the problem is highly non- 
linear. This manifests itself in the non-intuitive example of how adding flavors enhances 
rather than suppresses low eigenvalues. 

Issues involving zero mode suppression represent one facet of a set of connected unre- 
solved issues. Are there non-perturbative ambiguities in quantities such as the topological 
susceptibility? How essential are rough gauge fields, i.e. gauge fields on which the wind- 
ing number is ambiguous? How do these issues interplay with the quark masses? I hope 
the puzzles presented here will stimulate more thought along these lines. 
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