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1. Introduction 

The importance of the first-principle study in quantum chromodynamics is increasing largely 
because RHIC experiment has started and LHC is also coming. For precise description of high- 
energy heavy ion collisions, gauge theory needs to be studied at finite temperature and density in a 
systematic way. Ideally, we should also have a methodology for tracing time-evolution of quantum 
states based on the Schrodinger equation because heavy ion collisions should be treated as non- 
equilibrium evolving systems rather than static. Lattice gauge theory is the most useful method for 
studying the quark-gluon systems at zero and finite temperature. However, Monte Carlo integration 
does not work for lattice gauge theory with large chemical potential because of the severe sign 
problem. It would be worthwhile to pursue a systematic variational approach to gauge theory. In 
the previous works, the matrix product ansatz has been applied to hamiltonian lattice gauge theory 
on a spatial ladder lattice [l ,  21. 

The matrix product ansatz [3] is a simplified version of DMRG (density matrix renormalization 
group) [4, 51. DMRG has been developed as the method that gives the most accurate results for 
spin and fermion chain models such as one-dimensional quantum Heisenberg and Hubbard models 
at zero and finite temperature [7]. DMRG is also useful for diagonalization of transfer matrices 
in two-dimensional classical statistical systems [SI. DMRG has been extended to two-dimensional 
quantum systems [9] and can work for bosonic degrees of freedom [5].  

Lattice gauge hamiltonian is obtained by choosing temporal gauge in partition function of 
Euclidean lattice gauge theory. In hamiltonian formalism, gauge invariance needs to be maintained 
explicitly by imposing the Gauss law on the Hilbert space. On the other hand, Euclidean lattice 
gauge theory can keep gauge invariance manifestly by construction. This is one of the reasons 
why hamiltonian version of lattice gauge theory is not popular. In addition, no systematic methods 
had been known for diagonalization of gauge hamiltonian before the matrix product ansatz was 
applied to lattice gauge theory in ref. [l]. If trial wavefunction is constrained directly with the 
Gauss law, the advantage of the matrix product ansatz is completely spoiled because calculation of 
energy function becomes impossible in a practical sense. If the hamiltonian is diagonalized without 
the Gauss law, all possible states are obtained including gauge variant states. However, it must be 
possible to extract gauge invariant states because all eigenstates of the hamiltonian can be classified 
using generators of the considered gauge group. Therefore, if the matrix product ansatz is used, we 
better start from the whole Hilbert space and then identify gauge invariant states using the Gauss 
law operator after all calculations. 

’ 

2. Quantum hamiltonian in the 2 2  lattice gauge theory 

We are interested in quantum hamiltonian of the 2 2  lattice gauge theory. Statistical mechan- 
ics and quantum hamiltonian are connected through the transfer matrix formalism. The quantum 
hamiltonian is obtained by choosing temporal gauge in the partition function [lo] 

H =  -Co-(n,i)-A C P ( n , i , j ) ,  (2.1) 
n,i n,Lj 

‘By “&dimensional”, we mean (1 -F &dimensional spacetime. 
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where ox and oiare Pauli matrices and P is a plaquette operator. In eq. (2.1), the first and second 
summations are taken on the spatial lattice for all possible link and plaquette operators, respec- 
tively. In general, arbitrary states can be represented as a superposition of products of lf),~, where 

Let us introduce time-independent operators G(n), each of which flips spins on all the links 
oz( tZ , i ) lk)nj i  = f l f ) n , i .  

emerging from a site IZ 
G(n) = nox(tt,i). (2.2) 

f i  

The operator G(n) defines local gauge transformation G(n)-'HG(n) = H .  In order for physical 
quantities to be gauge invariant, quantum states need to be invariant under gauge transformation 

G(n)lY) = 1"). (2.3) 

We need to impose the Gauss law (2.3) on the wavefunction to keep gauge invariance. Otherwise, 
unphysical states may be obtained because gauge invariance is not guaranteed. 

3. Matrix product ansatz on a ladder lattice 

Since this work is the first application of the matrix product ansatz to 2 2  gauge theory, we 
would like to consider a simple model. The simplest one is a 2 2  hamiltonian lattice gauge theory 
on a spatial ladder lattice (see figure 1). We assume periodicity in the horizontal direction on the 
ladder for later convenience. In figure 1, periodicity is denoted with the open circles. 

The Z2 lattice gauge model has only 
link variables. In our construction, each 
link is assigned a different set of matri- 

of wavefunction (see figure 1). The in- 
dex n represents the n-th square on the 
ladder chain and runs from 1 to L. The 
dimension of the matrices is M. Our ma- 
trix product state is give by 

B1 [tll BL[ tL l  r-fi - - - - -iLJ-JlIsl1 Al[Sl] ces A,,, BE, and C,, for parameterization - - - - - -  
C l [ U l ]  CL [%I 

Figure 1: A spatial ladder chain with lattice size L. The open 
circles indicate periodicity. The link variables are dynamical. 
Different sets of matrices are assigned to links. 

I'u) = tr J-J z: C, C, ~ / f ~ ~ , l l ~ J ~ ~ ~ , , l ~ J f ~ ~ / * l  I ~ J * ) J l l ~ / f ) n I ~ ~ n ) n  I (3.1) 
( L  n=1 s l l = * t l l = f u l , = ~  1 

where the matrices are multiplied in ascending order keeping the order of A,,B,,C,, and the basis 
states Is),,, It),,, and Iu),, are eigenstates of the spin operator 0,. In this expression, the variables 
s, t ,  and u axe used to denote the position of the links. The implementation of the matrix product 
ansatz means that a ladder lattice has been represented as a one-dimensional system with non- 
nearest neighbor interactions. Gauge invariance of matrix product states will be discussed in the 
next section. 

If we require orthogonality of optimum basis states according to ref. [3], we have 
M M 

C, ( x n [ s ] ) i j ( x n [ s ] ) i , j  = &, C, 2 ( ~ n [ s l ) i j ( x n [ s ] ) i j ~  = a j j l ,  (3.2) 
j x l  s=* i= 1 s=f 
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where X stands for A , B ,  and C. If these conditions are not imposed, norm of the matrix product 
state (3.1) may becomes very small, which results in numerical instability. 

Energv 

is a function of the matrices A,, [s] , B, [t] , and C,, [u] . The numerator and denominator can be calcu- 
lated by evaluating trace of a product of 3L matrices numerically. 

The minimum of the energy function (3.3) corresponds to the ground state, which can be 
obtained based on matrix diagonalization as explained below. We can reduce the minimization 
problem (3.3) into a generalized eigenvalue problem [6] 

V ~ H V  = EV'NV, (3.4) 

where H and N are 2M2 by 2M2 matrices. To understand what is going here, let us consider how 
energy can be minimized by varying An [s] when other matrices are fixed. Note that the hamiltonian 
and norm matrices are bilinear of the matrix A, [s] 

( Y I H  Iy) = E b1) i jH( i ,  j , s )  , (k , l , f )  (An [t] kl 7 (3.5) 
i,j,kd s,t 

(YIW = E(~l [s I ) i j~( i , j , s ) , (k , l ,~)  (~n[tI)k[' (3.6) 
i9j,k,l s,t 

where the matrix N is diagonal for the indices s and t. Once these expressions are obtained and the 
variational parameters A,,[$] are regarded as a vector v, the minimization problem (3.3) reduces to 
(3.4). 

4. Numerical results 

The matrix product ansatz assumes large lattice. Our lattice size L = 500 is sufficiently large. 
We solve the generalized eigenvalue problem (3.4) using LAPACK. For steady states, real matrices 
are sufficient for parameterizing the matrix product state (3.1). Convergence of energy needs to be 
checked for the number of sweeps and the matrix dimension M .  Energy density E I L  converges in 
accuracy of five digits or higher after two sweeps when the matrix size M is fixed. 

Table 1 shows energy spectra of six low-lying states for three values of the coupling constant: 
A = O.l,l, and 10. The sweep process has been repeated twice. In this model, convergence of 
energy is very fast in contrast to Heisenberg chains [ 11 [3]. Small matrix dimension is sufficient for 
good convergence. Since we have obtained low-lying states without imposing the Gauss law on the 
variational space, gauge variant states are contained. In table 1, gauge invariant states are denoted 
with underlines. The other states are gauge variant. As we will see, gauge invariant physical states 
can be identified by calculating expectation values of the Gauss law operator. 

In the ladder chain model, the Gauss law operator G(n) is a product of three 0, operators 
(two horizontal and one vertical). We evaluate expectation values of G(n) on the upper lattice sites 
shown in figure 1. Then, the number of the Gauss law operators to be evaluated is L. Expectation 
values on the lower sites are same as the upper ones because of reflection symmetry. Figures 2 plots 
expectation values of the Gauss law operator (G(n)) in the case of A = 10 for the states (a) EO, (b) 

181 I 4  



c 

Gauge irzvariance in a Z2 hainiltoiziaiz lattice gauge theory Takanori Sugihara 

2 -3.001 -2.997 72.997 -2.997 -2.993 -2.993 
3 -3.001 -2.997 -2.997 -2.997 -2.994 -2.993 
4 -3.001 -2.997 -2.997 -2.997 -2.997 -2.995 

a = 1  
2 -3.124 -3.121 -3.121 -3.118 -~ -3.114 -3.112 
3 -3.124 -3.121 -3.121 -3.118 -3.114 -3.112 
4 -3.124 -3.121 -3.121 -3.118 -3.114 -3.112 

a = 10 
2 -10.27 -10.27 -10.27 -10.27 -10.23 -10.23 
3 -10.27 -10.27 -10.27 -10.27 -10.26 -10.23 
4 -10.27 -10.27 -10.27 -10.27 -10.26 -10.23 

Table 1: Energy density E / L  of six low-lying states is listed for A = 0.1, 1, and 10 when lattice size is 
L = 500. Good convergence of energy is obtained with small M. 

(a) Tlie state EO 
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Figure 2: Expectation values of the Gauss law operator is plotted for the four low-lying states (a) !Eo, (b) El ,  

(c) Ez. and (d) E3 with A = 10, L = 500, and M = 4. The circles are the calculated values. The states (a) and 
(d) are gauge invariant because the Gauss law is satisfied on every lattice sites. On the other hand, the states 
(b) and (c) are gauge variant because (G(500)) = -1. These statements hold in accuracy of seven digits or 
higher. 
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El ,  (c) E2, and (d) E3. In figures 2 (a) and (d), the Gauss law G(n) = 1 is satisfied uniformly on 
every lattice sites. Therefore, the obtained states Eo and E3 are gauge invariant. On the other hand, 
in figures 2 (b) and (c), the states El and E2 are gauge variant because gauge symmetry is definitely 
broken at the site n = 500. The position of this special lattice site depends on where the sweep 
process ends. The relation (G(n)) = 1 or -1 holds for the obtained low-lying states in accuracy 
of seven digits or higher when M = 4. In this way, we can classify the obtained states into gauge 
invariant states and others. 

5. Extension to square lattice I--. 
I / /  

We apply the matrix product ansatz to (2+1)-dimensional 2 2  lattice gauge theory on a square 
lattice, which has a second order phase transition. It is possible to solve the model in the same way 
as before without imposing the Gauss law on a variational space. However, we solve the Gauss law 
analytically to reduce calculation load. As a result, the model is equivalent to the transverse field 
king model. The square lattice is organized into one-dimensional lattice so that the matrix product 
ansatz can be applied. The non-local interactions can be handled by increasing the dimension of 
the matrix size. The matrix size used for the calculation is M = 30. The obtained value of the 
critical coupling is dc N 3.12, which is close to the past numerical results. However, our lattice size 
L = 12 is still small. Further refinement will be given elsewhere. 
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