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Abstract 
We study the density of states method to explore the phase diagram of the 
chiral transition on the temperature and quark chemical potential plane. Four 
quark flavors are used in the analysis. Though the method is quite expensive 
small lattices show an indication for a triple-point connecting three different 
phases on the phase diagram. 

1 Introduction 
To clarify the phase diagram of QCD and thus the nature of matter under extreme conditions is one of the 
most interesting and fundamental tasks of high energy physics. Lattice QCD has been shown to provide 
important and reliable information from first principals on QCD at zero density. However, Lattice QCD 
at finite densities has been harmed by the complex action problem ever since its inception. For p > 0 the 
determinant of the fermion matrix (detM) becomes complex. Standard Monte Carlo techniques using 
importance sampling are thus no longer applicable when calculating observables in the grand canonical 
ensemble according to the partition function 

zGC(p) = J' DU detM[U](p) exp(-SG[U]}. (1) 

Recently many different methods have been developed to circumvent the complex action problem for 
small p / T  [I, 21. For a recent overview see also 131. 

2 Formulation of the method 
A very general formulation of the DOS method is the following: One exposed parameter (4)  is fixed. The 
expectation value of a thermodynamic observable (0), according to the usual grand canonical partition 
function (l), can be recovered by the integral 

< 0 >= 1 (@ (Of(U)), P ( 4 )  / I  d 4  (f(U)), P(+> 

s 
(2) 

where the density of states (p) is given by the constrained partition function: 

p(x) = Z&) = D U g ( U )  6($  - x). (3) 

With ( ), we denote the expectation value with respect to the constrained partition function. In addition, 
the product of the weight functions f, g has to give the correct measure of ZGC: fg = detM exp{-Sc}. 
This idea of reordering the partition functions is rather old and was used in many different cases [4,5. 61 
The advantages of this additional integration becomes clear, when choosing 4 = P and g(U)  = 1. In this 
case p(4)  is independent of all simulation parameters. The observable can be calculated as a function 
of all values of the lattice coupling p. If one has stored all eigenvalues of the fermion matrix for all 
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configurations, the observable can also be calculated as a function of quark mass (m) and number of 
flavorsl51 ( N f ) .  In this work we chose 

q5 = P and g = IdetMl exp{-SG}, f = exp(i6). (4) 
In other words we constrain the plaquette and perform simulations with measure 9. In practice, we 
replace the delta function in Equation (3) by a sharply peaked potential [6]. The constrained partition 
function for fixed values of the plaquette expectation value can then be written as 

( 5 )  

where exp{-V(x)} is a Gaussian potential with 

(6) 2 
We obtain the density of states (p(x)) by the fluctuations of the actual plaquette P around the constraint 
value z. The fluctuation dissipation theorem gives 

1 2 V(X) = -T(Z - P )  ~ 

d 
dx 
- Inp(x) =< I - P >, . (7) 

(om)), (P,  P> = ( O f ( U ) R ( P ,  Po, P ,  Po)) ,  / (R(P,  Po, P ,  D O ) ) ,  > (8) 
(f(W), (P, PI = (f(U)R(CL, Po, P ,  Po)), / (R(CL, Po, PI Po)), 1 (9) 

(10) - b ( X ,  P,  PI 
Here R is given by the quotient of the measure g at the point (p,  P )  and at the simulation point (po, Po) ,  

Before performing the integrals in Equation (2) we compute from an ensemble generated at (PO, PO):  

d 
dX 

= ((x - P ) W ,  Po, PI Po)) ,  * 

Having calculated the expressions (8)-(lo), we are able to extrapolate the expectation value of the observ- 
able (2) to any point (p,  P )  in a small region around the simulation point (pug, 00). For any evaluation of 
(0) (p ,  PI ,  we numerically perform the integrals in Equation (2). We also combine the data from several 
simulation points to interpolate between them. 

3 Simulations with constrained Plaquette 
The value we want to constrain is the expectation value of the global plaquette, which is given on every 
gauge configuration by the sum over all lattice points (y) and directions (pv) of the local plaquette PFv (y) 
and its adjoint Piu (y), 

(12) 

Since the plaquette is also the main part of the gauge action, 

the additional potential V can be easily introduced in the hybrid Monte Carlo update procedure of the 
hybrid-R algorithm [7]. After calculating the equation of motion for the link variables U,(y), we find 
for the gauge part of the force 

Here the subscript TA indicates the traceless anti-Hermitian part of the matrix. We see that in each 
molecular dynamical step the measurement of the plaquette is required. However, the only modification 
in the gauge force is the factor in round brackets. 
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Fig. 1: (a) Results for Simulations at p = 4.98, p = 0.3, X = 0.02, nf = 4, am = 0.05, and number of lattice points: 44. 
Shown are the density of states p(x), the phase factor (cos(@)), and their product. (b) Results for Simulations .at ,O = 5.1, 
X = 0.01, nf = 4, am = 0.05, and number of lattice points: 64. Shown is the suppression from the complex phase of the 
fermion determinant (cos(@)) for different chemical potentials. 

4 Simulation details and the strength of the sign problem 
Simulations have been performed with staggered fermions and N f  = 4. We chose 9 differed points in the 
(p, p)-plane for the 44 lattice and 8 points for the 64 lattice. On each of these points we did simulations 
with 20-40 constrained plaquette values, all with quark mass am = 0.05. Further simulations has been 
done with (p, p)  = (5.1,0.3) on the 63 x 8 lattice for am = 0.05 and am = 0.03. In order to calculate 
the plaquette expectation value, or its susceptibility, one has to perform the following integrals: 

Thus the functions p(z) and (cos(@)), have to be known quite precisely. We plot both functions in 
Figure l(a>. The transition is signaled in the double peak structure of p(z). The phase factor (cos(O)), 
suppresses the peak of p(z) at smaller plaquette values, which results in a shift of the critical temperature 
to smaller values, in comparison with the phase quenched theory. In Figure l(b) we show the phase 
factor for different chemical potentials. With increasing chemical potential the phase factor becomes 
compatible with zero within errors. In fact, its average value becomes as low as cos(@) N 0.005. There 
exist however a small interval around P N 2.85, where the phase factor stays finite. In this way, the 
Plaquette expectation values is strongly altered by the phase factor. Figure l(b) demonstrates also the 
advantage of he DOS method over the other approaches of lattice QCD to finite density. Using the DOS 
method one is able to do simulations at directly those Plaquette values which are relevant at finite density. 
This solves the so called overlap problem of the reweighting approach. Furthermore we have checked in 
[SI, that results with have been obtained within the framework of the DOS method agree very well with 
earlier results from the multi-reweighting approach. 

5 The Plaquette expectation value and the phases diagram 

Performing the integration in Eq. (15) numerically, we calculate the plaquette expectation values as 
shown in Fig. 2. At chemical potentials p20.36, the plaquette signals the QCD transition through a rapid 
crossover from a low temperature phase of < P >N 2.9 to a high temperature phase of < P >N 3.1. 
For p20.36 the plaquette expectation value at small temperatures drops to < P >- 2.85. This new 
low temperature phase of the plaquette at high chemical potentials is caused by the fermion determinant. 
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Fig. 2: Results for Simulations at p = 5.1, X = 0.01, nf = 4, am = 0.05, and number of lattice points: 64. Shown is: (a) the 
Plaquette expectation value as a function of the coupling /3 for different chemical potentials and (b) the plaquette expectation 
value at fixed coupling, as a function of the chemical potential. 
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Fig. 3: The phase diagram in physical (a), and the quark number density at constant temperature T = 143 MeV (4* lattice), 
T = 124 MeV (64 lattice) and T = 93 MeV (63 x 8 lattice). 

As on can see in Figure l(b) the region around P N 2.85 is the region which is less suppressed by the 
phase factor. Another interesting observation is that the critical coupling, which is decreasing in p for 
p < 0.36 starts to increase for p > 0.36. The plaquette expectation value thus suggests the existence 
of three different phases in the (T,p)-diagram with a triple point, where all those phases coincide. In 
Figure 3(a) we show the phase diagram in physical units. The phase boundaries were determined by 
calculating the peaks in the plaquette susceptibility. Note, that we make no statement about the order of 
the transition lines. To determine the order of the transition one has to perform finite a finite-size-scaling 
analysis. 

The scale was set by the Sommer radius TO,  measured on a lo3 x 20 lattice. The triple point is 
located around p p  M 300 MeV, however its temperature (Ttri) decreases from Ttri M 148MeV on the 
44 lattice to Ttri M 137MeV on the 6" lattice. This shift reflects the relatively large cut-off effects one 
faces, with standard staggered fermions and temporal extents of 4 and 6. 

Also shown in Figure 3(a) are points from simulations with quark mass am = 0.03. The phase 
boundary turned out to be - within our statistical uncertainties - independent of the the mass. 



6 The quark number density 
To reveal the properties of the new phase located in the lower right comer of the phase diagram, 
calculated the quark number density, at constant coupling ,i3 and at constant temperature respectively. 
obtain the density nq we perfoim the following integration 

5 

we 
To 

The thermodynamic quantity nq are given as usual by 

In Figure 3(b) we show the baiyon number density, which is related to the quark number density by 
ng = n q / 3 .  The results are plotted in physical units and correspond to a constant temperature of 
T M 143 MeV (44 lattice), T M 124 MeV (S4 lattice) and T M 93 MeV (S4 x 8 lattice). In order 
to divide out the leading order cut-off effect, we multiply we have multiplied the data with the factor 
c = SB(Nt ) /SB ,  which is the Stefan-Boltzmann value of a free lattice gas of quarks at a given value 
of Nt, divided by its continuum Stefan-Boltzmann value. At the same value of the chemical potential 
where we find also a peak in the susceptibility of the plaquette (pc), we see a sudden rise in the baryon 
number density. Thus for p > pc we enter a phase of dense matter. The transition occurs at a density of 
(2 - 3) x n N ,  where n N  denotes nuclear matter density. Above the transition, the density reaches values 
of (10 - 20) x n N .  Quite similar results have been obtained recently by simulations in the canonical 
ensemble [9]. 

References 
[l] Z. Fodor and S. D. Katz, Phys. Lett. B534 (2002) 87 [hep-lat/0104001]. 

[2] Z. Fodor and S. D. Katz, JHEP 0203 (2002) 014; C. R. Allton et al., Phys. Rev. D66 
(2002) 074507; R. V. Gavai and S. Gupta, Phys. Rev. D 68 (2003) 034506; P. R. Crompton, 
[hep-lat / 03 OlOOl]; M. D’Elia and M. P. Lombardo, Phys. Rev. D67 (2003) 014505; P. de For- 
crand and 0. Philipsen, Nucl. Phys. B642 (2002) 290; NucL Phys. B673 (2003) 170; V. Azcotiti, et 
al., [hep- Pat / 0 5 0 3 0 lo]. 

[3] 0. Philipsen, PoSLAT2005 (2005) 016 [hep-lat/0510077]. 

[4] G. Bhanot, K. Bitar and R. Salvador, Phys. Lett. B187 (1987) 381; Phys. Lett. B188 (1987) 246; 
M. Karliner, S.R. Sharpe and Y.F. Chang, Nucl. Phys. B302 (1988) 204; V. Azcoiti, G. di Carlo and 
A. F. Grillo, Phys. Rev. Lett. 65 (1990) 2239; A. Gocksch, Phys. Rev. Lett. 61 (1988) 2054. 

[5] X. Q. Euo, Mod. Phys. Lett. A16 (2001) 1615. 

[6] J. Ambjom, K. N. Anagnostopoulos, 9. Nishimura and J. J. M. Verbaarschot, JHEP 0210 (2002) 
062. 

[7] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken and R. L. Sugar, Phys. Rev. B35 (1987) 2531. 

[SI C. Schmidt, Z. Fodor and S. Katz, PoSLAT2005 (2005) 163 [hep-lat/0510087]. 

[9] A. Alexandru, M. Faber, I. Horvath and K. F. Liu, [hep-lat/0410002]; S. Kratochvila and 
P. deForcrand, PoSLAT2005 (2005) 167 [hep-lat/0509143]. 


	PO Title Page.pdf
	THE DENSITY OF STATES METHOD AT FINITE CHEMICAL POTENTIAL
	Presented at the Workshop on Extreme QCD
	Swansea, Wales
	2-5 August 2005
	Physics Department
	Brookhaven National Laboratory






